
Dynamic Systems Overview 

The cantilever beam and the RLC circuit are two examples of second order dynamic systems. 
(Note that all underlined terms can be found in Wikipedia.) Second order systems (so-called 
because their behavior is determined by a second-order differential equation) have two energy 
states that can trade system energy back and forth (e.g. potential and kinetic, capacitive and 
inductive, etc.) so that the parameters of the system will oscillate with time. There is usually also 
some mechanism for energy loss (e.g. friction, resistance, etc.) so that oscillations will damp out 
with time. If we attempt to change the state of a second order system (e.g. pluck the cantilever 
beam, change the voltage on a capacitor, etc.) we will see three types of behavior, depending on 
how much loss there is. Systems with loss are called damped systems because any disturbance 
will be damped out. The three types of behavior are three types of damping.  

Low Loss: If the loss is small (i.e. beam friction is small or RLC resistance is small), the system 
will oscillate freely for quite some time, but eventually the oscillation will end when all of the 
energy turns to heat through friction or resistance. This state is called under damped. It is only 
under conditions where the system is under damped that an oscillation can be observed. 

High Loss: If the loss is large, the system will not oscillate at all, but observable parameters will 
decay exponentially. This state is called over damped. It can take quite a long time to reach 
equilibrium when the damping is large. 

No Loss: If there is no loss at all, the system will oscillate forever. For circuits, this is the LC 
case with no resistance at all. There has to be an energy dissipation component to produce decay. 

Critical Damping: If the loss is just right, the disturbance in the system will decay away in the 
shortest time. Critical damping also separates the operating regions where the system is over 
damped and under damped. The plot below shows some generic system parameter moving from 
one state to another under the three damping conditions.  
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http://en.wikipedia.org/wiki/Cantilever
http://en.wikipedia.org/wiki/RLC_circuit
http://en.wikipedia.org/wiki/Damping


Damping Constant and Natural Frequency for Harmonic Oscillators 

RLC Circuit 

For the voltage across the capacitor V:
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Spring Mass System 

For the linear displacement of the mass x, 
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General Form 
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This form works for both of the examples of harmonic oscillators. It has been left in the form of 
a voltage equation for convenience. 

Solution 

We know that the general form of the solution must be a decaying sinusoid, if for no other 
reason, because we have observed it in the classroom. Such an expression looks like 

. Note that we have assumed also at this point that the decay constant α is the 
same constant we find in the general form of the harmonic oscillator equation. We will prove 
that this is indeed the case by finding the frequency ω. Note that the frequency term in the 
general form is a constant ω0 and not the actual frequency of oscillation ω. We will see that this 
is necessary. 
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Inserting these expressions into the general form of the harmonic oscillator. 
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Thus, the α term is indeed the damping constant. The frequency of oscillation depends on the 
damping. The greater the damping, the lower the frequency. This is a general characteristic of 
harmonic oscillators. The more the damping, the more the loss per cycle and the slower the 
oscillation. The conclusion is that we have the correct form for the decaying sinusoid as long as 
the frequency is given by the last expression. For the highly under damped cases we are 
considering in this course, the damping term is small so ω ω≈ o , which is what we have been 
using to find the frequency.  

Note that a decaying sinusoid is the shape we expect for an under damped system (under damped 
means that the decay per cycle is small). The frequency formula show that the system is under 
damped when the damping constant squared is smaller than the natural frequency squared. 

ω ω α= −o
2 2  If the damping constant equals the natural frequency, then the damping is 

critical. If the damping constant exceeds the natural frequency, then the system is over damped.  
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