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Two operating
modes

A myriad of
applications

CHAPTER ONIE
INTRODUCTION

The TeachMover robot arm is a microprocessor-
controlled, six-jointed mechanical arm designed to provide
an unusual combination of dexterity and low cost. The

TeachMover arm can be used in either of the following

modes:
™ Teach Control Mode , in which the hand-held
teach control can be used to teach, edit, and run
a variety of manipulation programs.
® Serial _Interface Mode R in which the

TeachMover arm can be controlled by a host
computer or a computer terminal via one of two
built-in RS-232C asynchronous serial communi-

cations lines.

The TeachMover arm can be used for an unlimited number

of applications, including:

) Education in areas such as manipulation
algorithms, coordinate transformations, planning
strategies, and computer language development.

) Industrial Automation for light assembly,

kitting of parts, palletizing, and operation of
equipment and tools.

[ ) Enjoyment by playing games such- as chess,
drawing with felt-tip pens or paints, and

assembling structures with Lincoln Logs, blocks,

etc.

° Experimentation with computer vision,
electromechanical sensors, mobile robots, and
more.
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CHARTER ONIE
INTRODUCTION Overview Of Manual

Chapter-by-
chapter
overview

Chapter 2 of this manual tells you how to get

started using the TeachMover. The unit's mechanical &

electrical construction are explained in chapters 3-5.

(It is important to understand this material in order to
use the TeachMover properly and to full advantage.)
Chapters 6 & 7 explain all the details of operation of

teach control mode and serial interface mode ,

respectively. Suggested advanced applications are given

in Chapter 8.

We  have also incorporated a number of useful
appendices. These include: a brief history of robotics,
the mathematics of coordinate conversions, TeachMover
electronic and cabling details, instructions for
expanding the memory available for TeachMover programs,

convenient reference tables, and a grid diagram to define

the robot arm starting position.

Finally, we have provided a suggested 1list of
references on fobotics and artificial intelligence for
those who wish to delve more deeply into this exciting
field.

BACKGROUND

Developmental work with computer-controlled mani-
pulators was limited, at first, to laboratories at a
few research-oriented universities in the USA and over-
seas. Principal advances have come from artificial
intelligence laboratories, particularly at Stanford
University and the Massachusetts Institute of Technology.
Work has concentrated on manipulation languages, mani-
pulation planning strategies, coordinate transformations,
use of sensors, and manipulator kinematics. Much of this
work is highly mathematical and has been performed on

large sophisticated computing systems.

Industry has applied a great deal of this research to

factory situations, and as a result thousands of robot

1.2



CHAPTER ONE
INTRODUCTION Background

Microbot’s
contribution

arms now help to manufacture products we use daily.
Industrial robots spot-weld automobile Dbodies, feed
material into punch-presses, spray-paint metal & plastic
components, empty injection-molding machines, and perform
many other factory Jjobs [19]. Principal manufacturers of
industrial robots include Unimation and Cincinnati
Milacron in the USA, ASEA in Sweden, and several companies
in Japan. Unfortunately, the price range of most
industrial robots - $35,000 to $120,000 - hinders robot
experimentation by individuals and schools, as do the
carefully guarded, proprietary hardware and software

details of these machines.

Since 1979, Microbot, 1Inc. has been developing low-
cost manipulating systems for education, industrial
evaluation, and actual industrial use. Our objectives
with the TeachMover arm have been to provide a complete
self-contained system, incuding the manipulator, on-board
computer, hand-held teach control, host computer
interface, and the control language, so that the user
would not have to undertake a major development effort or
purchase a special computer in order to gain a sound

working knowledge of robot operation.
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Minimum but
necessary
details

CHAPTER TWO
GETTING STARTED

If you have Jjust received your TeachMover, you

‘probably will want to start operating it right away. You

can - but there are a few simple things you must do

first. This chapter will give you the minimum information

you need to quickly get started using and programming the

TeachMover arm. After you've completed this chapter, be

sure to read chapters 3-5 (on mechanical & electrical
construction of the arm) before proceding to chapter 6,
where all the teach control operating instructions are
given in detail. Proper utilization of all the arm
commands requires an understanding of how the arm itself

is constructed.

21



CHAPRPTER TWO
GETTING STARTED Mechanical Check-out

Learning the
names of the
arm members
and joints

A. MECHANICAL CHECK-OUT

Carefully unpack the TeachMover robot arm and place it
on a convenient working surface. Visually inspect the
arm, looking for any obvious signs of shipping damage.

Remove any packaging material that has become lodged in

the arm. Save the carton in case you ever need to ship
your TeachMover. (Appendix E shows how to repack the unit
properly.)

Refer to Figure 2-2 to learn the names of the five arm
members and six joints. Now, operate the joints by
manually turning each of the six large plastic drive gears
which are accessible at the rear of the arm. The drive
gears should turn with the application of a moderate
force, and each of the joints should move. Now, hold the
body and arm members, and move each member manually.
There should be 1little play and the arm members should
offer only moderate resistance (about 1 pound) to

movement.

Check to see that the hand cable correctly runs over
the shoulder idler pulley, the sense bracket pulley,and
the elbow idler pulley (Figure 2-3); if the cable has
slipped off any of these pulleys, simply replace it, and,
if necessary, turn the drive gear to provide enough

cable.
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CHAPTER TWO
GETTING STARTED

Mechanical Check-out

Figure 2-1 TeachMover Robot Arm with Teach Control
and Power Supply
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CHAPTER TWO
GETTING STARTED
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Figure 2-2 Major Structural Components
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CHAPTER TWO
GETTING STARTED Mechanical Check-out
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CHAPTER TWO Connecting The
GETTING STARTED Power Supply

Using your own
power supply
instead

Using the joint-
control keys

B. CONNECTING THE POWER SUPPLY

Connect the power cord at the back of the base of the
arm to the power supply unit.

hkkkkhkkhkkhkhkhkkhkkkhkhkhkhhkhkkhkkhkhkkkhkhkhkkkkkkk

* IMPORTANT! *
* TERMINAL WITH RED TAG MUST *

* BE CONNECTED TO POSITIVE VOLTAGE *
dkkdkhhkhkhkkhhkhhkhhhkhhkhhhkdhhkhkhhkhhhkhhkhhkhkkk

The TeachMover requires a 12-volt DC power supply
capable of at least 4.5 amperes with a ripple (peak-to-
peak) voltage of 1 volt or less. Battery eliminator power
supplies (providing 13.8 volts) can be used 1if higher arm
speeds and 1lifting capacities are required; these power
supplies make the TeachMover motors hot to the touch
(120°F), but do not cause damage.

C. PLUGGING IN THE ARM

The three-prong plug is used to avoid shock hazard
and should be plugged into a grounded, three-prong socket
only.

If a three-prong socket is unavailable, then use a
two-prong adapter, and ground the third lead by wiring it
to a pipe or other metal object that goes into the

earth.

D. TRIAL OPERATION

When the power supply is connected and the TeachMover is
first powered up, the green TRAIN light on the hand-held
teach control (Figure 2-4) should be on. Pressing the B,
E, P, R, and G keys activate the base, shoulder, and elbow
joints, the hand's pitch and roll, and the grip, respec-
tively. The right-hand column of keys move the joints in
one direction, and the left-hand keys move the joints in
the opposite direction. Use these arm-control keys to

move each Jjoint back and forth to familiarize yourself

with how these keys operate.
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CHAPTER TWO
GETTING STARTED

Figure 2-4 Hand-held Teach Control
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CHAPTER TWO
GETTING STARTED Trial Programming

Using the
REC key

Once you're familiar with moving the joints one at a
time, try pressing two or more keys simultaneously to see
what kind of motion results. After experimenting with
this for awhile, try causing the hand to move along an
approximately straight path. Now try causing the arm to
pick up an object, move it to another location, and then

release it.

E. TRIAL PROGRAMMING

Since the TeachMover is programmable, it may have
stored some of the key entries you made during your trial
operations. Each time you begin a new programming
sequence, give the TeachMover a clean start with the
following procedure:

Press the MODE key and, while holding it down,

press the CLEAR key; then release both keys,
Press the MODE key and, while holding it down,

press the ZERO key; then release both keys.

Now try the following sequence to program the unit.

- Press TRAIN key.

- Swivel the base by pressing one of the B keys.

- Press the REC key.

- Swivel the base back by pressing the other B key.

- Press the REC key.

- Raise the elbow by pressing the E key.

- Press the REC key.

- Press the MODE key and then the RUN key. (The
RUN key is physically the same as the REC key,
but since you're in a different mode, it
functions differently.)

At this point the green RUN light should go on, and
the arm should move in a triangular pattern. Pressing the
STOP key will immediately stop the robot. Pressing RUN
again will resume the motion. (Pressing the REC key while
the arm is moving will cause the arm to stop when it has

reached the next one of your three programmed points.)

2.8



CHAPTER TWO
GETTING STARTED Trial Programming

Now, if you press the MODE key, hold it down, and at the
same time press the CLEAR key, the program is erased.
Pressing RUN no longer causes the arm to move. Before
starting a new program, you also need to press the MODE
key with the CLEAR key to clear the internal registers.

The TeachMover is again ready with a clean start.

29



CHAPTER TWO
GETTING STARTED Trial Programming

Using the
PAUSE
command

After thus clearing the TeachMover, try creating a
program of your own. To do so, first press the TRAIN key
to get back into TRAIN mode. Then press the various arm-
motion keys, remembering to press REC after the arm
achieves each desired position. If you want to store the
starting position, you will need to press REC before
moving the arm anywhere else. '

Note that you can use more than one arm-control key in
between recorded positions. For example, you can press B,
then E, then P, then REC. When you run the program (that
is, when you press MODE, then RUN), the arm will simply
take a direct path between your recorded points. Try
itl!

At this stage, it is also appropriate to try using the
PAUSE command. Clear the TeachMover, put it into the
TRAIN mode, then try this:

- Record any three successive arm positions you
‘ wish.

- Press the MODE key (to exit from TRAIN mode) and
then press the PAUSE key.

- Notice that the yellow ENTER light goes on. This
means that the yellow numerical labels now apply
to the keys.

- Press the keys to enter the humber‘ of seconds
from 0 to 255.

- Press MODE, then RUN, to start the program.

If all is well, the arm runs through the three
programmed positions, pauses for the number of seconds
you keyed in, runs through the three positions again,

pauses again, and so on until you STOP it.

Later on, you'll 1learn how to use all the other
commands (OUT, ZERO, STEP, etc). But first, it is
necessary to learn something about how the arm is built

and how it functions electrically.
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CHAPTER TWO
GETTING STARTED Trial Programming

Before going on to the next chapter, feel free to
experiment with what you've learned so far. Now is a good
time to get used to how the arm moves, how to position it
to pick up an object, how to avoid obstructions, and so
forth.
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Members:
base

. body
upper arm
forearm

hand (gripper)

Joints:

. base joint
shoulder
elbow
right wrist
left wrist

CHAPTER TRREE
HOW THE TEACHMOVER IS BUILT

A. MAJOR COMPONENTS

The TeachMover's major structural components are
shown in Figure 3-1 which is a duplicate of Figure 2-2.
The microprocessor card is housed in the base . The
teach control cable and the D.C. power cord extend from
the rear of the base. The two RS-232C connectors are
also located at the rear of the base. The body swivels
relative to the base on a hollow shaft attached to the
base. This shaft is called the base joint.

Six stepper motors with gear assemblies are mounted on
the body and control each of the six joints. The power
wires for the motors pass from the computer card in the
base through a hollow shaft to the body. This arrangement

provides a direct cable-drive system.

The upper arm is attached to the top of the body and

rotates relative to the body on a shaft called the

shoulder joint . Similarly, the forearm is attached

to the upper arm by another shaft known as the elbow
joint.

Finally, the hand , also called the ripper , is

attached to the forearm by two wrist joints . Two

separate motors operate the wrist Jjoints to control the
pitch and roll of the hand.

The TeachMover arm has a lifting capacity of one pound
when fully extended, and a resolution (the smallest amount
the arm can be made to move) of 0.0l1 inches. The end of
the hand can be positioned anywhere within a partial
sphere with a radius of 17.5 inches, as shown in Figure
3-2. The maximum speed is from 2 to 7 inches per second,
depending upon the 1load (weight of the object Dbeing
handled.) Detailed performance characteristics of the
TeachMover are given in Table 3-1; this table is

reproduced in Appendix F for easy reference.
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MECHANICAL CONSTRUCTION Components

In general, the base, the body, and all the extension
members are hollow sheet-metal parts which are 1light in
weight but strong. All members are connected to each
other by means of shafts, or axles, passing through
bushings mounted on the members.
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MECHANICAL CONSTRUCTION
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Figure 3-1 Major Structural Components
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1.6

NOTE: Dimensions in inches.

Figure 3-2 Operating Envelope of the TeachMover Arm
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TABLE 3-1

TEACHMOVER PERFORMANCE CHARACTERISTICS

GENERAL

Configuration 5 revolution axes and integral hand

Drive Electric stepper motors-
Open door control

Controller 6502A microprocessor with
4K bytes of EPROM and 1K bytes
of RAM located in base of unit

Interface Dual RS-232C asynchronous serial
communications interfaces (baud
rate is switch-selectable between
110, 150, 300, 600, 1200, 2400,
4800, and 9600 baud)

Teach Control l4-key 13-function keyboard; 5 output
and 7 input bits under computer
control

Power Requirement 12 to 14 volts, 4.5 amps DC

PERFORMANCE
Resolution 0.011 in (0.25 mm) maximum on each axis
Load Capacity 16 oz (445 gm) at full extension
Gripping Force 3 1bs (13 Newtons) maximum
Reach 17.5 in (444 mm)
Velocity 0-7 in/sec (0-178 mm/sec) with

controlled acceleration

DETAILED PERFORMANCE

Motion Max Range of Mtn Speed (Full Load) Speed (No Load
Base +90° 0.37 rad/sec 0.42 rad/sec
Shoulder ¥144°, -35° 0.15 rad/sec 0.36 rad/sec
Elbow +0°, -149° 0.23 rad/sec 0.82 rad/sec
Wrist Roll +360° 1.31 rad/sec 2.02 rad/sec
Wrist Pitch *90 1.31 rad/sec 2.02 rad/sec
Hand 0-3 in. 8 1b/sec* (35 n/sec) (20 mm/sec)

PHYSICAL CHARACTERISTICS

Arm Weight 8 1bs (4kg)
Teach Control Cable Length 3.75 ft. (1150 mm)

* This is given in 1lbs/sec rather than in./sec, because as the
gripper closes it no longer moves, but instead builds up gripping
force. It takes 0.37 sec to build up the maximum force of 3 1lbs.
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~ All six motors
are in the body

Unique cable
driver system

C. CABLE DRIVE SYSTEMS

Most robot arms have at least some of the drive motors

mounted on the extension members (forearm, upper arm,

hand). Unfortunately this adds to the weight of those
members, and means that the other motors - those that
drive the extension members - need to be larger and more

expensive than would otherwise be required.

If you look for motors on the TeachMover's extension
members, you won't find any. That's because all six drive
motors are mounted in the body. This minimizes the Weight
of the extension members and keeps the motor workload
requirements as low as possible. To reduce the number of
moving parts, all six drive gears are mounted on the same
shaft.

A unique system is employed to manipulate the arm
members. From the drive system in the body, aircraft-
quality cables extend to the base, upper arm, forearm, and
hand,” as you can see by examining the TeachMover or by
looking at Figure 3-3. This cable design is an adaptation
and refinement of the "tendon technology" used in air-
craft, high speed printers, and other types of equipment.
Note that each cable is wound around the hub of the drive
gear. This serves not only to providé a take-up drum for
the cable, but also gives the proper gear-reduction ratios

for each of the six drives.

Now, 1let's 1look briefly at how each of the cable
drives is constructed. As you read about each mechanical
part, it's a good idea to locate that part on your Teach-
Mover. You need not be an expert in all aspects of the
cable drive system, but some basic knowledge of how the

cables work can prove extremely valuable later on.

As you look down on the hubs of the drive gears, you
can see a set screw on each hub pinning the cable tightly

in a groove cut into the hub. As the drive gear turns,
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the hub is pulling, or winding, one-half of the cable
while unwinding the other half. (See Figure 3-3)
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Figure 3-3 Cable Drive System
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Shoulder
rotation
maintains
orientation
of hand

1. Base Drive

The base drive causes the body to rotate on the

vertical base axle by driving a large pulley mounted on
the base. Two small pulleys, located at the bottom of the
body, change the base cable direction so that the cable
feed is tangent to the surface of both the drive drum and
the base pulley. You can see how these pulleys work if
you rotate the body manually with the power turned off.
Note the termination of the cable in a clamp fastened by

two screws on one side of the base.

2. Shoulder Drive

Now hold the body in place and move the upper arm to

see how the shoulder cable causes the upper arm to rotate

on the horizontal shoulder axle. Note how this cable
passes around a drive pulley on the shoulder shaft, then
terminates on the upper arm housing. At the termination
point, you'll notice two screws. These screws are used
to maintain the cable under tension, as is explained in

part C, below (Cable Adjustments).

Now rotate the shoulder joint again and notice that
shoulder rotation always causes equal and opposite elbow
and wrist rotation so that the orientation of the hand
remains unchanged. This feature 1is Dbuilt into the
TeachMover's cabling design to make sure that the hand can
hold a glass of liquid while the shoulder rotates without
spilling the liquid.

3. Elbow Drive

The elbow cable causes the elbow to rotate on the

horizontal elbow axle. Note that this cable first passes
around an idler pulley on the shoulder axle, then around a
drive pulley of the same diameter attached to the elbow
axle. The cable terminates at a tension mechanism on the

forearm housing. Rotate the elbow manually and you'll
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Elbow rotation
maintains
orientation

of hand

Elbow rotation
can affect grip
opening

notice that the wrist rotates the same amount in the

opposite direction, thus maintaining hand oreintation.

In rotating the elbow manually (that is with the power
off), you may have noticed something else: when the elbow
rotates, the hand opens and closes. Designing cabling
to prevent this from happening mechanically would have
added undesirable complexity. Instead, a built-in
software routine automatically decouples elbow rotation
from hand closure. To see this in action, turn the power
on and press one of the E keys. Notice that now the elbow

moves without opening or closing the hand.

Note : When. the TeachMover 1is 1in serial interface
mode, this automatic decoupling is inoperative, and, once
again, rotating the elbow will effect hand closure. It
is, however, easy to provide for the decoupling yourself
when you write a host computer program. A simple formula
to accomplish this is given later with the discussion of
the commands available for your use in serial interface

mode.

4. Wrist Drive

The right and left wrist cables cause the hand to

"roll" and "pitch" relative to the forearm. These cables
together control the wrist joint (figure 3-4). Both cables
pass around idler pulleys on the shoulder axle and the
elbow axle, then around the hubs of bevel gears located on
the wrist axle. Tension is maintained in both cables by
means of turnbuckles (to find them, 1look inside the

forearm housing.)

Note how the two bevel gears on the wrist axle mesh
with the output gear on the hand axle. This configuration

forms a differential gear set.
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OUTPUT GEAR

ROLL AXIS

Figure 3-4 The Wrist Joint
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Differential
gear set allows
for pitch and
roll

To see how this differential works, turn the drive
gears so the left and right wrist cables both move in the
same direction. You can see the wrist gears control the
pitch of the hand. Turning the drive gears so the wrist
cables move in opposite directions controls the roll of
the hand.

The TeachMover's Dbuilt in software automatically
coordinates left and right wrist motions to produce the
amount of pitch or roll you specify with the P and R keys
on the teach control. When the TeachMover is in serial
interface mode, you <cannot specify pitch and roll
directly, but only the amount of motion of the 1left and
right wrists. These motions can, however, be coordinated
by a simple formula to produce the desired amount of pitch

or roll.

5. Hand Drive

The hand cable system 1is shown in Figure 3-5.
Attached to the output gear of the differential gear set,
the hand housing holds two pairs of links, and each pair
of 1links terminates in the gripper . The housing, the
links, and the gripper are attached to each other by small
pins. Torsion springs located on the pins attach the
links to the hand housing and provide the. return force to

open the hand as the hand cable is slackened.

Note: The length of the hand varies slightly with
hand opening. For most applications, the amount of
variation is negligible. For high-precision work,
however, it may be necessary to take the variation into
account. A formula for this is given at the end of

Appendix D.

The hand cable is attached to the hand drive  drum

located in the body. The cable passes over an idler
pulley located on the shoulder axle, and then over an

idler pulley mounted on a sensing bracket found inside
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Figure 3-5 Hand Cabling Diagram
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Location of
grip switch

~ If grip switch
doesn’t work

properly

the upper arm housing. This sensing bracket is also

called the grip micro switch. This switch goes on when

the cable tension increases just beyond the point where

the hand closes on an object (or on itself).

As we'll see later, the status of the grip switch can
be used in programming for conditional branching. When
the grip switch is activated, the green "CLOSED" 1light in
the hand-held teach control goes on. Try it. If you
close the gripper on an object and the green 1light does
not go on, then check to see whether the hand cable has
come off the shoulder idler puliey, the elbow idler

pulley, or the sense bracket (grip switch) pulley. If it

has, then simply replace it (referring, if necessary to
the Hand Cabling Diagram on Page 3.13), and try again.
If the green "CLOSED" 1light goes on before the gripper
actually closes, then try tugging on the hand cable a few

times, or adjusting the cable tension (see Section C,'

Cable Tension Adjustments, below.)

Attached to the other end of the tension spring, and
in line with the hand cable, you'll notice two separate
link-drive cables. These cables pass over two guide
pulleys in the wrist yoke and then through the center of
the hollow hand axle. When the cables emerge from the
hand axle, they pass over separate idler pulleys mounted
in the base of the hand. They then pass around idler
pulleys mounted on the inner links of the hand, and return
to and terminate on the shafts of the two pulleys mounted
on the hand base. This arrangement forms two block-and-
tackle devices that augment the gripping force of the
hand. The use of identical cabling on both links provides

for symmetrical hand closure.

The tension spring mounted in series with the hand-
cable drive assembly permits gripping force to be built up

by the position-controlled drive motor once the hand has
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closed. Figure 3-6 shows: (1) The relationship between
hand opening and drive motor steps (this is the 1line
sloping down to the right), and (2) the relationship
between gripping force and drive motor steps once the hand
has closed (this is the 1line sloping up to the right).
Note that the maximum gripping force is 3 1lbs; this occurs
approximately 100 motor steps beyond hand closure. Figure

3-6 is reproduced in Appendix F for ready reference.
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Figure 3-6 Hand Opening and Gripping Force Diagram
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C. CABLE TENSION ADJUSTMENTS

After a period of extended use or after an extreme

overload, tension adjustments may slip. The relaxed half
of a cable should not have noticeable slack. If a cable

does develop slack, then the cable needs to be tightened.

Tension adjustments are provided at the following

locations:
DRIVE LOCATION
Base Right side of base (see
figure 3-7)
Shoulder Right side of upper arm
Elbow Left side of forearm
Wrist Turnbuckle inside forearm

The adjustment procedure is as follows:

1. Base, Shoulder, Elbow:

- Loosen both tension screws.

- Pull firmly (2-3 1lbs.) on one tension screw to
tension the cable as shown in Figure 3-7, and
tighten the other screw with the other hand.

- Release tension and tighten both screws.

Be careful not to put excessive tension in the cable.
Tight cables can cause the motor to slip with a loss of
orientation between the microprocessor and the arm

position.

2. Wrist:
Each turnbuckle may be tightened or 1loosened as
required to achieve proper tension. As with the other
adjustments, be careful not to tension the cables so

much that the motors slip.
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Figure 3-7 Base Tension Adjustment
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CHAPTER FOUR
HOW THE STEPPER MOTORS OPERATE

A. FUNDAMENTALS

Each of the cable drives is controlled by a stepper
notor. The motors used have 4 coils, each driven by a
power transistor. The drive is digital, with the
transistors either turned on or turned off to obtain the
desired pattern of currents in the motor windings. By
changing the pattern of ' currents, a rotating magnetic
field is obtained inside the motor that causes the motor
to rotate in small increments or steps. More information
on stepper motor control can be found in references [3]
and [5].

Stepper motors are not the only kind of motors used in
robot arms. Some arms use servo motors with electronic
feedback 1loops for precise position control. Unlike
stepper motors, these servo motors cannot develop
slippage. This advantage must be weighed against the

servo motor's far greater cost.

Keeping cost as low as possible is one reason we chose
to use stepper motors for the TeachMover. Another reason
is that stepper motors are easier to control from a

computer than are servo motors.

Now, in order to turn a stepper motor in the Teach-
Mover, a particular sequence of binary phase patterns
is output to the desired motor, one pattern per step. In
order to change motor direction, the order in which the
phase patterns are output is simply reversed. The par-
ticular phase patterns used in the TeachMover generate
a sequence known as "half-stepping;" the steps are half
the size specified by the motor manufacturer. (The motors
used to drive the TeachMover are specified by the manu-

facturer at 48 steps per revolution, but are actually
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stepped at 96 steps per revolution.) Compared to full
stepping, half-stepping produces smoother slow-speed
motions, reduces the power requirement, and improves the

arm resolution by a factor of two.

The relationship between motor steps and actual joint
rotation is given in Table 4-1. (The relationship between

motor steps and hand opening was given in Figure 3-6.)
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Table 4-1

MOTOR STEPS AND JOINT ROTATIONS

Steps per Steps per
Motor Joint ' degree radian
1 Base 19.64 1125
2 Shoulder 19.64 1125
3 Elbow 11.55 672
4 Right wrist 4.27 241
5 Left wrist 4.27 241
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Full-load,
half-load,
no-load points

B. SPEED-TORQUE CONSIDERATIONS

The torque output (lifting capacity) of the stepper
motors used on the TeachMover varies with their speed. At
slow speeds, maximum torque is obtained. Above a critical
high speed the motors suddenly slip, and no torque is
obtained. (Motor slippage can cause a discrepancy between
where the arm is and where the computer program thinks it

is, and this may result in unpredictable performance.)

The torque required by the motors of the TeachMover
also depends on the configuration of the arm and the load
held in the hand. This relation is a complex trigonome-
tric expression involving the lengths and weights of all
the arm members. Instead of solving such an expression
before each arm movement to determine the maximum allow-

able speed, it is simpler to program for the worst case.

The worst case is when the members of the arm are at
maximum horizontal extension, requiring the maximum motor
torque. All other configurations will require less motor
torque. With the arm fully extended but with no load,
the torque on all the motors is the same (by design) and
motor speed can be as high as 400 half-steps per second,
as indicated by the "no-load" point in Figure 4-1. Above
this speed the motors will slip, and the torque will be
zZero. With the arm carrying the maximum rated load (that
is, with the arm lifting 16 ounces) the torque on all the
motors (except the base motor, which does not 1lift) is
approximately equal, and maximum speed without slippage is
99 half-steps per second; this is shown as the "full-load
point" in Figure 4-1. At half rated 1load (8 ounces),
maximum speed without slippage is 206 half-steps per
second. These figures will become important 1later, when
we discuss the commands you can use to control the speed

of the TeachMover arm.
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Figure 4-1 Stepping Motor Speed/@oad Trade-off
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To perform a task as fast as possible without risking

slippage, the following suggestions may prove helpful:

[ ) Lowering a load may be done at no-load speed-even
if the arm is holding a load - provided the
Tips to avoid shoulder, elbow and wrist do not raise.
motor slippage ) Swiveling a load about the base joint may always
be done at no-load speed.
® Opening the hand, or closing the hand until the
contact point is reached, may always be done at

no-load speed.

However special care must be exercised in selecting the
proper speed when:

) raising a load with any joint.
) developing a‘gripping force once the gripper has

closed on an object or on itself.
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C. MOTOR CONTROL

Moving the arm from one position to another often
requires rotation of more than one joint. In such cases,
the motion can, in principle, be accomplished in either of
two ways: the Jjoints can be rotated sequentially or
simultaneously. For example, as shown in Figure 4-2,
motion of the arm from A to C can be accomplished through
separate, sequential motions of the elbow and then the
shoulder (A to B, then B to C), or through a coordinated
motion in which the elbow and shoulder joints move

simultaneously (A to C).

In general, coordinated motion is both smoother and
faster than sequential motion. TeachMover firmware is
programmed to produce coordinated motion whenever two or
more motors are needed to move the arm from one recorded
position to the next. To accomplish the coordination, the
motor steps are timed so that each motor is pulsed at
regular intervals during the full duration of the move.
For example, if the shoulder motor is told to move 3 steps
and the elbow motor is told to move 21 steps, the

resultant timing will be as shown in Figure 4-3.

The TeachMover's motor-control algorithm has another
feature: it produces controlled acceleration and
deceleration to minimize jerkiness when the arm starts and
stops. The velocity profile for motion of a stepper motor
at a speed of 450 half-steps per second is shown in Figure
4-4. Note that for relatively short motions, such as the
100-step motion shown in Figure 4-4, the motor might not
actually reach the specified speed before it needs to
begin decelerating for a smooth stop. (We'll describe how

to specify motor speeds in Chapters 6 and 7.)

Although the TeachMover's arm members move along
curved paths, motion in a straight line may Dbe

approximated by a series of these curved motions. For
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example, one of the TeachMover's built-in demonstration
programs moves the arm along an approximately straight 10-
inch line by means of 11 steps spaced one inch apart.
(We'll explain how to run the demonstration programs
later.) The segmented approximation has a theoretical
error of only 0.018 inches in tracking the desired 10-inch

line.
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CHARPTER FIVE
INTERNAL ELECTRONICS AND INTERFACES

A. ON-BOARD COMPUTER AND MEMORY

If you open up the base of the TeachMover (by gently
laying the unit on its side and removing the four screws
you'll find on the bottom), you'll see the circuit card
that houses all the internal electronics, including the
6502A Microprocessor (Figure 5-1). In technical terms,
this microprocessor is an 8-bit, 2MHz chip. 1It's the same
chip used in the Apple, Atari, & PET computers; it is
used in the TeachMover to coordinate all joint motions and
handle all input and output.

TeachMover firmware (permanently built-in software) is
contained in another chip housing 4K bytes of read-only
memory (ROM); this firmware interprets the commands you
give to the arm, converting these to electrical signals
the arm can obey. Also contained in the 4K ROM are two

built-in demonstration programs. More on these later.

The circuit card also includes chips containing 1K
bytes of random-access memory (RAM); this is enough RAM to
let you store an arm-motion program of up to 53 steps. It
is possible to "piggy-back" a second set of RAMs on the
first, thereby extending your program capacity to 126

steps. See Appendix C for instructions.
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B. Serial Ports

In the rear of the base, on either side of the flat
cable that goes to the hand-held teach control, you'll see

two multi-pin connectors. These are the serial interface

ports that allow you to connect the TeachMover to a host
computer, printer, or terminal. A switch on the computer
card allows you to select the serial transmission speed;
eight standard speeds are available, from 110 to 9600
Baud. Further details of serial port operation are given

in the chapter on serial interface mode.

C. User Inputs and Outputs

The computer card also contains an auxiliary parallel
input/output port. This lets you interface the TeachMover
to external equipment with a 16-conductor flat ribbon
cable. Five TTL compatible user output bits can be set
(to 1) or cleared (to 0) under program control to turn
other equipment on or off when a given arm motion is
complete. Seven TTL compatible user input bits can be
used to control an arm sequence when a given external
condition is met. The 16 pins and their functions are
given in Figure 5-2 and Table 5-1. We'll explain how to
use the input and output bits in Chapter 6.

A Dblock diagram of the TeachMover's electronic

circuitry is shown in Figure 5-3.
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9 10 11 12 13 14 15 16

P17

Figure 5-2 Pin.Numbering for Auxiliary I/O Connector
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1/0 Connections

Table 5-1

AUXILIARY I/0 CONNECTOR

W 0 9 600 1 b W N -

T T
O Ul b W N O

Pin No.

Function

+5V-User Power
Ground

Not Used
Input bit 1
Output bit 5
Input bit 2
Output bit 4
Input bit 3
Output bit 3
Input bit 4
Output bit 2
Input bit 5
Output bit 1
Input bit 6
Ground

Input bit 7
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SERIAL
1-843 MHz PORT No. 1
CLOCK - >
+
RESET ::> RS232
S DRIVERS
AND
v RECEIVERS SERIAL
ADDRESS e [ PORT No. 2
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Figure 5-3 Block Diagram of TeachMover
Computer and Electronics

5.6



Three overlays

CHAPTER SIX

OPERATING THE HAND-HELD TEACH CONTROL

A. COLOR CODED CONTROLS

The TeachMover's hand-held teach control (see Figure
6-1) performs most of the same functions as do the teach
controls on large-scale industrial robots. To provide a
wide range of command options yet keep product cost to a
minimum, we employed keyboard "overlays" that allow the
same set of keys to provide three different kinds of
functions. Rather than use an expensive alpha-numeric
display to indicate which overlay is in use, we developed

a simple system of color-coded lights and key labels.

For example, when you press the red MODE key, the red
MODE 1light goes on, and the words printed in red (TRAIN,
STEP, PAUSE, RUN, etc.) apply to the keys.

Pressing certain of these keys (PAUSE, OUT, POINT,
JUMP, or SPEED) will cause the yellow ENTER light to go
on. When this light is on, the yellow numerals next to
the keys apply, and you can enter numericals values
(exactly how, we'll explain later). When the ENTER

light is on, pressing the REC button will clear  the

entered value, allowing you to then enter the correct

value. Pressing the MODE button terminates enter mode.

Finally, the labels printed on the keys themselves (B,
S, E, P, R, G, and REC) apply when the teach control is in
TRAIN mode (or in MOVE mode, as you'll see).
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Figure 6-1 Hand-held Teach Control
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CHAPRPTER SIX Teach Control Command:
TEACH CONTROL TRAIN & RUN

Two ways to
enter TRAIN
mode

Use of REC key

B. The Thirteen Control Functions

There are 13 different control commands you can give
with the teach control. (A concise summary of all teach

control commands is given in Appendix F.)

1. TRAIN

You can put the teach control into TRAIN mode in two

different ways.

A. Simply turn the unit on. This puts the teach
control into TRAIN mode automatically. (Note:
turning the unit off erases the current program,
and 1is therefore not recommended during arm

training.)

or B. Press the red MODE key at any time to make the
red MODE light go on, then press the key labeled,
TRAIN.

Once the teach control is in the TRAIN mode, you can
use the arm-motion (joint-control) keys and the REC key to
manipulate the arm and record arm positions. (If
necessary, refer back to Chapter 2, Section E, Trial

Programming, to review how to do this.)

You can program up to 53 steps; these steps are
internally numbered 0-52. (By adding. additional RAM
according to the instructions in Appendix C, you can
extend program memory to 126 steps; these steps are

internally numbered 0-125.)

Important Point : Pressing the REC key writes

the current program step and then increments an internal
sequence pointer so the TeachMover memory 1is ready to

record the next step.

2. RUN
To run a program, first press the MODE key to exit

from TRAIN, then press RUN. To stop a program while it's
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How to RUN
and STOP

running, Jjust press STOP. The MODE light will go on, and
you can press RUN again, or TRAIN, or any other control

key.

At this point, it's a good idea to begin writing down
your programs so you can edit them and/or use them again.

One way to do this is shown in Figure 6-2.

This is a 1listing of a simple "“pick-and-place"
program. The arm moves over an object, lowers, grasps the
object, moves it to another location, puts it down, and

releases it.

As compared with conventional computer program
listings, this kind of 1listing may seem 1like a rather

informal method of program documentation - and it is. But
it is important to write something down for each step

number, especially for when you want to jump from one part
of a program to another (see JUMP and POINT commands,
below.) You'll also find that writing your programs down

is a must for program editing.
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Teach Control Command:

STEP

POSITION

HOME POSITION (GRIPPER OPEN)

MOVE RIGHT AND DOWN

CLOSE GRIPPER

MOVE UP AND LEFT

MOVE DOWN

OPEN GRIPPER

MOVE UP (TO CLEAR OBJECT)

7-52

(NULL)

TRAIN & RUN

Figure 6-2 Listing of "Pick-and-Place" Program

6.5



CHAPRPTER S Teach Control Command:
TEACH CONTROL CLEAR

3. CLEAR

This command clears all recorded arm positions and
operations from program memory, and sets the sequence
pointer to Step O. You must use this command before you

start entering a new program sequence.

To operate the CLEAR command:
A. Press MODE and hold the key down.
B. Then press CLEAR at the same time.

A word of caution: Do not use the CLEAR command unless

you mean it ! When you use CLEAR as above, your program

is erased. A progfam can be uploaded to a host computer
and saved on a disk. We'll explain how to do this in the

next chapter.
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4. ZERO

The TeachMover keeps track of the arm position with a
set of six internal motor position registers. Each
register contains the number of steps one of the six
motors has taken since the registers were initialized.
These registers are automatically initialized, or set to
zero, when power is turned on.

In addition to setting all six internal position

registers to zero, the ZERO command also resets the

sequence pointer to step zero. The ZERO command lets you
initialize the position register at other times as
well. As with the CLEAR command, you can activate the

ZERO command only if you press the ZERO key while holding
down the MODE key.

At the starting point for each program, the arm is
first placed in a known starting position (such as the one
described in Appendix G), then the ZERO command is
entered. As the arm moves, the computer keeps a count of

the number of steps each motor takes.

If you place the arm in the correct initial position,
but forget to use the ZERO command prior to starting a
recorded program, the arm first moves to reverse the count
of all the internal position registers to zero. To avoid
this problem, it's a good idea to get into the habit of
using the ZERO command just before running a recorded

program.
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5. PAUSE

This command is introduced in Chapter 2, Section E
(Trial Programming). To review: If you want to program a

pause into a program, perform these steps:

- Press the MODE key (if the MODE light is off.)

- Press the PAUSE key. The yellow ENTER light will
come on. ‘

- Enter a number (0-255) corresponding to number of
seconds you wish the arm to pause. If you make
an error in the numerical entry, you can "erase"
it by pressing the REC key while the ENTER 1light
is still on. Then enter the correct value.

- Press the MODE key again. This terminates ENTER
mode.

Important : The PAUSE command is saved as a program

step, and the sequence pointer is incremented.
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6. SPEED

This command lets you change the speed of the arm by

causing all subsequent steps and manual teach control

motions to be executed at the commanded speed. The SPEED
command does not get recorded as a program step. Try
this:

- Press the MODE key (if the MODE light is off).

- Press the SPEED key. Yellow ENTER light will
come on. ‘

- Enter a number from O to 15. Zero represents
the slowest speed (it's not zero speed!) and 15
represents the fastest. (The TeachMover is
always initialized to speed 5 when you turn it
on.) If you make an error in entering the SPEED
value, you can erase it by pressing the REC key
while the ENTER 1light is still on. Then enter
the correct value.

- Press the MODE key again.

The correspondence between the speed numbers and the
number of steps per second of the drive motors is given in
Table 6-1. (This Table is also included in Appendix F for
easy reference.)

As discussed at the end of Chapter 4, there is a
maximum speed you can drive a motor before causing it
to slip. For the worst-case configuration (arm fully
extended, therefore requiring maximum torque), the highest
speed without slipping depends on the load the arm is
carrying, as indicated in Table 6-2. (For easy reference,

this table also appears in Appendix F).
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TEACH CONTROL SPEED
TABLE 6-1
STEPPING RATES FOR THE SPEED COMMAND
Half-Steps Half-Steps
Speed No. Per Second Speed No. Per Second
0 28 8 400
1 50 ' 9 424
2 74 10 450
3 99 A 11 : 480
4 141 12 514
5 206 13 554
6 300 14 600
7 360 : 15 655
TABLE 6-2
MAXIMUM NO-SLIP MOTOR SPEEDS
Half-Steps Equivalent Teach
Load Per Second Control Speed No.
0 400 8
Half (8oz.) 206
Rated (160z.) 99 3
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Under certain conditions, motors can be operated at

higher speeds without slipping. In particular:

A. If shoulder, elbow, and wrist all descend, the arm
may be lowered at the no-load maximum speed (400

half-steps per second, teach control speed number

8) even if it 1is carrying a load. However, be

‘Tips for high- careful not to exceed the speed given in the table

opeigtei:: whenever lifting a load with any joint when the
arm is at or near full extension.

B. The base joint may be swiveled as fast as speed
number 7 even if the arm is carrying a load.

C. The hand may always be opened as fast as speed
number 12.

D. The hand may always be closed as fast as speed
number 10 until the hand closure contact point is
reached. However, once the grip has closed, it is
best to stay at or below a speed number of 6 in
order to build up gripping force without motor
Slippage.

To gain familiarity with the SPEED command, try this:

A. Press MODE, if necessary, then SPEED.

B. Key in a speed number of 4.

C. Press MODE, then TRAIN. 4

Use of SPEED D. Use the Sf key to move the shoulder up, then press
command REC.

E. Use S}{ to move the shoulder back down, then press
REC.

F. Repeat A-E, but this time use a speed number of
8. Use similar arm positions to those you used in
Steps D & E.

G. Press MODE, then RUN.

You should now see the shoulder move up and down slowly,
then rapidly, then slowly, then rapidly, then slowly, then
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Experimenting
with motor
slippage

rapidly,...When you're tired of watching this, press
STOP. You now know how to use the SPEED command.

To see what happens when you command the arm to move
much too fast, first erase the above program (press MODE,
then while pressing MODE, press CLEAR), and record a new
program. Make this new program the same as Steps A-E,
above, but use a speed of 14. Now press RUN. What
happens? That's right, nothing! The shoulder motor hums
and slips, but the arm .doesn't move. (In fact, you
probably didn't even get as far as pressing the REC
button; the shoulder simply won't lift if you command it
to move that fast.)

Before we go on, there's something else you should

try. Sometimes it's possible that a motor will slip
somewhat - the arm will move, but not exactly to where it
should. When the arm isn't fully extended, this can
happen at speeds above the maximum no-load speed. Try

this:.

A. Turn power off and position the arm manually so
that the elbow is bent to about a 45° angle.
Turn power back on.

B. Again key in a program following steps A-E above.
Use a speed number of 9. Then RUN the program.
Chances are the motor won't slip.

C. Erase the program (MODE, then CLEAR), key in a new
program using a speed number of 10, and RUN this
new program. '

D. If you aren't aware of any motor slippage, then
erase the program and do it again. This time use
a speed number of 11.

E. By the time you've tried this with a speed number
of 12, you'll probably notice that although the
motor does 1lift and lower the arm repeatedly, the
arm doesn't always end up in exactly the same

place. Whenever you find an arm position
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"drifting" 1like this as a program is run over and
over again, chances are you've programmed the arm

at too high a speed.

Once you've gained more experience with the arm,
you'll get a feeling for how fast you can run it for any
given application. If you find out you've keyed in too
high a speed, so that a slight amount of unwanted "drift"
is taking place, it is possible to change the speed number
without having to erase your entire program. We'll
explain how to do this when we get to the STEP and POINT

commands.
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Unused
program steps

7. STEP

Once all or part of a program has been recorded, it is
often useful to move the arm through the program one step
at a time. As we saw in Chapter 2, Section E (Trial
Operation), one way to do this is to RUN the program, then
press REC Dbefore the arm reaches the next programmed
position. However, two key presses are required for each
step (RUN, then REC), and you can accidentally bypass a

programmed arm position altogether.

A simpler method is to use the STEP command. First
press the MODE key, if necessary, then press STEP. This
moves the arm to the next programmed position. Press STEP
again, and the arm moves to the next position again, and
so forth.

Let's examine more closely how programs are stored.

Try this;

- Press CLEAR while holding down the MODE key to
clear the memory.

- Record any three arm positions you wish. List
them in order on a piece of paper.

- RUN the program for a few cycles, then STOP the
arm somewhere between the first and second
positions. .

- Now, press STEP. The arm continues to the second
position and stops.

- Press STEP again. The arm moves to position 3.

- Press STEP a third time. Nothing happens! Why?
Because your program only use 3 steps of the 53-
step memory; you've just reached the fourth step,
which is null. You'll have to press the STEP key
50 more times to get back to Step O. (Try it - it
won't take 1long.) Actually, this same phenomenon
occurs whenever you RUN a program. The sequence
pointer goes through all 53 steps, but the RUN
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Using STEP for
program editing

When STEP
doesn’t
increment the
sequence
pointer

command runs it through the null steps so fast

that you don't notice a pause.

The other thing you should know about the STEP command
is how to use it for program editing. To change an
already-recorded arm position, simply STEP through the
program until you reach the position you wish to change.
Switch over to TRAIN mode, move the arm to the correct
position, and then press the REC key. This overwrites the

old position.

This editing procedure works because the STEP command
increments the sequence pointer before executing a program
step. In other words, when the STEP command brings the
arm to a given position, the sequence pointer remains
pointing at the program step for that position even while
the arm position is being changed. Changing the arm
position simply changes the contents of that step location

in memory.

[Note: If you change an already-recorded arm position
using the above procedure and then press STEP again, the
arm will move to the next recorded position as usual, but
this time without incrementing the sequence pointer. This
is because the REC command already did the incrementing.
As we'll see later, a similar situation occurs when you
step through a JUMP command or when you use the STEP
or RUN commands after stopping or immediately after a
POINT command. ]

The POINT command, which we'll discuss soon, provides

an alternative method of accessing program steps for

editing. Further details and a summary of both methods

are given in Part C of this chapter.
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8. JUMP
This command lets you write rather sophisticated arm-

motion programs by allowing for conditional branching -

one of the most powerful features of classical computer
programming. The JUMP command tests the user input bits
on the Auxiliary I/O connector (P17) discussed in Chapter
5, Section C. Here is how it works: When you press the
JUMP key, the yellow ENTER light comes on, and you enter
not one, but two numbers. The MODE key is pressed after
each number to allow the computer to store each number
separately. A number may have more than one digit
requiring you to press more than one key to enter the

number.

- The first number identifies the jump condition.

- The second number identifies the programmed step

to jump to if the jump condition has been met.

The jump conditions are as follows (These are also given

in a table in Appendix F for ready reference):

- Condition 0: Grip switch is open
- Condition 1: User input bit 1 is on (ie. set to
one)

- Condition 2:

- Condition 3:

- Condition 7: " 7 B

- Condition 8: Never (an effective NULL)

- Condition 9: Always (unconditional jump)
This may sound complicated, but an example should make it
clear. Let's say you want the arm to move to Step 5 in a
program on the condition that the grip switch is open.

All you need to do is:
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- Press MODE (if necessary), then JUMP. Yellow
ENTER light will go on.

- Press O. (Actually, it isn't really necessary
us"}% mg to press 0. The ENTER value is preset to ZERO
command automatically. Any entry other than O,

however, would have to be entered.)
- Press MODE.
- Press 5.
- Press MODE.
From now on, instead of writing out all these steps,
we'll use the short-hand notation: JUMP O0,5.

To jump to a step, say Step 23, regardless of
the status of the grip switch or any other factor
(this is called an unconditional JUMP), just key in:

JUMP 9, 23

The user input bits can be set in a variety of
ways. For example, sensor switches might be mounted
on the TeachMover's fingers or signals might be

generated by external machinery.

Note : When you STEP through a JUMP command, the
usual incrementing of the sequence pointer is slightly
Another modified. For example, let's say you STEP to the

example of
when the STEP command, JUMP 9,7. This unconditional jump sets the
co:‘no?::f: value of the sequence pointer to 7. If you press STEP
increment the again, step number 7 gets executed, but the sequence
segﬁ:&: pointer is not incremented. If the pointer were

incremented first , as it wusually is with the STEP
command, then step number 7 would be skipped, and step
number 8 would be executed instead. On subsequent
pressings of the STEP key, the sequence pointer is

incremented first as usual.
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One of the two demonstration programs built into
the TeachMover makes extensive wuse of the JUMP
command . We'll discuss this program after we've out-

lined the remaining control commands.
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Use of POINT
command

Using POINT
for program
editing

9. POINT
In a way, the POINT command is similar to an
unconditional JUMP. For example, POINT 12 means go to

Step 12 in a program and proceed from there. However,

unlike the JUMP command, POINT does not create a program

step . POINT is used simply to move to a given step in an
existing program. It can be invoked even in the middle
of program execution by pressing the MODE (STOP) key
first. Try it:

- Enter, say, a 5-step arm-motion program. Write
down the steps.

- RUN the program.

- STOP just before the last position is reached.

- Press POINT. The yellow enter light goes on.

- Enter the number 2.

- Press MODE, then RUN.

Did the arm go to the position you expected it to? If
not, did you remember that program Step Number 2 is really
the third step, because the sequence pointer numbers start
with 0? If necessary, try the above exercise again. The
POINT command is very useful, but only if you POINT

exactly where you want tol

One of the most useful applications of the POINT
command is program editing. Instead of using the STEP
command to go to a program step you want to change, Jjust
POINT to the corresponding program step number. Then
press MODE and TRAIN (or other appropriate command), and
enter the new program step. Keep in mind that the STEP
command points to the step and executes it. Thus, when
you use STEP for editing, the program step you change is
the one the TeachMover just executed. However, the POINT
command points to the step without executing it. vYour

written program list can remind you what the step does.
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Use of POINT
followed by
STEP for
program editing

Executing
multiple
programs

If you find it confusing to keep this distinction in
mind, there's an alternative: You can press STEP
immediately after a POINT command; this executes the step
number pointed to, but does not increment the sequence

pointer.

Example: If you enter the command POINT 2, followed
by STEP, the sequence pointer remains at 2 while step
number 2 gets executed. If this did not occur - that is,
if the STEP command were to increment the pointer first,
as it usually does - then the STEP command would skip over
step number 2 and cause step number 3 to be execdted
instead. Naturally, on subsequent pressings of the STEP
key, the sequence pointer continues to be incremented
first as usual.

Note : There is one case in which you do not want

to use POINT followed by STEP for editing; this is when

the step number being pointed to contains a JUMP command.
If you point to a JUMP and then press STEP, the JUMP gets

executed without first giving you a chance to modify itl

We'll review how to use STEP and POINT for editing in
Part C of this chapter.

The POINT command can also be used to execute multiple
programs stored in memory. You could, for example, have
three distinct programs recorded as shown in Figure 6-3.
You can isolate the programs by means of unconditional
JUMP commands returning the pointer to the: beginning of

the program.
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The program listing would show:

Step O ; start program 1
Step 15 JUMP 9,0; return to start of program 1

Step 21 ; start program 2

Step 31 JUMP 9,21; return to start of program 2
Step 32 ; start of program 3

Step 38 JUMP, 9, 32; return to start of program 3
To execute Program 2, all you need to do is enter:
POINT 21
prior to pressing the RUN key. Similarly,
POINT 32

executes Program 3.

The POINT command has still another application. In
creating a program, sometimes it is desirable to make an
exact "copy" of a program step - for example; to key in a
program step that causes the arm to move to a position it
already achieved elsewhere in the program. Here's how to
do this:
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- STEP through the program until the desired arm

Using POINT to position is achieved.
“co 1] a
mbgmnﬁ§ep - POINT to the program step to contain the position

to be copied.
- Press MODE, then TRAIN, then REC.

This duplicates the desired position at the desired

program step. Try it.
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STEP
SEQUENCE 0
POINTER "_7_"
s PROGRAM 1
]
15
6
UNUSED
20
— Fil
o.
5 PROGRAM 2
31
-> "3
(-9
5 PROGRAM 3
_38
UNUSED
53

Figure 6-3 Multiple Program Storage
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Distinction
between “G”
keys and

GRIP command

10. GRIP

This command will cause the gripper to close 32 half-
steps of the motor past the point at which the grip switch
is activated as the gripper first closes. This builds up

about 1 1b. of gripping force.

This command is different from using the G keys in
TRAIN mode. The G keys will simply command the fingers to
open or close to a particular spacing, regardless of
whether the hand is holding an object. The GRIP command,
on the other hand (sorry for the pun!), closes on an
object and then builds wup 1 1b. of dgripping force
regardless of the size of the object. Thus, the GRIP
command is useful when you want the arm to pick up a
variety of objects, whereas the G keys are a better choice
when you want the arm to sense whether a particular object

is present.

[Note: Once in a while, the grip switch may fail to

operate, or the GRIP command opens the gripper instead of
closing it. See page 3.14, Hand Drive, for simple remedies.]
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Using MOVE to
initialize the
arm

Using MOVE to
return arm to
known position

11. MOVE

This activates the joint control keys used in TRAIN
mode, but does not change the internal position registers
or allow a position to be recorded. In other words, 1if
you press MODE, then MOVE, then one of the joint control
keys, then REC, you'll find that the REC key has no
effect.

The MOVE command proves useful in moving the arm to a
known initial position in the event of motor slippage or
mechanical interference from an external obstacle. The

procedure is:

- Use the 'ZERO command. (Remember, this sets the
internal position registers and the sequence
pointer to zero.) '

- Use the MOVE command.

- Use the arm-motion Xkeys to achieve the correct
initial configuration. (For very precise
position control, first use the SPEED key to
specify a speed number of 0.)

Note that this does not change the recorded program in any
way; it simply lets you start the program again with the

arm in its correct initial position.

In some cases, you may want to reinitialize the arm
by returning it to a known position other than the initial
position. The ZERO command is not useful here. Instead,
follow these steps:

- STEP (or POINT then STEP) until the arm reaches
the position you wish to use for initialization.

- Use the MOVE command.

- Use the Arm-motion Xkeys to achieve the correct
position. For very precise position control,
fist use the SPEED command to specify a speed

number of O.
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Using MOVE to
tighten grip

When you subsequently RUN the program, all settings of the
internal position registers are associated with the

recalibrated new initialization position.

A similar use for the MOVE command is if an object
is slipping from the gripper because the gripper isn't
holding it tight enough. Instead of reprogramming, you
can just STOP the program, use the MOVE command, use the G
key to close the gripper a bit, then RUN. All subsequent
settings of the internal position registers will now be

associated with the new grip setting.
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12. FREE

FREE is similar to the MOVE command, except it turns
off all motor currents to allow you to position the arm
manually. In many cases, it is simply a matter of pre-
ference whether you use MOVE or FREE. However, as
mentioned earlier, you will probably find that you get
finer position control when you use the MOVE command with
a speed setting of 0, rather than moving the arm manually
in FREE mode. Try both and see.
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TeachMover
output numbers

Using the OUT
command

13. OUT

This is the command that lets you turn external
equipment on and off based on arm positions achieved or
conditions met. You can also use it to turn on and off
various lights on the hand-held teach control.

When you press OUT, the yellow ENTER light will come
on, and you must give two numerical entries (pressing the
MODE key in between). The first entry is an output number
(see below), and the second is 0 or 1. (In the case of
the teach control 1lights, 0 indicates "off", and 1
indicates "on".) | The output numbers are as follows.
(These are also given in a table in Appendix F for easy

reference.)

Output 0: The MODE light.

Output 1, 2..., 5: User outputs on the I/0
connector.

Output 6: The TRAIN light.

Output 7: The RUN light.

Output 8: The ENTER light.

Here's a sample program you can try:

Step No. Operation
0 OouT 8, 1
1 PAUSE 2
2 ouT 8, 0
3 PAUSE 2
4-52 (NULL)
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When you RUN this program, you should see the yellow
ENTER 1light Dblink on and off at 2-second intervals.
Didn't work? Then check the following and try again:

a. Did you press the MODE key between the two
numerical entries for each OUT command? (For
example, program step O should be keyed in as
ouT, 8, MODE, 1).

b. Did you press MODE after each program step to
exit from OUT and PAUSE? (In other words, each
program step should be followed by a pressihg of
the MODE key.) ‘

As you can see, the basic idea is simple, but you have to

be careful with those buttons! Now is a good time to
practice some more. See if you can create programs that
will:
a. Turn the TRAIN light on and off at three-second
intervals.

b; Turn the ENTER light on for three seconds, then
off for one second.

c. Turn the MODE light on for 2 seconds, then turn
the ENTER light on for 1 second without turning
off the MODE light, then turn both lights off for
one second.

d. Flash the lights in sequence from top to bottom,
leaving each 1light on for one second, with no

pause between lights.
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Remember to
first initialize
the arm

C. DEMONSTRATION PROGRAMS

We have permanently recorded two demonstration
programs in the TeachMover's read-only memory. One of
these programs begins at program step 126. It exercises
all the TeachMover joints, and, in fact, is used to test
each TeachMover before shipping. The second demonstration
program begins at step 174, and causes the arm to first
determine which of two blocks is larger, then move the

larger one to a new location and stack the smaller on top

of it. To run these programs, you first need to
initialize the arm in a particular way. Here are the
details:

The proper initialization position for the TeachMover
and a block to be manipulated is shown in Figure 6-4.
Refer to Appendix B for a reference grid and details of

the initialization procedure.

1. EXERCISER PROGRAM

A 1-1/2 inch cube is placed at P3 with its edges
aligned with the x and y axes. Once the arm is in its
starting position, and the block is at P3 position, set
the internal position registers to zero by turning on the
power, or, if power is already on, by using the ZERO
command; then: '

a. POINT to 126

b. RUN
A 1listing of the program is given in Figure 6-5. Note
what -happens if you don't position the cube at P3: The
hand signals to you by waving a few times, then the arm
tries again (see program Step 143 and Steps 167-173).
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Figure 6-4 Initialization Configuration for Exerciser Program
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Listing of
Exerciser
Program

Demonstration Program:

Exerciser

STEP POSITION STEP POSITION
126 Home position; ZERO command 150 Move up
127 Above home 151 Move to Y1
128 Rotate base to limit 152 Move to Y2
129 Move hand out 153 Move to Y3
130 Put hand in the air 154 Move to Y4
131 Open hand 155 Move to Y5
132 Close hand 156 Move to Y6
133 Pause 2 seconds 157 Move to Y7
134 Move hand back 158 Move to Y8
135 Spiral down to other base limit 159 Move to Y9
136 Hand in 160 Move to Y10
137 Base to center 161 Move to Y11
138 Above home 162 Move up and rotate
139 Home slowly 163 Set down
140 Up and open 164 Open
141 Forward to P3; grip block 165 Move up
142 Close gripper 166 Jump 9, 126 (Unconditional jump to beginning)
143 Jump 0, 167 (if grip switch is open, go to 167) 167 Up to wave and close
144 Move up 168 Wave up
145 Roll and flip block 169 Wave down
146 Set down block 170 Wave up
147 Open m Wave down
148 Pivot up 172 Move above home
149 Close 173 Jump 9, 126 (Unconditional jump to beginning)
Figure 6-5 Exerciser Program

6.32



CHAPTER SIX Demonstration Program:
TEACH CONTROL Exerciser

“No
Deceleration”
feature

Although this program is listed using the format for
a teach control program listing, the program was, in fact,
written on a host computer and then downloaded and
permanently stored in the TeachMover's read-only memory.
This is important for you to know if you try to duplicate
the program on your own using the hand-held teach
control. You will find one place where you won't be
entirely successful. This is in steps 151-161, where
motion along a straight 10-inch 1line segment is
approximated by a series of 11 steps spaced one inch
apart. When you run the program, notice that the arm
doesn't accelerate or decelerate between each of the
intermediate steps as it would if programmed via the hand-
held teach control. Instead the arm maintains its speed
throughout the 10-inch motion. This is accomplished using
a special "PATH" operation that is available only in
serial interface mode, and then only for programs that are
being downloaded to the TeachMover. We will go into this

further in Chapter 7.

Except for this "no acceleration" feature, it is
possible to duplicate - or at least approximate - the
above Exerciser Program by recording program steps on the
teach control, and you may wish to try doing so as an
exercise. The Exerciser Program contains frequent changes
in arm speed, that are not shown in the listing. Since
this program is designed to exercise the arm to its
various 1limits, each arm motion is programmed at the
highest speed achievable without motor slippage. If you
do try "copying" the Exerciser Program, use a speed number
of 7 or less throughout; step 139 can be done at a speed

number of 4.]
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2. BLOCK STACKING PROGRAM

The initialization configuration for this program is
shown in Figure 6-6. The arm is placed at PO and wrist-
cable turn-buckles aligned as in the Exerciser Program.
Two cubes - a 1-1/2 inch cube and a one-inch cube - are
placed at Pl and P2 on the reference grid of Appendix
G. The positions of the two cubes may be interchanged,
and one or both cubes can even be omitted, but if they are
present, their edges must be aligned with the X and Y
axes.

To activate the program:

- POINT 174

- MODE

- RUN
A flowchart of the program is given in Figure 6-7. The
numbers 174, 175, etc. refer to program steps. Note the

extensive use of conditional branching.
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Figure 6-6 Initialization Configuration for
Block Stacking Program
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( starT )

y/

174: | MOVE TO HOME
175: | PAUSE 4 SECONDS
176: | MOVE ABOVE P1
177: | MOVE TO P1

178: | GRAB BIG

192: | MOVE ABOVE Pt
193: | MOVE ABOVE P2
194: | MOVETO P2
195: | GRABBIG

191: | JUMP ALWAYS D

No — Big Block in Grasp [

No — Big Block 180: | MOVE ABOVE P3
in Grasp 181:| MOVETOP3
182: | OPEN
187: | MOVE ABOVE P3 183: | MOVE ABOVE P3
198: | MOVE TOP3 184: | MOVETOP2 )
199: | OPEN 185: | GRABSMALL 190: | MOVE ABOVE HOME

200: | MOVE ABOVE P1 4
201: | MOVETOP1

202: | GRAB SMALL
203: | JUMP ALWAYS 12

-\
g

GRIP_ Yo — SmallBlock Absent A
?

No — Small Block in Grasp

187: | MOVE ABOVE P4
188: | MOVETOP4

189: | OPEN

Figure 6-7 Flowchart of the Block Stacking Program

6.36



CGHAPTER SIX .
TEACH CONTROL Program Editing

Two methods
for program
editing

D. PROGRAM EDITING

As discussed wunder the STEP and POINT commands
earlier, there two different methods for editing
programs. To review, let's say you want to change the
arm position to be achieved by the 23rd step of a recorded

program. You can choose either:

Method 1. STEP or, to save time, POINT, then
STEP through the program until the 23rd

step gets executed, then:

- Press TRAIN.
- Use the arm-motion keys to achieve

the correct position.

- Press REC.

Method 2. POINT to program step number 22 (not
23! Remember, the first step is step
0.) Then follow steps a-c above.

If, instead of an arm position, the new program step
is a PAUSE, OUT, GRIP, or JUMP, then in step a of the
above procedure, use PAUSE, OUT, GRIP, or JUMP instead of
TRAIN, followed by the correct numerical entry (or
entries). Also, when editing a JUMP command, always use
Method 2 above (POINT command) rather than Method 1 with
the STEP command, Dbecause stepping to a JUMP will cause
the JUMP to execute.
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E. EXPERIMENTATION

You have now learned how to use all the teach control
commands and how to write and edit teach <control
programs. Before going on to learn how to operate the
TeachMover from a host computer, it is important to gain
experience by writing several teach control programs of

your own. Here are some suggestions:

1. Start with two stacked blocks and have the
TeachMover unstack them.

2. Have the TeachMover pick up a block at PO and
move it either to Pl or P2, depending on its size.

3. Have the TeachMover pour water from one cup into
another without spilling any.

4.

5. Try programming some ideas of your own.

6.
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CHAPTER SEVEN
OPERATION FROM A HOST COMPUTER

Connecting the TeachMover arm to a host computer or a
terminal greatly extends the unit's capabilities. As we
will see, use of the TeachMover's serial interfaces allows
you to write programs that specify arm positions by means
of Cartesian coordinates, programs that actually measure
the position and thickness of an object, and much more -
all without losing the ability to program the arm from the
hand-held teach control.

A. CONFIGURING THE SERIAL PORTS

"Configuring the serial ports" refers to making sure
that your computer and the TeachMover can "talk" to one

another. This requires taking care of the following:

1. electrical connections

2. transmission rate

3. data format

4. settings for standard interface signals
5. opening the port

6. testing the configuration

Depending on the computer you're using, configuring the
serial ports may be straightforward and simple, or it may
be complex. We'll start with the most basic steps first,

then proceed to more intricate details.

If you follow the procedure given below, and yet the
arm won't respond to serial port commands, chances are
that some of the details of configuring your computer are
not correct. If this seems to be the case, carefully
review the user manual that came with your computer or
call a customer service representative employed by the
computer manufacturer. The configuration steps begin on

the next page.
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CHAPTER SEVEN Configuring Serial Ports:
HOST COMPUTER Electrical Connections

1. Electrical connections

In the back of the TeachMover's base you'll find two
multi-pin connectors (Figure 7-1). These are the two

serial ports.

- Signals that enter the left port (P2) always pass
through to the right port (Pl) unchanged.

- Signals that enter the right port pass through to
the left port unchanged, unless the signals are a

series of characters beginning with an "@" sign

these signals are not passed through, but are
interpreted as arm commands. (As we'll see
later, one of the serial interface commands lets
you specify a different recognition character in

place of the "@" sign.)

Thus, to operate the arm from a host computer or a
terminal, connect the computer or terminal to the
TeachMover's right serial port (Figure 7-2 a. and b.).
You would use the left port in either of the following two

situations:

a.) TeachMover in Series with computer and other

peripheral

Some host computers only have one serial port of their
own and thus cannot be directly connected both to the
TeachMover and to a peripheral unit (terminal or serial
printer) simultaneously. To overcome this 1limitation,
simply connect the computer, the TeachMover, and the other
peripheral in series, as shown in Figure 7-2c. Signals
coming from the peripheral will pass through to the
computer unchanged, and signals coming from the computer

will either pass through to the peripheral unchanged, or,

if preceded by an "@" sign, will operate the TeachMover.

7.2



CHAPTER SEVIEN Configuring Serial Ports:
HOST COMPUTER Electrical Connections

Figure 7-1 Two Serial Ports
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RS-232C LINE

AN

COMPUTER TEACHMOVER
(a) PERIPHERAL OF A COMPUTER

TERMINAL TEACHMOVER
(b) CONTROLLED BY A TERMINAL

COMPUTER TEACHMOVER | EXISTING
PERIPHERAL

(c) IN SERIES WITH EXISTING PERIPHERAL

AN RIGHT

COMPUTER TEACHMOVER TEACHMOVER
(d) TWO TEACHMOVERS IN SERIES

Figure 7-2 Connecting the TeachMover to a Computer and/or
Peripheral
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Pins two and
three transmit
and receive

b.) Two or more TeachMovers in Series

You can also connect two or more TeachMovers in series
and operate them from the same computer (Figure 7-2d). 1In
such cases, it is useful to program each of the Teach-
Movers to respond to a different recognition character;
this can be accomplished by means of the @ARM command, as

will be explained later.

When you use a serial line to connect the TeachMover
to a computer or peripheral, it is important that the
transmit and receive lines be interfaced properly. On the
right port of the TeachMover, the receive line is on pin
3, and the transmit line is on pin 2. (See Figure 7-3 for
pin numberings.) Most computers are configured with pin 3
as transmit and pin 2 as receive, so in most cases a
standard serial cable will provide the proper straight-
through wiring; i.e., pin 2 to pin 2 and pin 3 to pin 3

(see Figure 7-4).

However, it is possible that the pin assignments have
been reversed on your computer. This can happen if your
computer has been configured to behave as a terminal; in
other words, if it has been wired to another computer.
This is because in order to wire two computers together,
the transmit and receive lines must be crossed as shown in
Figure 7-5. If your host computer has been configured to
behave as a terminal, you must reverse its transmit and
receive lines so they are as in Figure 7-4. You can
accomplish this by modifying the cable or by reconfiguring
the computer internally, as per instructions in the use

manual that came with your computer.

[Note: On the TeachMover's left port, the transmit line
is on pin 3 and the receive 1line on pin 2. This is
because the TeachMover acts, in effect, as a host to
whatever peripheral is connected to its left port, and
most peripherals use pin 3 for receive and pin 2 for

transmit.]
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14 15 16 17 18 19 20 21 22 23 24 25
@) [ J o [ ] [ J [ [ o [ ] [ J ® [ ] [ ’@")
( (
N [ J [ J [ ] L ] [ ] [ ] [ J [ J ® [ ® [ ] [ ] N
1 2 3 4 5 6 7 8 9 10 1 12 13

Figure 7-3 Pin Numbering for Serial Port Connectors
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XMIT (3) (3) RCV
RCV (2) (2) xmiT TER::;NAL
COMPUTER ) TEACHMOVER
GND (7) (7) GND (RIGHT PORT)

Figure 7-4 Computer-to-Terminal Serial Connection

XMIT (3) (3) XMIT

COMPUTER RCV (2) (2) ROV COMPUTER

(1) GND (7)

Figure 7-5 Computer-to-Computer Serial Connection
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Baud rate
switches on
the TeachMover

Setting the
baud rate

2. Transmission Rate

The TeachMover is shipped with both serial ports
configured to operate at a transmission rate of 9600 baud
(9600 bits per second), for both send and receive. You
can change this rate to any of seven other standard rates
by means of three switches located on the TeachMover
computer card (Figure 7-6). The available rates and the
corresponding switch settings are given in Table 7-1.
(This table also appears 1in Appendix F for easy
reference.) These switches should be changed when power
is off, since the switch settings are read by TeachMover

firmware on power-up only.

As with the TeachMover, most computers have some means
of setting baud rate - either through switches on a
circuit card, or via commands that can be issued under the
computer's disk operating system (DOS), or as part of
BASIC. The main thing is that both the TeachMover and
your computer be configured to operate at the same baud
rate; otherwise communication between the two will be
impossible.
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Table 7-1
BAUD RATE SELECTION

BAUD SW1 SW2 sw3
110 ON ON ON
150 OFF OoN ON
300 ON OFF ON
600 OFF OFF ON
1200 ON ON OFF
2400 OFF ON OFF
4800 ON OFF OFF
9600 OFF OFF OFF
NOTE: SW4 is not used.

—s 20
SWi1

Figure 7-6 Switches for Selecting Serial Transmission Rate
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Word length,
stopbit(s) and
parity

3. Data Format

The TeachMover uses the following data format:

word length = 8 bits

1 start bit

1 stop bit

no parity bit

Full duplex
Many computers have the above as their "default" format -
that is, the format in which data will be transmitted if
you do nothing special to configure the format. However,
with other computers you will need to configure the format

explicitly. Consult your computer manual to learn how to
do this.
[Note: Configuring data format is not always a simple

task. On at least one popular microcomputer, for example,
rather than specify a word length of 8, it is necessary to
specify a word length of 7 plus a parity bit equal to
zero. - This is because this computer wuses a most
significant bit equal to 1 when processing 8-bits words.
(It is possible to use the @ARM command to allow the robot
to recognize an "@" with the eighth bit = 1, but in order
to execute this command the robot must recognize the first
"@" in this @ARM command. To do this the robot must

receive an "@" character with the most significant bit =

0.)1]
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Four common
communication
signals

When to solder
~  jumpers W1,
W2, W3 and W4

4. Standard Interface Signals

Some computers and terminals require logic levels on

certain pins to indicate the following status conditions:

Data Terminal Ready
Clear to Send
Carrier Detect

Request to Send

The TeachMover does not use these signals, but does pass
them through when it is placed 1in series between a

computer and a terminal.

However, when only a single computer or terminal is
connected to the TeachMover (or in some cases even if the
TeachMover 1is placed in Series between a computer and a
terminal), you may need to modify the TeachMover in order

to provide these signals.

To find out if this 1is necessary, consult the user
manual for your computer to determine whether any of the
four above-mentioned serial port signals are required.
(With some computers, the user has control over whether
these signals are required. If this is the case with your
computer, then configure the computer so that these
signals are not required.) If any of these signals are
required, then, if you have a peripheral in series with
the TeachMover, check the user manual that came with that
peripheral to see whether the peripheral supplies the
required signals for transmitting and receiving data. If
it does, then all should be well. If not, then you will

need to modify the TeachMover.

The modification procedure 1is simply to solder a
jumper across the appropriate terminals on the TeachMover

circuit card as shown in Figure 7-7, using the information
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given in Table 7-2; the Jjumpers are labelled W1, W2, W3,
W4. (Note: soldering a jumper will have the effect of
permanently setting the corresponding signal to 1logic

level 1, or "on.")
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TABLE 7-2

Auxiliary Control Lines

Left Port Right Port

— Pin No. Description Pin No. Jumper

B 8 Data Carrier Detect 8 Wl
1,7 Ground 1,7 -

N 3 Transmit from TeachMover 2 -
2 Receive by TeachMover 3 -

- 4 Request to Send 4 W4
5 Clear to Send 5 W3

-- 20 Data Terminal Ready 20 w2
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Figure 7-7 Location of Jumper Connections for Serial Operations
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5. Opening the Port

This step refers to configuring your computer so that
commands and data are properly routed from your computer
to the TeachMover. If your computer has only one serial
port, there may be nothing special to do other than use
the proper BASIC commands for input and output through
that port. On some computers, you might also have to use
a special routing command or a switch setting to transmit
to the TeachMover whatever would normally go to a parallel
printer. (In such cases, you could not use the printer
and the TeachMover at the same time.)¥* Some computérs
have several serial ports, and allow you a choice of

transmission channels.

In all cases, consult your computer manual to find out

what is required.

This is true for at least one of the well-known

personal computers. Morever, this computer does not have
a command for transmitting more than one item of data over
the serial 1line. Since the TeachMover's commands are

strings of data items, special routines must be written to
provide for this.
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“Handshaking”
details:

[0 <CR>]

[1 <CR>]

6. Testing the configuration

Once steps 1-5 above are completed, you are ready to

test the serial configuration. This is best accomplished
by issuing an "@CLOSE" command. This command closes the
gripper until the grip switch is activated. We'll go into

the details of this and all the other commands in the next
section, but for now it is important to XkXnow how the

TeachMover responds to arm commands in general.

When an "@" sign or other programmed recognition
character is received at the TeachMover's right port, all
subsequent characters are buffered (temporarily saved)
inside the TeachMover until a carriage return, <CR>*, is
received. The buffered characters are interpreted as an

arm command.

) If the intercepted command is not syntactically
correct, the TeachMover will return a zero (in
'industry-standard ASCII format) followed by a

carriage return signal. We'll designate this as
[0<CR>].
® If the intercepted command is syntactically

correct, the arm will execute the command, then
will signal completion by means of a 1 (ASCII)
followed by a carriage return signal. We'll
designate this as [1<CR>]. '

This sending back of [0<CR>] or [1<CR>] is called

"handshaking." After every arm command, it is necessary

to input the handshake character into the computer so the
computer knows that the arm is ready for the next
command.  In addition to simply inputting the handshake
character, it's a good idea to actually test whether it's
a 0 or a 1 before issuing the next command. One way to do

this is by means of the following subroutine.

]
*Sometimes labled "RETURN" or "ENTER" on the keyboard.
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INPORT and
OUTPORT

“Handshaking”
subroutine

[Note: 1In this and all other examples in this chapter, we
will assume that your computer uses a BASIC-like language,
and that you know how to write programs in that language,
including all input/output procedures. Since there are
many variations of BASIC on the market, we will use the
imaginary instructions "INPORT" and "OUTPORT"to represent
the commands you normally would use for transmitting
information between your computer and a peripheral unit
over serial lines. INPORT causes the computer to receive
information, and OUTPORT causes the computer to transmit
information. 1In most cases, INPORT and OUTPORT are simply
modified INPUT and PRINT statements. Typical commands
might be INPUT #3, LPRINT, etc. When you enter one of our
sample programs into your computer, be sure to replace
INPORT and OUTPORT with the proper command syntaxes.]

Here is the "handshaking”" subroutine you can use to
test for a syntax error or for when an arm command has

been executed:

6010 INPORT I

6020 IF I = 0 GO TO 6040
6030 RETURN

6040 PRINT "INVALID COMMAND"

6050 STOP

To call up this subroutine place the statement
GOSUB 6010

after each arm command.

If you do not wish to actually test for whether the
returned character is a 0 or a 1, you still must input the
character, and can do so simply by placing an INPORT I
statement after each arm command. In all subsequent
examples in this manual, we will simply use INPORT I,

mainly to avoid clutter in our program listings.
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Serial port
test program

Serial port
configuration
checklist

Now here is the program you would use to issue an
@CLOSE command to test your serial configuration. (Be

sure the gripper is open before running the program.)

10 OUTPORT "QCLOSE"
20 INPORT I
30 PRINT I

If all is well, then when you run the program two
things should happen: the gripper should close, and a 1
should appear on your screen. If neither of these
happens, then carefully review every step of the above

procedure. The following checklist will help:

1. - Does your computer's transmit line
connect to the TeachMover's receive
line and vice versa?

2. Is the baud-rate setting of the Teach-
Mover and your.computer the same? (1£f
you're using a high baud rate, try a
lower one--300, for example. Sometimes
too high a baud rate can cause problems.
We'll discuss this further when we
explain the "@DELAY" command later on.)

3. Have you configured your computer with
the proper data format (1 start Dbit,
one stop bit, 8 bits of‘data, no parity
bit)?

4. Have you configured your computer so it
doesn't require Data Terminal Ready,
Clear to Send, Carrier Detect, or
Request to Send signals? If these
signals are required, is there a peri-
pheral in series with the TeachMover
that can provide these signals, or,
alternatively, have you wired jumpers
Wl, W2, W3, and/or W4 on the Teach-

Mover's circuit card?
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5. Have you opened your computer's serial
port properly?

6. Have you used the proper syntaxes for
the commands that correspond to INPORT
and OUTPORT on your computer?

If you feel you have done everything correctly and the
arm still won't respond, then call your computer dealer or
computer manufacturer's customer service representative.
Because of the complexities of configuring a computer's
serial port--and because the procedure for doing so varies
greatly from computer to computer--chances are the
difficulty is with your computer and not with the

TeachMover.

Once you have the @CLOSE command working, you might
try using the @STEP command to move the various Jjoints of
the arm. Details of @STEP and all the other commands are

given in the next section.
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B. SERIAL INTERFACE COMMANDS

Ten different commands can be issued to the TeachMover

over the serial 1lines. (A concise summary of all ten

commands is given in Appendix F.)

Note:

It is a good idea to familiarize yourself
with all the teach control commands (Chapter
6) before reading about the serial interface
commands in this chapter.
All commands can be abbreviated to an "@"
sign plus the first three characters--@CLO
for Q@CLOSE, etc.
All characters and numeric values are
decimal ASCII (industry-standard character
format) .
Once a serial command is executed, the teach
control is left in TRAIN mode, with two
exceptions:
° QRESET leaves it in MODE mode.
o @RUN simply runs the arm until another
command stops it.
However, the indicator lights will remain as
they were before the serial command was
executed. (Example: If MODE light 1is on,
and then, say, an @CLOSE command is
executed, the Teach Control will then be in
TRAIN mode but with the MODE light still on.)
If you wish to change the status of the
indicator 1lights, you can use the Q@STEP
command with all parameters set to zero
except the "OUT" value (see below). No
other serial command affects the status of
the 1lights (except the closed 1light which
always indicates the state of the gripper

switch).
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The ten commands are as follows. Details of syntax
and usage begin on the next page. Sample programs using

these commands are given in part C of this chapter.

1. @STEP 6. @ARM
2. @CLOSE 7. @DELAY
3. @SET 8. @QDUMP
4. @RESET 9. @QWRITE
5. @READ 10. @RUN
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Arm returns
[2 <CR>]if
STOP key was
pressed

Speed value SP

1. @STEP

The @STEP command is analogous to using the teach

control SPEED command, the TRAIN command, and the OUT
command all at once.

The @STEP command causes all six of the stepper motors

to move simultaneously. The syntax of this command is:

@STEP <SP>,<J1>,<J2>,<J3>,<J4>,<J5>,<J6>,<0UT><CR>

where:

<SP> gives the speed of motion,

<J1> to <J6> are the number of half-steps that each of
the six motors is to be moved,

<OUT> specifies the bit pattern to go to the user
outputs,

and <CR> signifies carriage return.

As explained above, the arm responds with [0<CR>] if
you have made a syntax error, and [1<CR>] if the arm exe-
cutes'the command. However, if the STOP key gets pressed
before the specified motion is completed, the arm returns
[2<CR>] instead. (This is discussed further at the end of
the "@CLOSE" command, below).

Now here are the details:

a. Speed Value, SP

The speed value, SP, is related to the motor

speed in half-steps per second by the formula:

Motor Speed = 1843200
Isp - 255| * 256

Table 7-3 gives the correspondence between motor speeds,
teach control speed numbers, and serial interface speed
values (SP). Note that although only 16 speeds are
possible wusing the hand-held teach control, you can

specify 246 different speeds (SP = 0, 1, 2, ..., 245) in
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serial interface mode. Table 7-3 is reproduced in
Appendix F for ready reference.

It's a good idea before using the @STEP command to
review the maximum speeds that you can drive the motors
without causing them to slip. You will find these speeds
in a table in Appendix F; the maximum speeds are given in
three different ways: half-steps per second, teach
control speed numbers, and serial interface speeds values
(sp).
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TABLE 7-3

Stepping Rates

Teach Control
Speed Number

Serial
Port Speed Value

W 0 N O 1 b W NN H O

P N
Uubd W~ O

0
111
159
183
205
221
232
236
238

239
240
241
242
243
244
245

Half-Steps Per
Second

28

50

74

29

141
206
300
360
400
424
450
480
514
554
600
655
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Formula for
specifying
pitch, roll and
elbow-
gripper
compensation

Coordinated
motion of two
or more motors

b. Motor Steps, J1-J6

The magnitude of each of the quantities J1-J6
indicates the number of half-steps the motor should be
driven. The sign of each number indicates the direction;
positive directions are indicated in parentheses as

follows:

J1l - Base Swivel (counter-clockwise)
J2 - Shoulder Bend (downwards)

J3 - Elbow Bend (downwards)

J4 - Right Wrist (downwards)

J5 - Left Wrist (downwards)

J6é - Hand (open)

Important Point : Unlike operation with the hand-held

teach control, using the @STEP command does not uncouple
the elbow, <J3>, from the hand, <J6>. Moreover, you
cannot specify "pitch" and "roll" directly, but only the
number of half-steps of the right and left wrist, <J4> and
<J5>. However,'if the desired number of half-steps for
the base, shoulder, elbow, pitch, roll, and grip are given
by B, S, E, P, R, and G respectively, then the motion

command you would use is simply:
@STEP <spP>,B,S,E, (P-R), (P+R), (E+G),<OUT><CR>

If you specify an unequal number of half-steps for
each joint, then TeachMover firmware will automatically
coordinate the timing so as to produce smooth simul-
taneous motion of the motors. For example, if the elbow
motor is told to move 21 steps and the shoulder motor 3
steps, the resultant timing is as illustrated in Figure
7-8.

*NOTE: Roll angle 1is defined as positive clockwise,
looking towards the hand along its centerline axis from
the finger tips.
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Figure 7-8 Step Timing Diagram
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C. OUT Number

This is a decimal number that gets translated into a
binary number that specifies which of the 9 user output
bits are to be set to 1 when the specified joint motions
have been accomplished. For example, the number 129 would
specify that user outputs 0 and 7 (which turn on the MODE
and RUN lights) should be set to 1, and all the rest to O.

User Output Nos.: 8 (7Y 6 5 4 3 2 1 [0
Decimal:129=Binary : 0 \l/ 0 0 0 0 0 0 \l

In using the @STEP command, you won't always be moving
all 6 joints at once. Often, many of the entries <J1>-<J6>
and/or <OUT> will be zero. 1In such cases, you can omit the
zeros, provided this won't alter the meaning of the
command. For example, to rotate the base motor 50 half-
steps at a speed value of 200 without moving any of the
other members or setting any output bits*, you would
not need to key in:

@sTEP 200,50,0,0,0,0,0,0
but simply:
@STEP 200,50
However, to hold the base fixed while moving all the other
motors 50 half-steps, you would have to key in:
@sTEP 200,0,50,50,50,50,50
or Jjust:
@sTEP 200, ,50,50,50,50,50
but you could not use:

@sTEP 200,50,50,50,50,50

because this would be interpreted as a command to hold the

hand fixed (J6=0) while moving all the other joint motors

50 half-steps.

*NOTE: Omitting the <OUT> value leaves the output bits
unchanged. It does not set them all to zeros.
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2. @CLOSE

This command is analogous to the GRIP command on the
hand-held teach control, except that instead of closing
the hand 32 steps past where the grip switch closes, it

closes the hand just to where the grip switch closes.

If, in practice, you find that the @CLOSE command does
not cause the arm to grip an object tightly enough, you
can insert an @STEP command right after the @CLOSE
command . The @STEP command would specify that all the
joints be held fixed while Jjust the gripper 1is closed.
Appendix F includes a figure showing the number of half-
steps to specify in order to achieve a given gripping

force.

The syntax of the @CLOSE command is simply:

QCLOSE <SP><CR>

where the optional <SP> gives the speed of closing as with
the Q@STEP command. (NOTE: If you don't specify a speed,
then the arm will use a speed equivalent to teach control
speed number 5; this corresponds to 206 half-steps per

second, or a serial interface speed number SP of 221.)

As with all serial interface commands, the arm
responds with [0O<CR>] if you've made a 'syntax error, oOr
[1<CR>] when the command has been executed (in this case,
as soon as the hand closes). As with the @STEP command,
there is a third possibility: [2<CR>] will be returned if
the STOP key on the teach control was pressed before the
@CLOSE command finished executing. This is important to

" know because the STOP key will stop the current command

only; any subsequent commands sent will still be executed.
This means that if the STOP key is pressed during execution
of an @STEP or @CLOSE command, the internal position
registers will be at different settings from what the

remainder of the program is expecting. To avoid this
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problem, you may wish to write a routine to test for a
[2<CR>] and take appropriate action if [2<CR>] 1is, in
fact, received. To do this, you will need to use the

@READ command, so we'll defer further discussion on this

point until we explain the @READ command in item 5 below.
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3. @SET

This command activates the keys on the hand-held teach
control, putting the unit into TRAIN mode. This means you
can program arm positions directly from the Teach Control
as well as via the @STEP command. This is an extremely
useful feature, since some arm positions might be a lot
easier to achieve by pressing teach control keys than by

specifying joint motor steps.

The syntax of the @SET command is:

| @SET <SP><CR>

Where <SP> 1is an optional speed value as in @CLOSE

command .

Once the @SET command is given, the arm will remain in
teach control TRAIN mode until you press either the MODE
or REC key. At this point, a [1<CR>] will be returned to .
the computer or terminal. (NOTE: If the REC key is
pressed to end an @SET command, the TeachMover does not

record a step).
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4. @RESET

This is similar to the teach control ZERO command, in
that it sets the contents of the six internal position
registers to zero. The @RESET command also turns off the
current in all six drive motors, allowing you to
manipulate the arm manually. The @RESET command is used
for initializing the arm. The syntax is simply:

@RESET<CR>
The arm responds with a [0<CR>] or [1<CR>].
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5. @READ

This command has no equivalent on the hand-held teach

control.

The syntax is:

@READ<CR>
The arm responds with [0<CR>] or [1<CR>] followed by a

string of numbers:
<K1>,<K2>,<K3>,<K4>,<K5>,<K6>,<I><CR>

where <K1> to <K6> are the actual values of the internal
position registers. In other words, the G@READ command
lets you read the position of the arm in terms of the
positions of the stepper motors. As we'll see later, one
use of the @READ command is to provide quantitative

measurements of objects held in the gripper.

The seventh number, <I>, is a decimal integer that can

be decoded to yield two things:

— the values of the 8 input bits
— the last key that was pressed on the teach

control.
The formula is:
I = Last Key * 256 + Input Byte

Where "Last Key" is O unless a key has been pressed on the
teach control since the last @READ command; otherwise
"Last Key" is a numeral from 1 to 14. If "Last Key" is a
non-zero numeral, its meaning is given in Figure 7-9. For
example, if "Last Key" is 7, then the last key pressed was
the REC key; if "Last Key" is 4, the last key pressed was
the OUT key, and so forth.
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ouT 4 1 CLEAR
stop | 7 | rree | 5 12 | zero
RUN 14 MOVE 6 13 SPEED

Figure 7-9 "Last Key" Numbers for the @READ Command
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“Input Byte”

"Input Byte" is a decimal number that, when translated
to binary, indicates which of the 8 input bits are set to
1. (Recall that bit 0 refers to the grip switch, and bits
1-7 are user inputs that can be set by external switches

or by the host computer itself.)
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[2 <CR>]

Here's an example: If I is 264, it means that:

a. "Last Key" must be 1; in other words (see

Figure 7-9), the last key pressed was the

TRAIN key,
and b. "Input Byte" must be 8 (because 264 = 1 x
256 + 8). Decimal 8 equals binary 1000,

which means user input Bit 3 is on, and the

others (0, 1, 2, and 4-7) are off.

As mentioned earlier, the arm will respond with [2<CR>]
if the STOP key was pressed during execution of an @STEP
or Q@QCLOSE command. If this does occur, it means that the
internal position registers have not reached the values
expected by the remainder of the program. If, in a given
application, there is a chance that the STOP key will get
pressed during an @STEP or @CLOSE command, then your
program should include an @READ after the @STEP or @CLOSE,
and then another @STEP or @CLOSE to make up the difference
between the motion that should have occurred and the
motion that actually occurred. (0f course, these extra
program steps would only be used if the arm actually
returned a [2<CR>] and you wanted to continue the

program. )
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6. @ARM

If you have your computer connected over serial lines
to both a video screen and your TeachMover at the same
time, you might want to list a program on the screen--say,
for editing--without actually causing the arm to run. To
do so, you need to change the character to which the arm
responds--that is, you need to instruct the arm to respond
to a character other than the "@" sign, at least while you

are listing and/or editing your program. If you key in:

@ARM <CHAR><CR>

where <CHAR> 1is any character other than a carriage

return, the arm will treat as commands all signals that
begin with that character, passing all other signals
through unmodified (including those signals beginning with
"@"). The arm responds with a [0<CR>] or [1<CR>].

The @ARM command can also be used to control multiple
TeachMovers from a single serial port; simply connect the
arms in series, and instruct each arm to respond to a

different recognition character.
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7. @DELAY

The above six commands handle all arm motions for most
computers. However, some computers--certain personal
computers in particular--cannot read characters as fast as
the TeachMover transmits them. You'll know you have this
problem if an @READ command generates fewer than seven
numerals as a response. One cure is to use a low baud
rate such as 300, but this will unnecessarily slow down
transmission of commands to the arm as well. A Dbetter
cure is to stay with a higher baud rate but use the @DELAY
command. Keying in the following at the beginning of your

program

- @DELAY <N><CR>

where <N> is an integer, will set wup a delay of
approximately 1/2 millisecond times N between transmitted

characters. The arm responds with a [0<CR>] or [1<CR>].

If you need to set up such a delay value for your
computer, first use the teach control to key in a speed
value of O. Then use the following procedure. (The
reason for setting SPEED to O is that the delay value set
up by the @DELAY command is not actually a constant, but
increases with arm speed. Since the delay is minimum at
lowest arm speed, setting the delay value when SPEED is O
will ensure that if the delay value is sufficient at that

arm speed, it will be sufficient at all other arm speeds).

— Use @DELAY command to set up a delay value.
Use N=0.

~— Do an Q@READ command to cause the computer to read
the six position registers and the integer 1I
(these are explained under the @READ command,
above) . It doesn't matter what the numerical
values are that are being read; even zeros are

acceptable for the purpose of this procedure.
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— PRINT (that is, display on your screen) the
values of the seven numerals.

— Make steps b. & c. into a loop, so the reading and
displaying goes on repeatedly (sometimes
everything will be all right for one or two
cycles before a problem shows up).

— If the program stops, unable to display all seven
numerals, it means that some of them got 1lost
because the delay value was too short. If this
is the case, return to step a., this time using a
delay value of 1. ‘

" — Continue this procedure, each time adding 1 to
the delay value, until all seven digits are being
displayed continously. This tells you the proper
delay value to use with your computer. Be sure
to use this delay value in an @DELAY command at
the beginning of every program you write.
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8. @QDUMP

This command uploads a program from the TeachMover to
a host computer, allowing you to generate programs on the
hand-held teach control and then save them an a disk for

later use. The syntax is simply;

@QDUMP<CR>

After handshaking the arm sends a long character string
which represents the entire set of 53 program steps (or
126, if you're using extra RAM). These steps are not in
quite the same format as teach control steps, nor are they
the same as the serial interface commands. They are, in
effect, building blocks which can be used by the computer
to produce the same results as would be produced by a
BASIC host computer program. Each step is coded as eight
integer values, L1, L2,...L8, separated by commas; each of -
the eight values is two bytes in length. The first value,
Ll, is the step number (0-52, or 0-125). The second value,
L2, contains an "opcode" that tells what kind of step is
being uploaded. The opcode and the corresponding structure
of the eight integer values for each kind of step is given

in Table 7-4. Each step is terminated with a <CR>.

[Note: The information in Table 7-4 may seem complex,
and it is. The complexity is partly due to the Teach-
Mover's limited memory space; there Jjust isn't room to
store the routines that would be necessary to convert data
from a more straightforward format to the packed format we
had to use for internal storage. You'll be pleased to
know that to use @QDUMP to upload programs, you do not
need to know any of the details in Table 7-4. This is
essentially true for downloading programs once they've
been uploaded. The only times you'll need to know the
details are when you wish to download a program that was
not previously uploaded - that is, when you wish to down-

load a program initially generated on the host computer -
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or when you wish to manipulate the data itself rather than
simply store and retrieve it. The notes below Table 7-4

provide information that will make these tasks easier.]
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TABLE 7-4

OPCODES AND CHARACTER STRINGS FOR @DUMP COMMAND*

(sP = serial interface speed value)

(In all cases, L1 = program step number)

Description of the

Type of step Opcode remaining seven 2-byte fields
MOVE 1 L2: opcode + [(255 - SP) * 256]

)
L3: Jl(low) + (J2(low) * 256)
L4: J3(low) + (J4(low) * 256)
L5: J5(low) + (J6(low) * 256)
L6: Jl(high)+(J2(high) * 256)
L7: J3(high)+(J4(high) * 256)
L8: J5(high)+(J6(high) * 256)

where Jl(low) and Jl(high) are the low
and high bytes, respectively, of the
.number of half-steps of motion
specified for motor 1, and similarly
for J2-J6; see Note 1 below. (The
MOVE step is an encoded form of an
@STEP command with the OUT value
ommitted.)

GRIP 2 L2: opcode + [(255-SP) * 256].
L3-L8: not used

(This has the same effect as the GRIP
command on the hand-held teach
coontrol; that 1is, it closes the
gripper 32 steps past the point where
the grip switch is activated, thereby
building up 1 1b. of gripping force.)

JUMP 3 L2: opcode + [(jump condition) * 256].
See Appendix F, item 6 for jump condi-
tions.

L3: step no. to jump to
L4-L8: not used

(This is a direct encoding of the
teach control JUMP command.)

*(See Note 1 for negative numbers and numbers greater than 32767)
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Table 7-4 (cont.)

PAUSE 4 L2: opcode + [(pause time in sec.)
* 256].
L3-L8: not used

(encodes the teach control PAUSE

command )

OUTPUT 5 L2: opcode + [(output bit no.) * 256.
See Appendix F, item 6 for output
numbers.

L3: output value (0 or 1)
L4-L8: not used

(encodes the teach control OUT
command )

SIGNAL 6 L2: opcode + [(1st character of a

string) * 256]

L3: 2nd character of string + [(3rd
character) * 256]

L4: 4th character of string + [(5th
character) * 256]

L5: 6th character of string + [(7th
character) * 256]

L6: 8th character of string + [(9th
character) * 256]

L7: 10th character of string + [(11lth
character) * 256]

L8: 12th character of string + [(13th
character) * 256]

(Sends a character string to the host

computer. The string sent can be
from 0 to 12 characters 1long, and
must be followed by a zero. See

Notes 2 and 3 below.)

PATH 7 The same as MOVE, but without
controlled acceleration. (PATH was
used in generating steps 151-161 in
the Exerciser Program listed at the
end of chapter 6.) Also see Note
2 below.
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Table 7-4 (cont.)

Note 1 . Some low cost computers cannot deal with numbers
- greater than 32767 since they only use two bytes to
represent numbers. Because of this, the TeachMover
converts any larger number to a negative number. Any
- negative number sent by the TeachMover in response to
an @QDUMP command can be converted to a positive
number by adding 65536 to it. This is not necessary
when transferring programs that do not need to be
modified or decoded, or programs generated by the
host computer.

- The high and low bytes of, say, L3 can be calculated

as follows:
If L3<0 then L3=L3+65536

— L3(high) = integer quotient of L3/256 (that is,
the quotient without the remainder)
L3(low) = remainder of (L3/256)

Example: If L3 = 259, then

1
3

J2(low)=L3(high)
- J1l(low)=L3(1low)

In practice, calculation of the high and low bytes of
— a number can be programmed in a variety of ways. On
some computers there is a remainder function (REM)
that you can use to calculate the remainder of J1/256
directly. Or, if your computer has logical functions
(AND, OR, NOT, etc.), the remainder of J1/256 will be
given by "ANDing" Jl1 with 255. (This works because
255 is equivalent to a low byte full of ones.) If
- none of these special functions is available, you can
calculate the value of, say Jl, using the following
formulas (in integer arithmetic):

If L3<0 then L3=L3+65536
If L6<0 then L6=L6+65536

o J1=L3-[(L3/256)*256]+[ (L6-[ (L6/256)*256])*256]
If J1>32767 then J1=J1-65536

- Note 2. Neither SIGNAL steps nor PATH steps can be generated
on the hand-held teach control. Thus, these steps
can only be uploaded if they have previously been
downloaded from the host.
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Table 7-4 (cont.)

Note 3 . You can download a program 1in segments, using
SIGNAL to tell the host when each segment is
completed. Then while a given program segment is
executing on the TeachMover, the host can Dbe
performing other tasks -~ including interacting with
other TeachMovers. This cuts run time, because the
host computer does not have to sit idle while a
TeachMover is executing a given program segment.

The character string you send as a signal to the host
can be [1<CR>], or [DONE<CR>], or almost anything you
wish. (For most computers - at least those that
employ BASIC - use of <CR> to signal the end of an
input or an output sequence is mandatory.) Let's say
you wish to use [R<CR>], to indicate "ready." The
SIGNAL step would have to contain:

program step no.: (let's say it's step no. 21)
opcode: 6

1st character: ASCII R (decimal 82)

2nd character: ASCII <CR> (decimal 13)

3rd character: O

The actual SIGNAL step would be coded as follows:
21, (7 + (82 * 256)), (13 + (0 * 256))

and sent as:
GQWRITE 21, 20999, 13<CR>
See Note 5 after @QWRITE.

The next program step, number 22, would be coded as
an unconditional Jjump to itself. This would cause
the arm to wait until the host tested for the [R<CR>]
and then downloaded another program segment.

Note 4. To use SIGNAL to operate multiple TeachMovers simul-
taneously from a single serial port, program each
TeachMover to send back a unique character string;
this tells the host which arm is ready for its next
command. (Without using SIGNAL in this way, multiple
TeachMovers could only operate sequentially because
if they were to operate simultaneously, the computer
would not know which arm had sent back the standard
"handshake" of [1<CR>].)
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9. @QWRITE

This command is the reverse of the @QDUMP command, in
that it allows you to download programs from your computer
to the TeachMover. Unlike the @QDUMP command, you must
use @QWRITE once for each program step, rather than just

once for an entire program. The syntax is:

@WRITE <L1>,<L2>,<L3>,<L4>,<L5>,<L6>,<L7>,<L8><CR>

where <L1> 1is the step number 1in TeachMover memory to
which you wish to write the program step, and L2-L8 are
the values of seven two-byte data fields, structured

exactly as in the @QDUMP command.

To download a program that has previously been
uploaded, all you need to do is use the @WRITE command
once for each program step, retrieving L1, L2,..., L8 from
memory/storage. (To store an uploaded program, it's best
to use a 53x8 array [or 126x8 if you're using exta RAM].
The values of the array elements can be read in via one or
more "INPORT" statements immediately following the @QDUMP
command . Then, on downloading the program, the lines of
the array can form the contents of successive @WRITE

commands. )

Downloading a program that has not previously been
uploaded is a more complex process, because you must
encode each step individually. As an example, let's say

you wanted to download the equivalent of:

@STEP 200,150,621,-323<CR> to TeachMover step number 42.
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Note 5 .

Note 6.

The command would be:

@QWRITE 42, (1+((255-200)*256),

(150(low)+(621(low)*256)), (-323(low)+(0*256)), (0+(0*256)),

(150(high)+(621(high)*256)), (-323(high)+(0*256)),
(0+(0*256) ) <CR>

and sent as:
@QWRITE 42,14081,28054,189,0,27904,255<CR>

See Note 5 and 6.

As in the @STEP command, trailing zero values may be

omitted.

The conversion to high and low bytes is the same as the
conversion from high and low bytes in Note 1 except that

it is not necessary to do the final conversion to

negative if the result is greater than 32767. This is
because the TeachMover accepts 32768 and -32768 as the

number.
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10. @RUN

This command will run any program stored in the
TeachMover, whether the program was keyed in on the hand-
held teach control, downloaded from a host computer, or

one of the permanent demonstration programs.

The syntax is:
@RUN <N><CR>

where N is the program step at which you wish the program
to begin running. (Example: @RUN 126 <CR> will run the
demonstration program stored in TeachMover firmware
beginning at program step 126. When you 1issue an
@RUN command without any syntax errors, the arm responds
with [1<CR>] before beginning to execute the TeachMover

program.

[Note: Any valid serial command will stop the arm
once it's running, but will not change the lights unless

it is.an @QSTEP command with an <OUT> value.]
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C. SAMPLE PROGRAMS

Note : In the programs in this section, we will use
the imaginary instructions OUTPORT and INPORT to represent
the particular instructions you normally use with your
computer for receiving and sending information over serial
lines (that 1is, between the computer and a peripheral
unit). These instructions are not to be confused with the
more familiar instructions INPUT and PRINT. INPUT refers
to information entered at the keyboard, while PRINT is a
command to display information on the screen. See part A,
section 6 of this chapter for further details on INPORT
and OUTPORT. |

Before running a program, remember to initialize the
arm position according to the instructions given in

Appendix G.
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Use of
INPORT 1

in place of
“handshaking”
subroutine

1. Use of @SET and @READ

In the program shown in Figure 7-10, the internal
position registers are first initialized by means of an
@RESET command, then control of the arm is turned over to
the hand-held teach control by means of an @SET command
(line number 80). The user moves the arm to a new
position by means of the joint-control keys, then presses
the REC or MODE key. The program reads the new joint
positions, and uses this information to move the joints
(except the gripper) back to their original configura-
tion. Finally, the program causes the gripper to close.
Notice how the @READ command (line 110), followed by the
INPORT command on line 115 assigns variable names (A-F) to
the six joint positions; this is so that the @STEP command
(line 190) can move the arm back to exactly where it

started.

[_N_oti H In this program and those that follow, we
are using the sihgle statement INPORT I - rather that the
subroutine discussed in part A, section 6 off this chapter
- to accomplish the necessary "handshaking" with the
TeachMover. As you know, the value of I will be 0, 1, or
2, and you should test to find out which it is; a 0 will
mean a syntax error had been made and that the previous
command could not be executed, while a 2 will mean that
the STOP key was pressed while an @STEP or G@CLOSE was

executing.

The "handshaking" subroutine can be used to perform
this test. We are omitting the subroutine from our.
program listings only to avoid clutter. When you're
entering one of our programs into your computer and you
come to INPORT I following an arm command, you can replace
INPORT I with a call to the subroutine. (You can, if you
wish, omit the subroutine and assume that the command

syntax 1is correct; but you would still have to retain the
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INPORT I statement after each arm command. This is
because even if there is no syntax error, your computer
needs to wait until an arm command has finished executing
before going on to the next command, and the only way it
can know this is by inputting the [1<CR>].)

Also, in some of our sample. programs, we use IF...
THEN. . .ELSE statements, statements involving logical
expressions (AND, OR, etc.), and other kinds of statements
that may not be available on your computer. If you run
into a statement that your computer cannot interpret, you
will need to modify the program using one or more
statements that your computer can interpret and that will

still yield the desired results.]
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g bl

10
20
Z0
40
350
70
80
85
QO
100
110
115
120
120
140
150
185
160
170
180
190
195
200
210
220

220

REM 30Kk k00K K kokokokokokokokokokokokok koK

REM X X
REM x SERIAL FORT DEMO FROGRAM X
REM X .

REM 300Kk %0k 0K K K50k Kk okokokokkokkokkxokk X

OUTFORT "9RESET": INFORT I
REM
REM _
FRINT "YOU CAN CONTROL THE ARM USING THE TEACH CONTROL"
FRINT "USE ONE OR MORE FOR THE JOINT-CONTROL KEYS"®
FRINT "FRESS THE REC OR MODE KEY"
OUTFORT "9SET 200"

INFORT I
REM

REM

OUTFORT “OREAD": INFORT I

INFORT A,E,C,D,E,F,B

REM THIS READS THE AMOUNT YOU MOVED

REM

REM

OUTFORT “®CLOSE", 200

INFORT I

REM THIS CLOSES THE GRIFFER

REM

REM

OUTFORT “9STEP",200, - A, — B, - C, - D, - E
INFORT I

REM THIS MOVES IT BACK TO WHERE IT WAS

REM

REM

END

Figure 7-10 Serial Port Demonstration Program
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2. "Pick-and-place" program

The "pick-and-place" task is common in industrial
robotics. A typical application is where parts from a
feeder are placed in an assembly or on a moving conveyor.
We will assume an unending supply of parts at the pick-up
point, and continual removal of parts at the placement

point.

The task is defined in Figure 7-11. Pickup is from A,
and placement is at D. The approach and departure tra-
jectories AB & CD are generally required for practical
reasons: an object on a flat surface is best lifted before
it is moved, and when the object is put down and released,
the arm should be raised so as not to obstruct removal of
the object.

The sequence of statements shown in Figure 7-12 will
accomplish this task in a straightforward manner.
However, for the program to actually work, you must
specify the speed (S) and also define the various motor-

step values (Pl, P2, etc.) numerically, earlier in the

program. In other words, you must know and specify in
advance the number of motor steps that are required on
each joint in order to accomplish each desired motion. To
try to determine these step values by trial and error is
impractical. Here is where the @SET and @READ commands
can be of great benefit, for they let you position the arm
via the hand-held teach control, and then cause the
computer to count and remember the number of steps

each motion takes.

Figure 7-13 shows one way to program this. The
quantities Al, A2,..., A5 represent the actual values of

the internal position registers when the arm is at point A

of figure 7-11; Bl, B2,..., B5 represent the values at
point B; and so forth. The actual amounts of joint
movement are given by subtraction. For example, D2-C2 is
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B START C 1. Move Downto A
2. Close Grip

END 3. Moveto B
. 4, MovetoC

5. Moveto D
6. Open Grip

A D 7 mwwc

8. Moveto B

Figure 7-11 Pick-and-Place Task
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the number of steps the shoulder motor must have
turned in moving the arm from point C down to Point D.

This means that to return from D to C, the shoulder motor

has to turn the number of steps given by the expression
C2-p2. Note how this calculation is incorporated into
lines 390 and 400 of the program. Also note how the
required gripper movement is determined empirically (lines
165-205).

Line 290 represents the last line of the portion of
the overall program that causes the computer to learn the
joint positions and proper joint motions. Once this
portion is accomplished, then the pick;and—place program
itself can be run repeatedly and without human inter—
vention. This portion of the overall program begins
on line 1000. Note that although the hand is to remain
closed while moving the part, it is necessary to program a
non-zero value for the number of half-steps of the hand
motor during this portion of the program in order to de-
couple elbow and grip movements, that is, in order to keep
the gripper from opening when the elbow joint rotates.
(See lines 1020, 1030, and 1040, in which the value J6 has
been set equal to the elbow value J3, as per the equation
given in the section on the @STEP command, above. This
compensation was omitted from the listing:in Figure 7-12

for simplicity.)
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10
15
20
25
30
35
Lo
45
50
55
60
65
70
75
80
85
90

OUTPORT "@STEP",S,-P1,-P2,-P3,-Ph,-P5
INPORT |

OUTPORT "@CLOSE"

INPORT |

OUTPORT "@STEP",S, P1, P2, P3, P4, P5
INPORT |

OUTPORT "@STEP",S, Q1, Q2, Q3, Qk, Q5
INPORT |

OUTPORT "@STEP',S, R1, R2, R3, R4, R5
INPORT |

OUTPORT '@STEP",S, 0, 0, 0, 0, 0, GR
INPORT |

OUTPORT '"@STEP",S,-R1,-R2,-R3,-R4,-R5
INPORT |

OUTPORT "@STEP'",S,-Q1,-Q2,-Q3,-Qk4,-Q5
INPORT |

GOTO 10

Figure 7-12 Pick-and-Place Program Segment
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REM %KoK KKK KX KKK KKK KKK K
REM X x
REM % FICK % FLACE PROGRAM X
REM X x
REM KKK KKK K KKK KKK KKKK KK KK

100 OUTFORT “QRESET": INFORT I: REM ZERO COUNTERS

110 FRINT "FICK - AND - FLACE ROUTINE"

120 FRINT "USE KEYBOARD TO SET SFEED"

130 INFUT “SFEED="3S

140 FRINT “FOSITION HAND ON FART"
. 150 PFRINT " ADJUST HAND OFENING TO CLEAR PART"

155 PRINT “FRESS MODE WHEN DONE"

160 OUTFORT “@SET",200: INFORT I

165 OUTFORT "READ": INFORT I

170 INPORT Al,A2,AZ,A4,AS,G0,V

180 OUTPORT "®CLOSE",S: INFORT I: REM CLOSE HAND AND MEASURE FART
185 OUTFORT “®READ": INFORT I

190 INFORT A1,AZ,A3Z,A4,AS,GC,V

200 6 = B0 - GC: REM GRIF SIZE MINUS GRIF SIZE CLOSED

205 OUTFORT "9STEP",S5,0,0,0,0,0, - S50: INPORT I

210 FRINT "FOSITION FART ABOVE PICKUF SITE"

215 FPRINT “"PRESS MODE WHEN DONE

220  OUTFORT “9SET",200: INFORT I

225 OUTFORT “OREAD": INPORT I

230 INFORT EB1,BZ,E3,E4,BS,GV,V

240 FRINT "FOSITION FART ABOVE PLACEMENT SITE"

245 PRINT “PRESS MODE WHEN DONE"

250 OUTFORT "9SET",200: INFORT I

255 OUTPORT "OREAD": INFORT I

260 INFORT C1,C2,C3,C4,CS,GV,V

270 FRINT “FOSITION FART AT FLACEMENT SITE"

275 FRINT “"PRESS MODE WHEN DONE"

280 OUTFORT "@SET",200: INFORT I

285 OUTFORT “READ": INFORT I

290 INFORT D1,D2,D3,D4,DS,GV,V

300 REM

310 INFUT "TYPE G TO GO?"iR$

320 IF R$ = "G" THEN 330

25 END

330 REM

I40 REM RUN THE PICK - AND - FLACE PROGRAM

350  REM

360 REM RELEASE PART AND RETURN TO B

370 REM

80 OUTPORT "®STEF",S,0,0,0,0,0,6: INFORT I

90  OQUTFORT “dSTEF",S,C1 - D1,C2 - D2,C3 - D3,C4 - D4,C5 - DS: INFORT I
400 QUTFORT “®STEP",S,B! - C1,B2 - C2,B3 - C3,B4 - C4,B5 - CS: INFORT I
500 PRINT "TYFE 6 WHEN FART 1S IN FOSITION: "j

S$10 INFUT R$: IF R$ < > "G" THEN END

1000  OUTFORT “ISTEF",S,A1 - EB1,A2 - B2,A3 - B3,A4 - B4,AS - BS: INFORT I
1010 OUTFORT “9CLOSE",S: INFORT I

1015 OUTFORT "9STEF",8,0,0,0,0,0, - S0: INPORT I

1020 OUTFORT “9STEF",S,B1 - A1,B2 - A2,B3 - AZ,B4 - A4,BS - AS,B3 - AT:

1 NFFEN N

INFORT I

1030 OUTFORT "9STEP",S,C1 - EB1,C2 - B2,C3 - BX,C4 - R4,C5 -~ B5,C3 - EB3:
INPORT I

1040 OUTPORT "9STEP",S,D1 - C1,D2 - €2,D3 - €3,D4 - C4,D5 - C5,D - C3:
INFORT I

1050 OUTFORT “9STEFP",S,0,0,0,0,0,6: INPORT I

1060 OUTFORT "aSTEF",S,C1 - D1,C2 - D2,C3 - DX,C4 - D4,CS - DS: INFORT I
1070  OUTFORT "®STEF",S,B1 - C1,E2 - C2,B3 - C3,B4 - C4,B5 - CS5: INFORT 1
1080 GOTO 500

1090 END

Figure 7-13 Full Pick-and-Place Program

7.56



CHRAPTER SEVEN Sample Program:
HOST COMPUTER Thickness Measuring

3. Thickness measuring program

Figure 7-14 shows a program that can be wused to
actually measure the thickness of various objects placed

between the TeachMover's fingers.

When the program is first run, the @CLOSE command is
used to close the hand with no object in its grasp (line
160). The internal position registers are set to zero
(line 170) and the hand is then opened to a wide setting
(line 190). This begins the actual measurement loop.
Whenever you press the carriage return key, the hand will
close on an object (line 220), the position registers will
be read (line 230), and the value of the position register

for the hand will be converted to inches (line 250).

This program also includes a determination of whether
the object grasped was "thick" or "thin;" an arbitrary
value of 0.015 inches is used as a cut-off. This kind of
decision-making can be used to determine of an object was
indeed gripped or if the fingers merely closed upon

themselves.
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100 PRINT " 0kokkok K0k ok %0k K0k Kk Kk X0k Rk ok Kok Kokokkokkdokkokkkkokk " 5
110 FRINT "% FROGRAM TO MEASURE THICENESS OF b S
120 FPRINT "% OBRJECTS FLACED EETWEEN THE FINGERS Xx";
120 FRINT "X OF THE HAND. b S
140  FPRINT M0k Kk kR ok KOk k R X0k K Rk koK k ook ok ksokkokkkkkkxx™
150 QUTFORT “9STEF 240",1, - 100,1,1,1,500: INFORT I
160 OQUTFORT "2CLOSE 240": INFORT I: REM CALIERATE HAND
170 OQOUTFORT "2RESET": INFORT I
180 REM RESTORE HAND TO FREVIOUS EXTENSION
190 QUTFORT "ISTEF 240",0,0,0,0,0,1117 - JAW: INFORT I
200 PFPRINT "FRESS «<RET> TO MEASURE ORJECT";

210  INFUT D%

220 OQUTFORT "2CLOSE 240": INFORT I

230 OUTFORT "IREAD": INFORT 1

240 INFORT V,V,V,V,V,JAW,V

250 TH = JAW /7 371

260 IF TH < 0.015 THEN FPRINT "THICKNESS IS 0.": GOTO ZBO
270 PRINT "THICENESS = "3;TH3;" INCHES."

280 FPRINT Ve e e e e e e e e o e e e e "

290 GOTO 180

Figure 7-14 Thickness Measuring Program

7.58



CHAPTER SEVEN Sample Program:
HOST COMPUTER Cartesian ““Pick-and-Place”

4. Cartesian "Pick-and-Place" Program

In some pick-and-place applications, programming arm
positions on the hand-held teach control is not prac-
tical. For example, to move pieces on a chess or
checker board would require manually teaching 64 different
board locations and 64 placement points. However, since
the 64 locations are in a simple geometric relationship
with one another, a program that used Cartesian coor-
dinates to specify positions would represent a more

practical approach.

However, the TeachMover commands (@STEP, @READ, etc.)

are in terms of joint coordinates (J1, J2,...,J6), not
Cartesian coordinates in space. Thus, if you specify

positions in Cartesian coordinates, you must convert those
positions into Jjoint coordinates in order to use the
TeachMover's serial interface commands. Formulas for the .
required coordinate transformations--and derivations of
those formulas--are given in Appendix D. These formulas
are incorporated into a subroutine (Lines 5000 - 6010) in
the sample Cartesian pick-and-place program shown in

Figure 7-15.

In this program, Cartesian data is given beginning at
line 10000. The Cartesian coordinates of four points are
given; these correspond to points A, B, Cc, and D in Figure

7-11. The particular Cartesian values are as follows:

P(pitch) R(roll)
Position X(in.) Y(in.) Z(in.) (in.) (in.)
A 8 0 0.5 -90 0
B 8 0 2.0 -90 0
C 6 5 2.0 -90 20
D 6 5 0.5 -90 20
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In other words, the X location of the object is changed
from 8 inches to 6 inches, its Y location is changed from
0 to 5 inches, and before being moved laterally the object
is 1ifted 1 1/2 inches (from 0.5 to 2 inches). The angular
orientation of the hand is always straight down (Pitch =
- 90 degrees), but the object is rotated through 90° of
roll between pick-up and set-down (R changes from 0 to
90). You'll find these values in the data statements
beginning on 1line 10010 (line 10000 gives the standard
initialization configuration described in Appendix B) ;
these data statements also include a sixth value governing
the hand opening,' and a seventh value governing arm

speed.

In the first working phase of our program (lines 160-
320), the arm is moved from position to position as the
coordinate transformations are performed. The resultant
joint steps are stored in matrix uu. After all the trans-
formations are obtained, control is transferred to 1line
1000 and the pick—-and-place cycle is run repeatedly from
the data in the variables, without any further need for

coordinate conversions.

The program in Figure 7-15 is written with data for
just one pick-up point, but a straightforward extension of
the programming could cause the arm to pick up and move
pieces on a chess board, where all the pick-up positions
(after the first one) are specified by simple formulas
rather than by actual numerical data. You might wish to

try this as an exercise.
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110
111
112
113
114
120
121
122
123
124
125
130
131
133
134

136
137
138
139
140
141
142
143
144
145
146
150
155
160
170
175
180
190
200

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

Sample Program:
Cartesian “Pick-and-Place”

kkkkhkkkkkkkkhkkkhkkhkhkhhhhkkkhhkkkkx

TEACHMOVER
CARTESTIAN COORDINATE CONTROL

PROGRAM

* % %k X F X * N
* % F kX ¥ X *

kkkkkkkhkkkhkkkkhkhhkkhkkhkhhkkkhhk

REM DEFINE ROBOT ARM CONSTANTS

H
L
LL =
REM
REM
PI =
C =

Rl =

7.625: REM SHOULDER HEIGHT ABOVE TABLE
7.0: REM SHOULDER TO ELBOW AND ELBOW TO WRIST LENGTH
3.8: REM WRIST TO FINGERTIP LENGTH

DEFINE OTHER CONSTANTS

3.14159265

57.2957795: REM DEGREES IN 1.00 RADIAN
1: REM FLAG FOR WORLD COORDINATES

REM .
REM DEFINE ROBOT ARM SCALE FACTORS

Sl =
S3 =

1125:82 =-S1: REM STEPS/RADIAN, JOINTS 1 & 2
— 661.2: REM STEPS/RADIAN, JOINT 3

S4 =- 244,4:85 = S4: REM STEPS/RADIAN, JOINTS 4 & 5

S6 =

371: REM STEPS/INCH, HAND

REM
REM INITIALIZATION .
DIM UU(7,40): REM ROOM FOR 40 STEPS

Pl =
REM
AND

0:P2 =- 508:P3 =  + 1162:P4 = +384 : P5 = P4 : P6 = 0
LINE 133 IS THE NUMBER OF JOINT STEPS FROM Tl= 0,T2= 0,T3= 0,T4= 0,T5= 0,
J=0, TO X=5,Y=0,Z=0,P=-90,R=0,AND J=0

REM

REM READ IN FIRST LINE FOR INITIALIZATION

READ X,Y,Z,P,R,GP,S

PRINT "SET ARM TO THE FOLLOWING POSITION & ORIENTATION"
PRINT"  USING KEYBOARD, TYPE O WHEN FINISHED"

PRINT" X = ";X;" INCHES"

PRINT" Y = ";Y;" INCHES"

PRINT" Z = ";Z;" INCHES"

PRINT" PITCH = ";P;" DEGREES"

PRINT" ROLL = ";R;" DEGREES"

PRINT" HAND = “;GP/S6;"INCHES"
OUTPORT "@SET 200": INPORT I: REM MOVE ARM
OUTPORT "@RESET": INPORT I

U=0

READ X,Y,Z,P,R,GP,S
INPUT "HIT RETURN TO GO ON:";A$
IF X < 0 THEN 1000

GOS
GOS

UB 4000: REM SHOW COORDINATES
UB 5000

Figure 7-15 Cartesian Coordinate Program
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210

220
221
222
223
224
225
226
227
230
231
240
250
290
300
310
320
1000
1010
1020

1030
1040
1050
1060
1080
1100
1110
1120
1130
4000
4010
4020
4030
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
5000
5010

OUTPORT "@STEP",S,Wl1 - uu(l,u),w2 - uu(2,U),W3 - uu(3,u),ws - uu(4,u),
w5 - Uu(5,U0),Ww3 - UU(3,U): INPORT I
U=0+1
uu(1,U) = Wl
uu(2,u0) = w2
uU(3,U0) = W3
UU(4,0) = W4
Uu(5,U) = W5
uu(6,U0) = GP
uu(7,u) = s
IF GP < 0 THEN 300
REM OPEN HAND IF JAW > O
OUTPORT "@STEP",S,0,0,0,0!O,GP: INPORT I
GOTO 170
REM CLOSE HAND AND SQUEEZE IF JAW < O
OUTPORT "@CLOSE 245": INPORT I
OUTPORT "@STEP",240,0,0,0,0,0,GP: INPORT I
GOTO 170
PRINT"RUN THE PROGRAM"
FOR I =2TO0 U
OUTPORT "@STEP",UU(7,I) ,Uu(1,1) - uu(l,I - 1),00(2,1) - UU(Z,I -1),
UU(-?"I) - UU(3,I - l)yUU(l‘)I) - UU(4’I = 1)’UU(5’I) = UU(S’I - 1)’
UU(3,I) - UU(3,I - 1): INPORT N
IF UU(6,I) < O THEN 1060
OUTPORT "@STEP",UU(7,I) ,0,0,0,0,0,UU0(6,1): INPORT N
GOTO 1100 ) '
OUTPORT "@CLOSE 245": INPORT N
OUTPORT "@STEP",240,0,0,0,0,0,1’0(6,1): INPORT N
NEXT I
CY =CY+1
PRINT"CYCLE ";CY
GOTO 1010
REM
REM DISPLAY COORDINATES
PRINT"ROBOT ARM IS MOVING TO THE FOLLOWING"
PRINT"COORDINATES:"
PRINT:PRINT" X = ";X;" INCHES"
PRINT" Y = ";Y;" INCHES"
PRINT" Z = ";Z;" INCHES" s
PRINT" PITCH = ";P;" DEGREES"
PRINT" ROLL = ";R;" DEGREES"
PRINT" HAND = ";GP/S6;"INCHES"
RETURN
REM
REM
REM ROUTINE TO CONVERT CARTESIAN COORDINATES
REM TO NUMBER OF JOINT STEPS AWAY FROM START POSITION
REM
REM
REM BACKWARD SOLUTION CALCULATIONS

Figure 7-15 (Cont'Qd)
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5020 P=P/C:R=R/C

5030 IF X = O THEN T1 = SGN (Y) * PI / 2

5040 IF X < > O THEN Tl = ATN (Y / X)

5050 IF Tl < O THEN PRINT:PRINT"BASE OUT OF RANGE. Tl= ";Tl

5060 RR = SQR (X * X + Y * Y) '

5070 IF RR < 2.25 AND Z < 15 THEN PRINT:PRINT"HAND TOO CLOSE TO BODY. RR = ";RR

5080 1IF RR > 17.8 THEN PRINT: PRINT"REACH OUT OF RANGE. RR = ";RR

5090 RO = RR - LL * COS (P)

5100 IF X < 2.25 AND Z < 1.25 AND RO < 3.5 THEN IFP < -90/ C
THEN PRINT:PRINT"HAND INTERFERENCE WITH.BASE."

5110 REM NOTE THAT THE ABOVE STATEMENT MAY BE ALTERED TO ACCOMODATE
MOVES CLOSE TO THE BASE

5120 20 = Z - LL * SIN (P) - H

5130 IF RO = O THEN B = ( SGN (Z0)) * PI / 2

5140 IF RO < > O THEN B = ATN (Z0 / RO)

5150 A = RO * RO + 20 * Z0

5160 A= 4 *L *L /A-1 :

5170 IF A < O THEN PRINT:PRINT"REACH OUT OF RANGE FOR SHOULDER AND ELBOW.": GOTO 5500

5180 A = ATN ( SQR (A))

5190 T2 = A+ B

5200 T3 = B - A

5210 IF T2 > 144 / C OR T2 < - 35 / C THEN PRINT:PRINT"SHOULDER OUT
OF RANGE. T2 = ";T2 * C

5220 IF T2 - T3 < 0 OR T2 - T3 > 149 / C THEN PRINT:PRINT"ELBOW OUT
OF RANGE. T3 = “;T3 * C ,

5230 IF (R > 270 / CORR < =270/ C) THEN IF (P > ((90 / C+ T3) - (R + 270 / C))
ORP<((-90/C+T3)+ (R- 270/ C))) THEN PRINT:PRINT"PITCH OUT
OF RANGE. PITCH= ";P * C

5240 IF P > (90 / C+ T3) OR P < ( - 90 / C + T3) THEN PRINT:PRINT"PITCH OUT
OF RANGE. PITCH = ";P * C

5250 IF (R > (360 / C - ABS (P - T3)) ORR< ( - 360 / C + ABS (P - T3)))
THEN PRINT:PRINT"ROLL OUT OF RANGE. ROLL = ";R * C

5260 T4 = P — R - Rl * Tl

5270 T5 = P + R + Rl * Tl

6000 REM CORRECT COORDINATES

6010 W1 = INT (S1 * T1 + .5) -P1

6020 W2 = 1INT (S2 * T2 + .5) -P2

6030 W3 = 1INT (S3 * T3 + .5) -P3

6040 W4 = INT (S4 * T4 + .5) - P4

6050 W5 = INT (S5 * T5 + .5) - P5

6060 RETURN

9999 REM X Y Z P R J SP

10000 DATA 5, 0, 0, -90, O, 0, 200

10010 DATA 8, 0, 2, -90, 0, 800, 221

10020 DATA 8, 0, 0.5, -90, O, =50, 221

10030 DATA 8, 0, 2, -90, O, 0, 221

10040 DATA 6, 5, 2, =90, 90, 0, 221

10050 DATA 6, 5, 0.5, -90, 90, 300, 230

10060 DATA 6, 5, 2, -90, 90, -1, 230

10070 DATA 8,
10080 DATA -999,

2, -90, o0, 800, 221
’ 0, 0, 0, 0, 0

Figure 7-15 (Cont'Qd)
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CHAPTER SEVEN Sample Program:
HOST COMPUTER Cartesian Demonstration

5. Cartesian Demonstration Program

This program is identical to the Cartesian pick-and-
place program of Figure 7-15, except that line 1010 should
be changed to:

1010 for I =1 to U
and the data statements should be as in Figure 7-16.

This program manipulates a 2.6" x 1.6" x 1.6" block
into many different positions and orientations, returns to
the starting position, and then repeats the cycle. You
can use this program to test the tension in all the
TeachMover cables. If any of the cables are too tight,
then the starting position of the block will drift over
time, indicating that one or more of the stepper motors is
slipping. If you do find that there is slippage, adjust
the appropriate cable(s) according to the instructions in

Chapter 3, part C (Cable Tension Adjustments).
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HOST COMPUTER

1Hu&n
100 7 i)
1TO0ED
10090
L0100
12110
Lol
10130
131 40
12 15HB0
Lyt
10170
1180
1u1@n

Figure 7-16

DATA
DATA
DATA
DATA
DATA
DATE
DATE
DATA
DATA
DATA
DATA
DATE
DATA
DATA
DATA
DETA
DETA
DATA
DATA
DATA
DETA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATEA
DATA
DETA
DATA

Sample Program:
Cartesian Demonstration

Tty Oy -0, ﬂ
*Jw()q-qu“(?”
S0y .5, 90, U
Hq_,u5,~WU
Gy, 1 ‘~~C?f>, “..f' ]
8,0,1,~-90,90, ,hdu

By -5, .’..“‘B'U f?z) 0,240
8,0, 1.w9u“9n n,m4n
S5, 1, -0, PO, O, 240

8,0 l_“?“ Qu,h,kqn

&, U”"qqmgﬂ F0, HOO, F40
B“U a0, 9“ "qﬁﬁﬁ

a, qqu4q,u,",h4m
8"0,.q.*45~0 20, 240
ﬂuﬁqh‘*du,n Hqifﬁ

,0, 10, 45, 0,0,225
Q,", a 4&.180 0,240
Bﬂo,u55m4u,1aﬂ EO0Q, 200
8,0,4,-4%5,180,0,225
B,0,4,-135,0,0,240

&, u,uJ,~1Tb”Q_w3m,:4n
89u,w."175q0, B0, 225
By 0,3, ~45,0,0, 240
8,0, 5, 45,0, 300,240
B0, Lu5, ~90,0,0 ”?h
850,.5,m90,0. ﬁuqﬂ40
Q,Ogl,wqﬂ,O,D,Q.J

B0, 1, =90, -90,0, 240

By 0y uSy 90, -390, 200, 240
8,0 "wQDnd~w1,225

';i’ . (:) "'::_ . (.;)(:) . (:) i) 4,‘)

By, 1, =90, 0,1 ”dn
S,QﬂQFMQQ,QHU,, :
=000, 0, 0,0,0,0,0

e
g il alowd

I, P40
240

a

Cartesian Demonstration Program
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CHAPTER SBVEN Sample Program:
HOST COMPUTER Experimentation

D. Experimentation

Careful study of the above sample programs will yield
many pointers on how to write successful TeachMover pro-
grams using your computer. There is virtually no limit to
the variety of tasks you can accomplish using serial
interface mode. Once you're familiar with TeachMover
programming, you might 1like to try some of the advanced

applications suggested in the next chapter.
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CHARPTER EIGHT
SUGGESTED ADVANCED APPLICATIONS

Some of the applications suggested in this chapter

require additonal hardware - an extra cable, special
sensors, or even a second TeachMover. Other applcations
call for the development of new software routines. Still

others are on the forefront of artificial intelligence
research, and thus represent challenges that could take
several man-years to overcome. Feel free to work on any
of these applications you wish - or try venturing forth
into other new areas on your own. In any event, we‘re
sure you'll find one thing to be true: The more you use

the TeachMover, the more ways you'll find of using it.

A. USING LOGIC FLAGS

If you wire one or more Jjumpers so as to connect the
user input bits directly to the user output bits on the
auxiliary I/0 port, then you can use these bits as logic
flags; One part of your program can set one of the bits
to signify a certain condition. Other parts of the same
program can test that bit to determine the appropriate

action to take.

B. COORDINATING TWO TEACHMOVERS

In a similar manner, you can connect the output bits
of one TeachMover to the input bits of another. Their
actions can then be coordinated by using the I/O bits as
"mailboxes." One TeachMover sets a bit when it desires
that the other TeachMover perform some action. The other
TeachMover can stay in a loop testing that bit. When the
bit turns on, the second TeachMover can perform the
desired action and then turn on another bit to signal
completion. A flowchart of two arms cooperating to hand a
block from one to the other is shown in Figure 8-1.
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TEACHMOVER 1 TEACHMOVER 2
OUTPUT | = + INPUT 1
INPUT 2 - + OUTPUT 2
OUTPUT3 = + INPUT3

START ‘ START }

Y” | "

CLEAR OUTPUT 1

]

CLEAR OUTPUT 3

PICK UP BLOCK AND
PRESENT TO TEACHMOVER 2

SETOUTPUT! p—rm—— e e e

CLEAR QUTPUT 2

TAKE BLOCK FROM
TEACHMOVER 1

"° ———————————— ] SETOUTPUT2

Yes
OPEN HAND
SETOUTAUTS |r—— e e e e N°
——J Yes
SET BLOCK DOWN
OPEN HAND

| I

Figure 8-1 Two TeachMovers Cooperating
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ADVANCED APPLICATIONS

C. 3-D CARTESIAN POSITIONING

As we discussed in the 1last chapter, the TeachMover
can be used to record and remember the Cartesian coor-
dinates of various objects in its environment. To review
the procedure: First initialize the arm (see Appendix G),
then use the keys on the teach control to cause the tip of
the hand to touch an object. Read the position of the arm
(GREAD command), then convert the readings into Cartesian
coordinates (the formulas for this are given in Appendix
D).

Once the Cartesian coordinates of an object are thus
determined, it is a simple matter to command the arm to
return to the object later - to move it elsewhere, change
its orientation, etc. In this way, you could write a
program to place a cup on a saucer, move both objects to a
different position, perform some other tasks, and later
retrieve the cup and saucer - all by specifying coordi-
nates in space, that is, without having to manipulate the
arm in TRAIN mode (except, of course, for determining the

initial positions of both objects).

D. SENSOR CONTROL

Additional sensors can easily be interfaced to the
TeachMover via the seven user inputs on the circuit card

inside the base. These sensors could include:

1. Micro-switches placed on the far ends of the

fingers that would sense the presence of an

object in the environment. These switches would
let you program the arm to reach out until it

touched an object, then take a prescribed action.

2. A light-emitting diode on one finger and a photo
transistor on the other to sense the presence of

objects between the fingers without gripping.
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HAND
COORDINATES

WORKSPACE
COORDINATES

Figure 8-2 Definition of Hand Coordinate System
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F. MATRIX ALGEBRA

Coordinate conversions of all kinds can be made much
simpler using matrix algebra. Paul [13] discusses the use
of 4 x 4 Denavit-Hartenburg matrices in robotics work.
Instead of needing many program steps to convert, say,
from joint coordinates to Cartesian coordinates, the use
of matrix algebra lets you accomplish the conversion via a
single multiplication statement. Matrix algebra also lets
you incorporate several coordinate systems in one program -
for example, "moving coordinates" for a conveyor belt,_or
modified hand coordinates to describe the motion of a hand-

held tool in a simple, elegant manner.

G. LINEAR PATH CONTROL

Motion of the TeachMover arm is generally along curved
paths defined by the rotation of the arm members around
their Jjoints. However, straight-line motion is often
required - for example, for drawing with a hand-held pen,
removing a peg from a hole, or sliding an object along a
flat surface.

A system for linear path control has been proposed by
Paul [13]. Paul's technique, which can be implemented in
serial interface mode on the TeachMover, involves linear
interpolation Dbetween the end-points qf the desired
trajectory. This interpolation will yield a number of
"bench mark" points. If these points are close enough
together, curvilinear motion between them will approximate
a straight 1line (as in program steps 151-161 in the

Exerciser Program listed at the end of Chapter 6).

H. HIGH-LEVEL, INTERACTIVE CONTROL LANGUAGE

It would, of course be more convenient to "talk" to
your TeachMover in a high-level, English-like language
rather than via the serial interface commands. A high-

level language might let you use commands like:

8.5



CHAPRTER EIGRHT
ADVANCED APPLICATIONS

Keep us
informed of
innovative
applications

° Pick up screwdriver

® Put screwdriver in box
o Pick up box

) Turn box over

Development of high-level languages is among the areas
being explored today in artificial intelligence laborato-
ries (see, for example, reference [4]). For an arm to be
able to respond to high-level commands, software must be
able to break up the commands into simpler tasks (for
example, systematically search for and locate object,
grasp object, determine by feel - or by artificial sight -
if it's a screwdriver, find the box, see if it's open, and
so forth). There is nothing in the design of the Teach-
Mover to prevent you from developing and working with high-

level languages in this way.

We at Microbot are pleased that our low-cost Teach-
Mover robot arm is so well-suited to leading-edge appli-
cations such as the above and more. Please keep us
informed as to what new areas you are working on. We are
committed to expanding the frontiers of robotics

knowledge, and would love to hear from you.
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BRIEF HISTORY OF ROBOTICS

1. MASTER-SLAVE MANIPULATORS

Some of the earliest mechanical manipulators were
designed for use in radioactive "hot cells." Today, this
type of manipulator (see Figure A-1) is in common use in
laboratories throughout the U.S. The operator moves a
"master" manipulator, and the "slave" manipulator inside
the cell replicates its movements. (This terminology was
originated by Ray C. Goertz of the Argonne National
Laboratory in the late 1940's [7].)

The earliest master manipulators were connected to
their slave manipulators via mechanical linkages. Later,
flexible steel cables were employed. A more recent
development 1is exemplified by the MA-11 master-slave

manipulator, manufactured by LaCallene in France (Figure

A-2). This type of manipulator is called bilateral,

because it provides force feedback; in other words, the
slave can affect the master. If the slave, for example,
encounters an obstacle, the master becomes Dblocked.
Without the use of force feedback, certain operations
would be extremely difficult. (Imagine trying to grasp
and lift a raw egg with a mechanical arm without being

able to feel how tightly you are squeezing it!)

The next development in master-slave systems was the
introduction of electrical control. This eliminated the
need for a mechanical linkage betweeen master and slave.
Instead, electric motors and potentiometers (or electrical
position sensors) are mounted on both units. When the
master manipulator is moved, electrical signals from its
potentiometers are sent to the slave manipulator. These
signals, in turn, cause the joint motors in the slave to

move until the slave's potentiomenters indicate that the
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Figure A-1 Master-Slave Manipulator
in a Radioactive Environment

Figure A-2 The MA-11 Master-Slave Manipulator
with Force Feedback
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slave's position is correct. Even though the manipulators
are not mechanically coupled, force feedback can be
provided. If the slave encounters an obstacle, the slave

will no longer be able to follow the master exactly, and
the discrepancy can be measured, converted to electrical

signals, and fed back to the operator as a force.

The arm shown in Figure A-3 uses electrical control.
This arm was developed from a prosthetic device by Rancho
Los Amigos Hospital in Los Angeles, and is called the

"Rancho Arm."

Another electrically linked manipulator system is
shown in Figure A-4. This system was developed at NASA's
Ames Research Center in Mountain View, California. It is
based upon a "hard" space suit design originally developed

for use by astronauts.

Electrically coupled systems allow master and slave
manipulators to be separated by large distances rather
than just a few feet. This factor, in turn, set the stage

for the development of teleoperator systems.

2. TELEOPERATORS

A teleoperator system is essentially the same as an
electrically coupled system, except that the
communications link can be wireless, and the "master" need
not be a manipulator at all; it might instead be a panel
of buttons and dials. The word teleoperator is, in fact,
defined rather broadly as "a general-purpose, dextrous,
cybernetic machine" [7]. The characteristics of such a

"machine" are given in Figure A-5.

The "barrier" can be a long distance, a task diffi-
culty, or a hostile environment. In addition to force
feedback, other kinds of information can be given from

sensors located at the "remote" end of the system (Tv
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DISPLAYS

fe e - — o

BARRIER
REMOTE ENVIRONMENT

SENSORS

CONTROLS

—p-| ACTIVATORS

Figure A-5 Block Diagram of a Teleoperator System

DISPLAYS

b e — s —

CONTROLS

COMPUTER

BARRIER
REMOTE ENVIRONMENT

/ SENSORS

COMPUTER ( LOCAL “REFLEXES”

N

ACTIVATORS

Figure A-6 Computer-Augmented Teleoperator System
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cameras, for example). The operator's controls could be
of a variety of forms. In addition to buttons and dials,
there could be a joystick similar to the kind used in
certain aircraft, or a "master replicate controller" (an
arm with the same geometry as the slave, but usually

scaled down in size).

Those interested in teleoperators will find reference

[7] worth reading.

3. COMPUTER-AUGMENTED TELEOPERATORS

The development of computer-augmented teleoperator
systems was primarily the result of research sponsored
throughout the country by NASA. The essential element in
these systems is the addition of "intelligence" in the
form of one or more local computers (local means directly

associated with the slave or with the master-see Figure

A"G) . !

T6 understand the benefits of such a system, consider
an application where an operator at an earth station is
controlling a manipulator on the surface of the moon in
order to <collect 1lunar rock samples. In this case,
approximately 1.4 seconds are required to transmit signals
from the earth to the moon, and another 1.4 seconds to
transmit them back. Thus, the operatof's view of the
remote work site is always 1.4 seconds late, and the
remote manipulator will not even begin to respond to the
operator's command until an additional 1.4 seconds has
passed. Thus, if something unexpected happens at the
remote work site, serious damage might occur before
anything could be done about it. Another problem is that
if something unexpected does happen, the operator will
usually be forced to adopt a complex "move-and-wait"

control strategy, moving the manipulator slightly, waiting
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to see what has happened, and again moving it slightly
[6]. Most operators find this procedure extremely tedious

and tiring.

With a remote computer at the work site, local
"autonomous" reactions can be programmed directly into the
system. ("Autonomous" is used as in the human autonomous
nervous system. When a person inadvertently touches

something that is hot, the autonomous nervous system takes

over and quickly pulls the hand back - in many cases even
before the person is aware of any pain.) The lunar
manipulator, for example, could be programmed  to

immediately stop moving if sensors on the manipulator
indicate that tﬁe unit has encountered an unexpected
obstacle. Furthermore, the remote computer could be
programmed to aid the human operator by picking up lunar
rocks and depositing them into a container automatically.
All the human operator would have to do 1is to move the
manipulator to the vicinity of a rock, then command the
manipulator to pick the rock up. The remote computer
would then take over control from the operator, carry out
the various stages of the task, and then return control to

the operator once again.

4. A ROBOT WITH EYES ;

After the introduction of computer-augmented tele-
operator systems, it became increasingly clear that under
certain circumstances a comletely automatic -system would
be feasible. In the mid 1960's, at Stanford University,
researchers removed the master arm from the Rancho Arm
system (Figure A-3), and placed the slave manipulator
under computer control. Using early computer vision
techniques, the positions and orientations of each of
several blocks randomly placed upon a table top were

determined. The Rancho manipulator was then commanded to
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stack the blocks. The arm was affectionately called
"Butterfingers" because it frequently dropped one or more
of the blocks.

5. INDUSTRIAL ROBOTS

Once robots were shown to be feasible in the
laboratory, they were initially put to work in factories
on highly repetitive, boring, and/or dangerous tasks.
Today thousands of industrial robots are used in factories
in the U.S.A. and overseas, and help manufacture many of

the products we use. every day.

One of the early industrial robots was the Unimate
Series-4000 manipulator shown in Figure A-7.* This unit,
used on automobile assembly lines, resulted in a
significant increase both in productivity and worker
satisfaction. The Unimate could move faster and 1lift
heavier loads than its human counterpart. Moreover, for
such operations as placing workpieces in equipment such as
punch presses, accidents were greatly reduced. Even when
accidents did occur, they did not result in the loss of a
worker's hands, but only in the loss of replaceable

mechanical equipment.

A manipulator called the T3, or The Tomorrow
Tool (Figure A-8), was introduced by Cincinnati Milacron
in the mid-1970's. The T3 can lift up to 100 1lbs. can
move at a speed of up to 50 inches per second, has a
working volume of 1000 cubic feet, can reach to a height

of almost 13 feet, and has an accuracy of 0.050 inches.

*Figure A-7 and Figure A-10 are courtesy of Unimation,
Inc.
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Figure A-7 Unimate Industrial Robot by Unimation, Inc.

Figure A-8 Cincinnati Milacron wp3v Tndustrial Robot
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It can accomplish tasks that previously could be performed
only by several factory employees working together, or by
special purpose equipment costing much more than the 73
costs. The T3 is a general-purpose robot, as it is
completely computer controlled and has many sensory inputs
which can be used to modify its behavior to accomodate to
various environmental conditions. '

For smaller jobs, ASEA in Sweden, markets the IRB-6Kg
manipulator shown in Figure A-9. This manipulator can
1lift a load of 13 1lbs. and has a reach that is comparable
to the human arm. However the IRB-6Kg is approximately
ten times more accurate than the Series-4000 or the T3,
and thus 1is a better choice for applications involving

high-precision assembly.

Recently, Unimation introduced a high-accuracy
manipulator called the PUMA or Programmable Universal
Machine for Assembly (Figure A-10). The PUMA is
accurate to 0.005 inches and can 1lift approximately 7
lbs. Thus, like the ASEA unit, the PUMA is ideally suited

for making sub-assemblies of small parts.

Also ideal for making sub-assemblies is the Microbot
ALPHA, introduced in 1982. The ALPHA has a 1.5 1b.
lifting capacity and a top speed of 20 inches per second.
It comes with an operator's console as well as a hand-held
teach control similar to the TeachMover's. The ALPHA is

designed for continous use in industrial applications.

Since sub-assemblies accouﬁt for the bulk of all
factory assembly operations, we can anticipate that units
like the IRB-6Kg, the PUMA, and the Microbot ALPHA will, in
the future, give us better products at even lower costs

than are currently available.
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Figure A-9 The ASEA IRB-6Kg Industrial Robot

ERPMIREERIIEN 2 i

Figure A-10 Unimation PUMA Industrial Robot
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6. INDUSTRIAL TEACH CONTROLS

Early hand-held teach controls were shaped 1like

miniature versions of the arms themselves. The user would

push a button on a member of the control unit to move the
corresponding member on the arm. By the mid-1970's, hand-
held teach controls had increased in sophistication to
where some units allowed users to specify arm motions
directly in "world coordinates" (X, Y, Z, etc.). By this
time the need for a miniature version of the arm had
disappeared.

Today, hand-held teach controls vary widely in
sophistication. Some units only allow for moving the arm
and recording its positions, other units have small LED
screens that can display a 1limited number of canned
messages. The most sophisticated units are really hand-
held computer terminals that can display anything they are
commanded to display; these same units often have multi-
function programmable keys, with different overlays for
different applications (welding, assembly, etc.). The
very fanciest units allow users to develop computer
programs right on the teach control, including Cartesian
programs in BASIC, or even programs written in high-level

robot languages.

Microbot's TeachMover incorporates one of the first
teach controls ever developed for a 1low-cost tabletop
robot arm. The TeachMover's teach control has many of the
features of the teach controls that are wused with
expensive industrial robots, and therefore represents a
highly practical tool Dboth for education and for

evaluation of industrial equipment.
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7. THE FUTURE OF MANIPULATORS

At many research laboratories throughout the country,
research is being conducted in the fields of robotics and
artificial intelligence. Areas currently being explored
are: vision sensors [2], [8]; force and tactile sensors
[11], [14]; proximity sensors [17]; compliant devices for
assembly [18]; robot assembly [21]; trajectory calcula-
tions [12]; kinematics of arms [9]; manipulation languages
[4]; and automatic task planning [10]. Microbot, Inc. is
part of this research effort, and among our current
projects 1is a new generation of industrial robots with

increased sensory capability.

A survey of many of the current areas of robotics

research is given by Abraham et al, reference [1].
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ARM INITIALIZATION AND CALIBRATION

The computer in the robot keeps track of the arm by
using the starting position as a reference. To run a

program to operate the robot arm, you must know what the

starting position was when the program was created. To
make general programming more convenient, a "normal"
starting position is defined. This initial position

requires that the robot arm be placed exactly on a grid
sheet marked off in a cartesian coordinate system with a
scale of one inch per square. A grid sheet is inserted
inside the back cover of this manual for your covenience.
(Figure B-1)

With the origin of the coordinate system located at
the axis of rotation of the base of the robot arm, the

location of the front edge of the basse of the arm is

defined as x = 1-5/8. The base is centered on the y-
axis. The gripper is brought to rest, barely touching, on
the spot PO, shown on the grid at X=5 and Y=0. (Points

Pl, P2, and P3 are positions at which blocks are placed
for the demonstration programs discussed in Chapter 6 of

this manual).

As shown in the illustration Figure B-2, the hand
must be perpendicular to the work surface and parallel to
the front edge of the base of the robot. Keep the gripper
open as you bring the arm to this position, and then
close the gripper as the last step in setting the initial
position. The gripper can have a gripping force applied
to it by the motor after the point of just closing. The
initial position assumes no gripping force beyond closing.

The arm can be brought to this starting position by
moving it manually with the power off or by using the
teach control with the power on. Be sure to clear the

memory and internal registers after achieving the starting
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position. Refer to Chapter 2, Section E, for this
procedure.
Specifically, the Cartesian coordinates of the initial

configuration are

X = 5 inches

Y = 0 inches

Z = 0 inches

Pitch = -90°

Roll = 0° (see Note 1, below)
Grip = Closed (see Note 2, below)

Note 1 : Because the hand can turn through many
revolutions of "roll," it is difficult to tell by simply
looking at the hand whether the "roll" has been set to
0°. Yet, it is important that the roll initially be
0° in order that the wrist cables be allowed their full
range of motion. To accomplish the proper initialization
of the wrist cables, turn the appropriate main drive gears
until the turnbuckles on the left and right wrist cables
are aligned as shown in Figure B-3. You'll find these

turnbuckles inside the forearm housing.

Note 2 : For many programs, it is important that
the initial position be very precise - for example, that
the fingers be just touching (grip switch closed, but no
gripping force built up), and that the fingertips be
exactly horizontal and on the calibration mark at PO. To
achieve this precision, it 1is best to key in a SPEED
number of 0, then use the joint control keys in TRAIN or
MOVE mode.
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Figure B-2
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Figure B-3 Alignment of Turnbuckles for Initialization
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ADDING ADDITIONAL RAM

The TeachMover comes supplied with enough Random
Access Memory for 53 program steps. You can more than
double this by adding more RAM.* This is done by "piggy
backing" two RAM chips on top of the existing RAM chips,
and jumpering the chip select lines of these chips onto

pads on the circuit card. Briefly, the procedure is as

follows:
1. Bend up Pin 8 of each of two 2114-2 1K X 4Bit RAMS
2. Carefully align the two additional RAM chips with

Ul6 and Ul7 as shown on Figure 12, making sure
that Pin 1 of each new chip aligns with Pin 1 of
the corresponding chip on the circuit card.

3. Carefully solder all of the pins of the
additional RAM chips to those of the chips on the
board, with the exception of both Pin 8s.

4. Connect a wire between both Pin 8s and the jumper
El shown in the upper right corner of Figure 12.

5. Remove any solder splashed on the board or

between pairs of pins.

Figure C-1 shows the completed modification.

*This modification must be performed by a skilled
technician experienced in circuit card modification
techniques. Because of the potential for damage to the
system electronics which might result from improper
modification techniques, any malfunctions or damage
resulting from this modification will be the
responsibility of the user and will not be covered by the
TeachMover warranty.

Ci



APRPPENDIX G
ADDITIONAL RAM

Figure C-1 Adding Extra RAM Chips
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APPENDIX D
COORDINATE CONVERSIONS

It is often advantageous to be able to describe the
configuration of a robot arm in more than one coordinate

system. The two most commonly used systems are:¥

° Joint Coordinates (the Jjoint angles of the

arm) . These are most convenient for controlling

the arm directly from a computer.

® Cartesian Coordinates (X, Y, Z, pitch, and roll).

These are more convenient for ‘describing an
assembly task on a flat table top.
For practical work, we need a set of formulas for
mathematically converting from one coordinate system to
the other.

) The Forward Solution converts from Jjoint angles

to Cartesian coordinates.

° The Backward Solution converts from Cartesian co-

ordinates to joint angles.

This appendix describes how both of these coordinate
systems are defined, and how the forward and backward

solutions may be derived and implemented.

To best understand the forward and backward solutions
you should be familiar with basic trigonometry. It is not
necessary to understand the solutions, however, to program

the TeachMover. The material presented in part 1 of this

* Other coordinate systems commonly used are: hand
coordinates with origin at the fingertips and axes aligned
with the hand; workspace coordinates 1located on, - and
aligned with, a particular work station; moving
coordinates located on, and aligned with, a conveyor belt

or turntable.
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APPENDIX D Kinematic
COORDINATE CONVERSIONS Model Of Arm

appendix is sufficient for using the solution programs (in
BASIC) given later (in Tables D-3 and D-4, and Figure D-
12). An application program given in Chapter 7, part C,
3 shows how the backward solution may be incorporated into
a program.

1. KINEMATIC MODEL OF ARM

Before we can formulate the arm solutions, the
relationship between the different parts of the arm must
be specified. This can be done in terms of the kinematic
model shown in Figure D-1. The kinematic model indicates
how each joint is articulated, how the joint angles are

measured, and the distances between joints.

The Greek letter, ©, is frequently used to indicate
joint angles in mathematical expressions. The symbols
Ql' 92, 93, Oy and ec., respectively, are
proportional to the joint ' expressions Jye Joe J3,
Jgq. and Jg used in the computer command discussed 1in
Chapter 7. The ©s, measured in degrees or radians, are
related to the Js, measured in motor steps, as shown in
Table D-1. There are 360 degrees or 2¢ radians in one

complete revolution.

Table D-1
Conversion Factors Between Motor Steéps
and Revolute Joint Angles

Motor Joint Steps in one Steps per Steps per
Revolution Radian - Degree

1 Base 7072 1125 19.64

2 Shoulder 7072 1125 19.64

3 Elbow 4158 672 11.55

4 Right wrist 1536 241 4.27

5 Left wrist 1536 241 4.27

The distances between joints (lengths of arm members)

are indicated by the constants, H, L, and LL shown in
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COORDINATE CONVERSIONS Model Of Arm

KINEMATIC SYMBOLS USED

Hinge

Joint
, z AXIS '

Swivel ‘ .

Joint . _—

\  Differential [
Joint ‘ 0,

SN
~
S gy AXIS
\x
of B
G

Y

x AXIS

Figure D-1 Kinematic Model of the TeachMover Arm .
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COORDINATE CONVERSIONS

Figure D-1.

shoulder joint centerline;

Kinematic
Model Of Arm

H is the distance from the table top to the

L is the distance from shoulder

joint to elbow joint, which equals the distance from elbow

joint to wrist joint;

wrist

fingertips,

joint

to the
with

center

and LL 1is the distance

point

from the

between the two

the fingertips separated by 1.5 inches.

Values for these distances are given in Table D-2.

Table D-2

Lengths of TeachMover Arm Members

Segments
H

L
LL

Length (inches)

7.68
7.00
3.80

Length (mm)

195.0
177.8
96.5

The pitch angle, P, and the roll angle, R, are given

by the following equations.

R= .5(6g - 04)
where 6, and 65 are right
The angles P, 94,

horizontal as shown in Figure D-2.

D.4
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APPENDIX D Kinematic
COORDINATE CONVERSIONS Model Of Arm

PITCH ANGLE is the orientation
of the hand to the horizontal.

+P, 04, 0

5  Upwards is positive.

SIDE VIEW

} ROLL ANGLE is the orientation
+R  of the hand looking towards
it along its centerline.

Clockwise rotation is positive.

END VIEW

Figure D-2 Definition of Roll and Pitch Angles
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APPENDIX D Forw?rd
COORDINATE CONVERSIONS | Arm Solution

2. FORWARD ARM SOLUTION

This section shows how to determine P, R, and the X,
Y, and Z coordinates of the end point* from the joint
angles 81 65, 63, 84+ and 8. The
coordinates and joint angles are defined in Figure D-1.
This solution relies on the trigonometric relationships**

given in Figure D-3 for reference.

The first step is to determine %, the height of the
end point above the table top, and an intermediate
variable RR, the horizontal distance from the base pivot
to the end point. The situation is summarized in Figure
D-4. Summing the vertical contributions from each 1link
gives the following expression for Z:

Z=H+1L sin 6, + L sin 63 + LL sin P (3)
Summing the horizontal contributions gives:

RR = L cos @, + L cos 63 + LL cos P, (4)
where pitch angle P is given by

P = .5(85 + 84) - (5)

The second step is to determine the X and Y
coordinates of the end point from the intermediate
variable, RR, as shown in Figure D-5. By inspection, the

coordinates are:

X

RR cos 0, (6)

]

Y = RR sin @, - - (7)

*The end point refers to the end point of the hand or,
alternatively, the center point between the two
fingertips.

**Readers unfamiliar with trigonometry will find this
material covered in basic trigonometry textbooks.
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APPENDIX D Forward
COORDINATE CONVERSIONS Arm Solution

A summary of this forward solution is given in Table
D-3. A BASIC program implementing this solution is given
in Figure D-12 (Statements 460 to 510). The programs
variables Ty, Top. ««++ Tg correspond to the angles

el’ 92' 000195.
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COORDINATE CONVERSIONS

Figure D-3

ANGLE FORMULAS:
a+f+y = 180°
for a right triangle y = 90°
anda+p = 90°

| PYTHAGOREAN THEOREM:

c? = A2+Bz, or

C =+v/A%2+82 or A =+/c2-B2

RATIOS OF SIDES:
sina =%— or A =Gsina
B
cosa = -E or B =Ccosa
A -
tana.=§ or A =Btana

ANGLE DEFINED BY INVERSE FUNCTION:

-

Basic Trigonometric Relationships

D.8
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APPENDIX D Forward

COORDINATE CONVERSIONS Arm Solution
2 AXIS END
A —| LLcosP ~/"°'"T
LLsinP !
z
H
BASE
R I R —
. TABLE TOP

Figure D-4 Side View of Kinematic Model
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COORDINATE CONVERSIONS Arm Solution

/\ END POINT

r AXIS

RR sinl?1

A
|
|
|
|
|

- x AXIS

RR cos 01 —_—

Figure D-5 Top View of Kinematic Model
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COORDINATE CONVERSIONS

Forward
Arm Solution

Summary of Forward Solution

.Table D-3

Step

N U bdh W N+

RR

»

Y
Z

Operation

L cos 92 + L cos 93 + LL cos P
RR cos 91

RR Sin 91

H+ L sin 92 + L sin 93 + LL sin P
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APPENDIX D Backward
COORDINATE CONVERSIONS Arm Solution

3. BACKWARD ARM SOLUTION

This section shows how to determine the Jjoint angles
8. 65, 63, 64 and Og required to po-
sition the end point at a desired X, Y, Z position and
with desired values of pitch and roll. The coordinates
referred to are shown in Figure D-1. A review of the

formulas used is given in Figure D-3.

A. Specifying Position/Orientation - X, Y, Z, P, and R

Before starting the backward solution it is necessary
to specify the desired position and orientation of the end
point. The position of the end point is defined by the

following three distances:

X: The distance of the desired end point in
front of the arm, measured from the base

pivot along the X-axis.

Y: The distance of the desired end point to the
left of the arm, measured from the base

pivot along the Y-axis.

Z: The vertical height of the desired end point
above the table top.

The units of these distances (inches or millimeters)
should match the units of the segment lengths shown in
Table D-2.

The orientation at the end point is defined by the

following two angles (see Figure D-6):

P: The desired pitch angle, measured in degrees

R: The desired roll angle, measured in degrees

In practice it is difficult to distinguish between
positive and negative roll angles (as +90° and -90°,
or +45° and -135°) by 1looking at the hand. It is

helpful to mark the top of the hand when it is at 0° to

D.12



APPENDIX D Backward
COORDINATE CONVERSIONS Arm Solution

P=-135°

(

xyz END POINT

(a) DIFFERENT PITCH ANGLES AT SAME ENDPOINT

I R=135°
RIGHT FINGER ‘
LEFT FINGER

\ 44 /

"/ \
R=0° DEYY4
xyz END POINT
R =-45°

(b) DIFFERENT ROLL ANGLES AT SAME ENDPOINT.
View looking into front of hand along pitch vector.

Figure D-6 Different Hand Orientations
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COORDINATE CONVERSIONS Arm Solution

eliminate this ambiguity. The 0° position corresponds
to the orientation when the wrist cable turnbuckles are

aligned, as discussed in Appendix B.

B. Specifying Roll in Cartesian Frame, R'

Sometimes it is useful to express "roll" with respect
to a Cartesian frame rather than with respect to the
arm. One way to do this is to use P = -90° (hand
pointing down) as a reference orientation, and measure
the "Cartesian roll" with respect to the x-axis, as
indicated in Figure D-7. The formula relating the
roll measured with respect to the arm (R) and the roll
measured with respect to the Cartesian frame (R') is
then simply:

R'= R - 91
In the backward solution, we introduce a special
variable, Rl1, that enables us to write equations that are

valid ‘regardless of whether roll is measured with respect

to the arm or with respect to the Cartesian frame.

Rl = 1 if roll is with respect to Cartesian frame.

Rl = 0 if roll is with respect to arm frame.

With this new variable, Equation (8) can be modified to
express both normal and Cartesian roll as follows:

R' = R - 8;R1 (9)
Solving for R gives:

R = R' + 6;Rl © (10)

C. Backward Solution, Step-by-Step

The first step of the backward solution is to
determine the base angle, 8,, and the radius vector,
RR, from the base to the end point as shown in Figure

D-8. Using the Pythagorean Theorem:
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COORDINATE CONVERSIONS Arm Solution

y AXIS

,
I
I
I
I
|
|

N
RI

IR . W

r
|
l
I
l
|
|

Figure D-7 Top view of arm with Pitch = 90°
showing roll in Cartesian frame (R') and roll with
respect to the arm (R).
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APPENDIX D Backward
COORDINATE CONVERSIONS Arm Solution

/ END POINT

/ —
BASE
X
Figure D-8 Top View of Arm
z
A / END POINT
LL
LLsinP
P
/ \ —= 1 AXIS
WRIST .
e LL cOs P ————

Figure D-9 Side View of Hand Triangle
in Kinematic Model
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APPENDRIX D Backw?rd
COORDINATE CONVERSIONS Arm Solution

RR = |/x2 + y?2 (11)

8, = tan"l(y/x). (12)

The second step 1is to find 64 and 65 from P
and R. Using Equation (1) and Equation (2) of the wrist
differential previously described, and substituting (R' +

GlRl) for R using Equation (10) gives:

94 =P - R' - QlRl. (14)
[Note: From here on, we will drop the prime and use R for
roll in all cases, remembering to set Rl = 0 when roll is

1 when roll is

measured with respect to the arm, and Rl

measured with respect to the Cartesian frame.]

The third step is to work back from the coordinates of
the end point to those of the wrist. As in the forward
solution, we use the side view of the kinematic model
shown in Figure D-4. Distances in this view are measured
vertically along the Z axis and horizontally along the
radius from the base (r axis) . Letting R, and Z, be
the coordinates of the end point in this plane, we can
calculate the coordinates of the wrist (Rw and Zw) by
using the triangle shown in Figure D-9. From this

triangle the coordinates of the wrist are:

Ry, = Ry - LL cos P (15)

2, = Zo - LL sin P (16)

The fourth step is to define the shoulder-elbow-wrist
triangle so that =) and ©3 can be determined. For
this purpose, the translated coordinate system introduced
in Figure D-10 is used. The origin (0, 0) is at the
shoulder and the coordinates of the wrist are now (RO,
Zo).

The distance from the shoulder to the wrist, RO; is

the same as R, previously determined in Equation (15).
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ELBOW

—— N

SHOULDER

Figure D-10 Shoulder-Elbow-Wrist Triangle
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APPENDIX D Backwgrd
COORDINATE CONVERSIONS Arm Solution

This is expressed as:

Ry = R, - LL cos P (17)

The height of the wrist above the shoulder, Z,, is
just the height of the wrist above the table top, 3.
less the height of the shoulder, H. Thus,

Zg = 2, - H | (18)

Substituting for Z,, using Equation (16) gives
Zg = Zg - LL sin P - H (19)

The fifth step is to solve the shoulder-elbow-wrist
triangle for 6, and ©5. Three new angles, o .+ g .
and ¢ , are introduced to simplify this solution. We

first solve for o , B , and §.

Since tanfp

p

(ZO/RO), we obtain:
tan_l(Zo/Ro). (20)

Pivoting the shoulder-elbow-wrist triangle about the
shoulder by B gives the simplified triangle shown in
Figure D-11. The length of the base of the simplified

triangle is given by '\/zoz + Ro2 (Phythagorean
Theorem, using the right triangle at the bottom of Figure
D-10). As shown in Figure D-11, the simplified triangle
can be partitioned into two congruent right triangles.
The base, b, of each of these smaller triangles is then

given by:

b =.5 7 + R . (21)

The height, h, (again using the Pythagorean Theorem) is

h = L2 _ b2 . (22)
Since the tangent of a is h/b,
a = tan—l(h/b) . (23)
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COORDINATE CONVERSIONS Arm Solution

Figure D-11 Simplified Triangle
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APPENDIX D Backward
COORDINATE CONVERSIONS Arm Solution

Substituting for h in Equation (23) by using Equation
(22) gives
L2 - b2
1

a = tan . (24)
b

Substituting for b in Equation (24) using Equation (21)

gives

1 4 12
Z V4
Ro® + 2

a = tan~ -1 . (25)

The sixth step is to use o and B to determine 8,
and 85. The following three relations are first set
up and then solved. At the shoulder (see Figure D-10),

At the elbow apex (see Figure D-11),
9,+ ¢+ 63 = 180° . (27)

Summing the internal angles of the simplified triangle
(Figure D-11) gives ¢+ o« + @ = 180, or

$ = 180° - 2o . - (28)
Substituting the value of 8, from Equation (26) and
the value of @ from Equation (28) into Equation (27)
gives

93 "-"Q"'ﬁ. (29)
Note however, that the elbow angle, 63, is defined as

the angle above the horizontal and hence we must change

the sign of 63.
In summary, the results of the sixth step are:

92 =a + B . (30)
63 =p-a . (31)

thus completing the backward solution. A summary of the

backward solution is given in Table D-4.
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APPENDIX D Backward

COORDINATE CONVERSIONS Arm Solution
Table D-4
Summary of Backward Solution
Step Operation
1 Determine arm constants H, L, LL
2 Determine the desired X, Y, Z,
R, P, and Rl coordinates of the
endpoint
3 8, = tan~1(Y/X)
4 RR = \[x% + v°
5 95 =P + R + Rl 91
7 RO = RR - LL cos P
8 Zg = Z - LL sin P - H
= -1 2
10 @= tan '\/4L /(Ro2 + zoz) -1
11 0, = a+p
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A BASIC implementation of the backward solution is
given in Figure D-12 (Statements 130 to 370). Note that
several tests have been included in the backward solution
to determine if the requested position can be reached by
the arm. Such tests or "software limits" are advisable in
application programs to keep the arm from hitting its end
stops and thereby losing calibration. You may wish to add
other limits for your own applications. For example, when
operating on a table top, requests for movement with Z < 0
(beneath the table top) should be refused. If obstacles
in the working area can be descfibed mathematically,
collisions with them can also be avoided through the use

of software limits.
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500

501

502

503

504

505

506

999

1000
1001
1002
1100
1110
1120
1130
1140
1190
1200
1210
1220
1230
1499
1500
1501
1510
1530
1999
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100

5110
5120

5130
5140

REM kkhkkkhkkkhkkhkkhhkkhhkkhkkk

REM
REM
REM
REM
REM
REM *¥kkkkkkkkkkrkkkhhhkkkkk
REM CONVERSION CONSTANTS

REM

REM DEFINE CONSTANTS

REM
H
L

TCM
COORDINATE
CONVERSION

* % % * X
* & % ¥ X

= 7.625: REM SHOULDER HEIGHT ABOVE TABLE
= 7.00: REM SHOULDER-TO-ELBOW AND ELBOW-TO-WRIST LENGTH
LL = 3.8: REM WRIST TO FINGERTIP LENGTH (GRIPPER CLOSED)
PI = 3.14159
C = 180 / PI: REM DEGREES TO 1.0 RADIAN

HOME : VTAB 5
PRINT"ENTER X, Y, Z, PITCH, ROLL, AND RIl. "

REM Rl = 1 IF ROLL IS WRT CARTESIAN FRAME

REM Rl = 0 IF ROLL IS WRT ARM FRAME

VTAB 7: INPUT X,Y,Z,P,R,Rl

REM

REM CONVERT TO RADIANS

REM

P=P/C:R=R/C

GOTO 5000

REM BACKWARD SOLUTION JOINT LIMIT TESTS

REM

REM BACKWARD SOLUTION CALCULATIONS

REM

IF X = O THEN Tl = SGN (Y) * PI / 2

IF X < > 0 THEN Tl = ATN (Y / X)

IF T1 < O THEN PRINT:PRINT"BASE OUT OF RANGE. Tl= ";Tl
RR= SQR (X * X+ Y *Y)

IF RR < 2.25 AND Z < 15 THEN PRINT:PRINT"HAND TOO CLOSE TO BODY. RR = ";RR
iIF RR > 17.8 THEN PRINT:PRINT"REACH OUT OF RANGE. RR = ";RR
RO = RR - LL * COS (P)

IF X < 2.25 AND Z < 1.25 AND RO < 3.5 THEN IF P < -90/ C
THEN PRINT:PRINT"HAND INTERFERENCE WITH BASE."

REM NOTE THAT THE ABOVE STATEMENT MAY BE ALTERED TO ACCOMODATE
MOVES CLOSE TO THE BASE
Z0 =Z - LL * SIN (P) -H
IF RO = O THEN B = ( SGN (z0)) * PI / 2
IF RO < > O THEN B = ATN (ZO / RO)

Figure D-12 Basic Implementation of
Forward and Backward Solutions
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5150 A = RO * RO + Z0 * Z0

5160 A= 4 *L*L/A-1

5170 IF A < O THEN PRINT:PRINT"REACH OUT OF RANGE FOR SHOULDER
AND ELBOW.": GOTO 5500

5180 A = ATN ( SQR (A))

5190 T2 = A+ B

5200 T3 =B - A

5210 IF T2 > 144 / C OR T2 < - 35 / C THEN PRINT:PRINT"SHOULDER OUT
OF RANGE. T2 = ";T2 * C

5220 IF T2 - T3 < 0 OR T2 - T3 > 149 / C THEN PRINT:PRINT"ELBOW OUT
OF RANGE. T3 = ";T3 * C

5230 IF (R> 270 / COR R -270 / C) THEN IF (P > ((90 / C + T3) - (R + 270 / C))
ORP<((-90/C+ T3) + (R - 270 / C))) THEN PRINT:PRINT"PITCH OUT
OF RANGE. PITCH= ";P * C .

5240 IF P> (90 / C+ T3) OR P < ( - 90 / C + T3) THEN PRINT:PRINT"PITCH OUT
OF RANGE. PITCH = ";P * C

5250 IF (R > (360 / C - ABS (P - T3)) ORR < ( - 360 / C+ ABS (P - T3)))
THEN PRINT:PRINT"ROLL OUT OF RANGE. ROLL = ";R * C

5260 T4 = P - R - Rl * Tl

5270 T5 =P + R+ Rl * Tl

5280 PRINT:PRINT

5290 PRINT"BACKWARD SOLUTION RESULTS: "

5300 PRINT:PRINT

won

5310 PRINT"T1 = ";T1 * C
5320 PRINT"T2 = ";T2 * C
5330 PRINT"T3 = ";T3 * C
5340 PRINT"T4 = ";T4 * C
5350 PRINT"T5 = ";T5 * C

5360 REM FORWARD SOLUTION
5370 PRINT: PRINT

5380 P1 = (T5 + T4) / 2

5390 R2 = (T5 - T4) / 2-R1*Tl

5400 RR1 = L * COS (T2) + L * COS (T3) + LL * CO0S (Pl)

5410 X1 = RR1 * COS (T1)
5420 Y1 = RR1 * SIN (Tl)
5430 Z1 = H+ L * SIN (T2) + L * SIN (T3) + LL * SIN (Pl)

5440 PRINT"FORWARD SOLUTION RESULTS: "

5450 PRINT:PRINT"X = ";Xl

5460 PRINT"Y = ";Y1

5470 PRINT"Z = "3;Z1

5480 PRINT"PITCH = ";Pl * C

5490 PRINT"ROLL = ";R2 * C

5500 PRINT: PRINT

5510 INPUT "TYPE A KEY WHEN READY TO CONTINUE “;A$: GOTO 1190

Fig. D-12 (Cont'd.)
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APPENDIX D Variation Of Hand Length  _
COORDINATE CONVERSIONS With Hand Opening

4. VARIATION OF HAND LENGTH WITH HAND OPENING

The opening of the hand is proportional to the number -
of steps of the hand drive motor. The constant of

proportionality is:
Sg = 371 steps/inch (14.6 steps/mm).

Although the 1length of the hand, LL, has been treated -
as a constant in the previous calculations, it varies
slightly with hand opening, as shown in Figure D-13. The
effect is small, *0.10in (¥2.5 mm), Dbut for more
precise work it may be necessary to take this into account.

The hand length, LL, may be expressed as the sum of a
fixed length, L;, and a varying 1length that depends on -
hand opening, G, by the following formula:

LL = L, ;VLzz - (G - GQ)2 (32) -
. ,

]

where:

L, = 1.884 in (47.9 mm)
L, = 1.700 in (43.2 mm)
GO = 1.520 in (38.6 mm)

The hand opening, G, may be converted to motor steps
and vice-versa by using the proportionality constant, Sg,

given above.
1)

Varying hand length may be taken into consideration in
both the forward and backward solutions. Before starting
either solution, the correct value of LL would be computer
from the hand opening using Equation (32). ‘
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T

WRIST DIFFERENTIAL

Figure D-13 Variation of Hand Length with Hand Opening
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APPENDIX [F
TABLES AND GRAPHS

ITEM F-1

TEACHMOVER PERFORMANCE CHARACTERISTICS

GENERAL

Configuration

Drive

Controller

Interface

Teach Control

Power Requirement

PERFORMANCE

Resolution
Load Capacity
Gripping Force
Reach
Velocity

DETAILED PERFORMANCE

Motion Range
Base %90 deg
Shoulder +144, -35 deg

Elbow

Wrist Roll t3so°deg
Wrist Pitch tQO deg

Hand

PHYSICAL CHARACTERISTICS

0-3 in (0-75mm)

+0, -149 deg

Arm Weight

Teach Control Cable Length

5 revolution axes and integral hand

Electric stepper motors-
Open loop control

6502A microprocessor with
4K bytes of EPROM and 1K bytes
of RAM located in base of unit

Dual RS-232C asynchronous serial
- communications interfaces (baud
rates is switch-selectable between
110, 150, 300, 600, 1200, 2400,
4800, and 9600 baud)

14 key-13 function keyboard, 5 output
and 7 input bits under computer
control

12 to 14 volts, 4.5 amps DC

0.011 in (0.25 mm) maximum on each axis
16 oz (445 gm) at full extension

3 1lbs (13 Newtons) maximum

17.5 in (444 mm)

0-7 in/sec (0-178 mm/sec) with controlled
acceleration

Speed (Full Load) Speed (No Load)

0.37 rad/sec 0.42 rad/sec
0.15 rad/sec 0.36 rad/sec
0.23 rad/sec 0.82 rad/sec
1.31 rad/sec 2.02 rad/sec
1.31 rad/sec 2.02 rad/sec
8 1b/s* (35 n/sec) (20 mm/sec)

8 1lbs (4 kg)
3.75 ft. (1150 mm)

* This is given in 1lbs/sec rather than in./sec, because as the
gripper closes, it no longer moves, but instead builds up gripping

force.

It takes 0.37 sec to build up the maximum force of 3 1bs.
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TABLES AND GRAPHS

(Note:

Item F-2

TEACHMOVER COMMAND SUMMARY

These tables are for reference and review.

To learn

how to use these commands for the first time, please refer to

the appropriate sections of the manual.)

A. HAND HELD TEACH CONTROL COMMANDS

COMMAND FUNCTION SYNTAX/DETAILS OF OPERATION

CLEAR Erases entire To activate, hold down MODE

programnm key, then press CLEAR

FREE Turns off all Allows for manual positioning

motor currents of arm. Does not create a
program step.

GRIP Closes gripper Builds up 1 1lb. of gripping
force. Moves hand motor 32
half-steps past the point where
grip switch goes on.

JUMP Conditional (or Two numerical entries (press

unconditional) MODE key in between):
branching l1st entry-jump condition:
Oo: grip switch open
1, 2, ..., 7: user input bit
1, 2, «¢., 7 is on
8: Never
9: Always .
2nd entry - step number to jump
to if jump condition is met.
MOVE Activates joint- Same as TRAIN mode, but does
control (arm- not change internal position
motion) keys registers, does not allow a
position to be recorded, and
does not create a program
step.
MODE Stops Arm Used to exit TRAIN, MOVE, and

ENTER modes.
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ouT Designates which Two numerical entries (press
output bit to MODE key in between)
turn on lst entry - output number:

0: MODE light
1, 2, ..., 5:
user output 1, 2, ..., 5
6: TRAIN light
7: RUN light
8: ENTER light
2nd entry - 0 or 1 (For
indicator lights: 0 = off
1 = on)

PAUSE Pauses arm for Numerical entry: O to 255
specified number
of seconds

POINT Sets program Numerical entry: step number
pointer to to go to.
designated step

RUN Runs current Or if running, stops at end of
program current step.

SPEED Sets speed of Numerical entry: O (slowest)
subsequent arm to 15 (fastest). See items
motion 4 & 5 of this appendix for

stepping rates and maximum
speeds.

STEP Executes current Moves arm to next position.
program, one step
at a time

TRAIN Activates joint- Press REC for each position to
control (arm- be saved. REC overwrites
motion) keys current step and increments

sequence pointer. When power
is turned on, unit is in TRAIN
mode, with sequence pointer
and internal position
registers set to zero.

ZERO Zeros the sequence To activate, hold down MODE

pointer and the
internal position
registers

key, then press CLEAR.
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SERIAL INTERFACE COMMANDS

Notes: 1. <CR>» = Carriage Return
2. Arm returns [0<CR>] if command has a syntax error,
[1<CR>] after command is executed (except for
@ RUN ), [2<CR>] if STOP button was pressed before
execution was completed (@STEP and @CLOSE only)

COMMAND FUNCTION SYNTAX/DETAILS OF OPERATION

@QARM Specifies recog- @QARM <CHAR> <CR>
nition character where CHAR is any character
to use instead except a carriage return
of "@" sign

@CLOSE Close gripper until @CLOSE <SP> <CR>
grip switch is where SP = optional speed value
activated (see item 4 in this appendix)

@DELAY Inserts a delay @DELAY <CR>
between transmitted Where N = proper delay value,
characters determined by trial and error.

@QDUMP Uploads entire @QDUMP <CR>
current program Returns character string
from TeachMover comprising eight two-byte values
to host computer for each program step. See

Table 9 in chapter 7 for
details.

@QQWRITE Downloads a program Q@QWRITE<N>,<Ll1l>,<L2>, ...<L7><CR>
step from host where N = Step number to which
computer to Teach- program step is to be written.
Mover L1-L7 = two-byte values as in

@QDUMP command. See chapter 7
for details.

@READ Reads values of @READ <CR>
of the internal Arm returns:
internal position <K1>, <K2>, ..., <K6>, <I><CR>

registers, gives
last key pressed
on teach control,
and tells which
input bits are on.

where K1-K6 = values of internal
position registers

I = Last key *256 + Input Byte
where "Last key" values are
defined below:
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@READ (cont.) "Last key" Key
Value Pressed
1 TRAIN
2 PAUSE
3 GRIP
4 ouT
5 FREE
6 MOVE
7 MODE
8 STEP
9 POINT
10 JUMP
11 CLEAR
12 ZERO
13 SPEED -
14 REC
and:
"Input Byte" = decimal number

whose binary equivalent speci-

fies which of the eight input
bits are set to 1 (see "jump
condition" numbers under hand-
held teach control JUMP command,

above) .

@RESET Zeros the @RESET<CR>
internal
position
registers and
turns off
motor currents

@SET Sets @SET<SP><CR>
subsequent where SP = optional speed value
arm speed and (see item 4 in this
activates appendix). Control
joint control returns to host when
keys on hand- REC or MODE key is
held teach pressed
control

@STEP Sets arm @STEP<SP>,<J1>,<J2>,...,<J6>, <OUT><CR>

speed, moves
joints, sets where SP = speed value (see item 4
output bits in this appendix)
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@STEP (cont.)

J1-J6 = Number of motor half-steps
J1l = Base swivel (positive counter-
clockwise)

J2 = Shoulder (positive downwards)

J3 = Elbow (positive downwards)

J4 = Right wrist (positive downwards)
J5 = Left wrist (positive downwards)
J6 = Hand (positive open)

OUT = Optional decimal number whose
binary equivalent specifies the
value of the output bits (see
Appendix F, item G).
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Item F-3

HAND OPENING AND GRIPPING FORCE DIAGRAM

HAND ' GRIP
OPENING FORCE
+ ISN-*
75mm4-3in :- 31lb
- 10N 5
50mm4-2in 4+2Ilb
25mm-4-1lin 5N':..] Ib
¢} + $ + + 4 0
0] 500 1000

DRIVE MOTOR HALF STEPS
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Item F-4

STEPPING RATES FOR THE SPEED COMMANDS

Teach Control Serial - Half-Steps Per

Speed Number Port Speed Value Second
0 0] 28
1 111 50
2 159 74
3 183 99
4 205 141
5 221 206
6 232 300
7 236 ) 360
8 238 400
9 239 424

10 240 450
11 241 480
12 242 514
13 243 554
14 244 600
15 245 655
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Eem_g'__é

MAXIMUM NO-SLIP MOTOR SPEEDS

Teach : Serial Port

Load Control Speed No. Speed Value
0] 8 238
Half (8 oz.) 5 221
Rated (16 oz.) 3 183

Half-Steps

Per Second

400
206
29
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L‘E_e_r_(l_f'—_ﬁ

OUTPUT NUMBERS AND JUMP CONDITIONS

Output
Number

0 N9 600 b W N O

switch is open

Function Jump Jump
Controlled , Condition If
MODE light 0 Grip
User output 1 1 User input
User output 2 2 User input
User output 3 3 User input
User output 4 4 User input
User output 5 5 User input
TRAIN light 6 User input
RUN light 7 User input
ENTER light 8 Never

9 Alwa'ys

is
is

is

on
on
on
on

on
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Item F-7

BAUD RATE SELECTION

Baud SwWl Sw2 SW3

110 ON ON ON
150 OFF ON ON
300 ON OFF ON
600 OFF OFF ON
1200 ON ON ‘ OFF
2400 : OFF ON OFF
4800 ON OFF OFF
9600 OFF OFF OFF
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PROGRAM PROGRAMMING WORKSHEET

DATE FOR MICROBOT TEACHMOVER APPENDIX G
PROGRAMMER
STEP # OPERATION STEP # OPERATION
0 27
1 28
2 29
3 30
b 31
5 32
6 33
i 34
8 _ 35
9 36
10 37
1] , 38
12 39
13 40
14 b1
15 | b2
16 43
17 JIERY
18 45
19 : 46
20 47
21 | 48
22 49
23 50
24 51
25 52
26




