Questions on Basic Circuit Analysis
These should help prepare you for question 1 of quiz 1

Fall 2004

1. Resistive Circuits (25 points)

The circuit below is used to divide up a DC voltage for a digital to analog converter. Assume that R1=1K ohms, R2=2K ohms, R3=1K ohms, R4=2K ohms, R5=1k ohms, R6=1k ohms, and V1 = 8 volts.

a) Find the combined resistance of the circuit with respect to V1. *(6 points)*

b) Find the DC voltage at points A, B and C. *(9 points)*
c) Find the current through R1, R3 and R5. (6 points)

d) Label the colors of the bands in the following resistors:

R1 (1K) (2 points)

R2 (2K) (2 points)

Extra Credit: Why do you think the circuit is used to do digital to analog conversion. This would take a digital value (like 0110) and convert it to an analog voltage (6 volts)? (1 point)
Fall 2004 solution

(none available)
Spring 2004
1) Resistive Circuits (16 points)

In the circuit above, V1=5 volts. R1= 50Ω, R2= 1000Ω, R3= 2000Ω, R4= 3000Ω

a) Find the voltage across R1. (8 points)

b) Find the current through R4. (8 points)
Spring 2004 solution

1) Resistive Circuits (16 points)

In the circuit above, V1=5 volts. R1= 50Ω, R2= 1000Ω, R3= 2000Ω, R4= 3000Ω

a) Find the voltage across R1. (8 points)

\[
\frac{1}{R_{234}} = \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} = \frac{1}{1K} + \frac{1}{2K} + \frac{1}{3K} \quad R_{234}=545.5 \text{ ohms}
\]

\[
V_{R1} = \left(\frac{R_1}{R_1+R_{234}}\right)V_1 = \left(\frac{50}{50+545.4}\right)5 = 0.42V \quad V_{R1}=0.42V
\]

b) Find the current through R4. (8 points)

\[
V_{R4} = V_1-V_{R1} = 5-0.42=4.58V
\]

\[
I_{R4} = \frac{V_{R4}}{R_4} = \frac{4.58}{3000} = 1.53\times10^{-3} \text{ amps} \quad I_{R4} = 1.53 \text{ mA}
\]
a) Given the circuit above, calculate the DC offset voltage at point A. (5 points)

b) For the same circuit, calculate the amplitude of the voltage at point A. (5 points)

c) What is the current through R1? (5 points)
d) Which of the following plots corresponds to the correct output for the circuit pictured above? (5 points)

1.0V

0V

-1.0V

0s 0.5ms 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms

\[\text{V(R1:1,R1:2)} \quad \text{V(R2:2,R2:1)} \quad \text{V(R2:2,R3:1)} \]

Time

10V

5V

0V

0s 0.5ms 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms

\[\text{V(R1:1,R1:2)} \quad \text{V(R2:2,R2:1)} \quad \text{V(R2:2,R3:1)} \]

Time

10V

5V

0V

0s 0.5ms 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms

\[\text{V(R1:1,R1:2)} \quad \text{V(R2:2,R2:1)} \quad \text{V(R2:2,R3:1)} \]

Time
a) Given the circuit above, calculate the DC offset voltage at point A. (5 points)

$V_{OFF} = 9V \quad R_{23} = R_2/R_3 = (3K*6K)/(3K+2K) = 2K \text{ ohms}$

$V_A = 9V \times (2K)/(2K+4K) = 9/3 = 3V$

DC Offset at A is 3V

b) For the same circuit, calculate the amplitude of the voltage at point A. (5 points)

$V_{AMPL} = 1200mV = 1.2V$

$A_{AMPL} = 1.2(2K)/(2K+4K) = 1.2/3 = 0.4V$

Amplitude at A is 0.4 V or 400mV

c) What is the current through R1? (5 points)

The current through R1 is a sinusoid. We know $V=IR$. We also know $V(t)=I(t)R$. If we write this in terms of the sine function,

$V_{DCR1}+V_{ACR1}\sin(\omega t) = [IDC_{R1}+IAC_{R1}\sin(\omega t)]*R1$ where $\omega = 2\pi f = 2K\pi$

$V_{DCR1}=V_{OFF}(4K/(2K+4K))=9*2/3 = 6V$ (or read off plot on next page)

$V_{ACR1}=V_{AMPL}(4K/(4K+2K))=1.2*2/3=0.8V$ (or read off plot on next page)

$IDC_{R1}=6V/4K=1.5mA \quad IAC_{R1}=0.8V/4K =0.2mA$

$I_{R1}(t) = 0.2mA \sin(2K\pi t) + 1.5mA$

(You should get some partial credit for successfully finding IDC_{R1} and IAC_{R1})
d) Which of the following plots corresponds to the correct output for the circuit pictured above? (5 points)

The plot below has no DC offset, so it cannot be correct.

The plot below divides the DC offset correctly (6V and 3V), but the amplitudes are too big (2V and 1V).

The plot below is correct. The DC voltage is 6V for R1 (square), and 3V for R2 and R3 (triangle and diamond). The amplitude across R1 is about 0.8V and over R2 and R3 is half that. The voltage across R2 and R3 must be the same because they are in parallel.
Spring 2003
1. Resistive circuits (20 points)

Given: \(V_1 = 5 \text{ volts} \). \(R_1 = 50 \Omega \), \(R_2 = 3000 \Omega \), \(R_3 = 1000 \Omega \), \(R_4 = 550 \Omega \), \(R_5 = 440 \Omega \)

b) (4 points) Find the voltage across \(R_1 \).

c) (8 points) Find the current through \(R_4 \).

c) (8 points) Find the combined resistance of the circuit with respect to \(V_1 \).
Spring 2003 solution

2. Resistive circuits (20 points)

Given: \(V_1 = 5 \) volts. \(R_1 = 50 \Omega, R_2 = 3000 \Omega, R_3 = 1000 \Omega, R_4 = 550 \Omega, R_5 = 440 \Omega \)

d) (8 points) Find the combined resistance of the circuit with respect to \(V_1 \).

\[
R_{25} = R_2 + R_5 = 3000 + 440 = 3440 \quad R_{34} = R_3 + R_4 = 1000 + 550 = 1550
\]

\[
R_{2345} = \frac{R_{25} \times R_{34}}{R_{25} + R_{34}} = \frac{3440 \times 1550}{3440 + 1550} = 1068.5
\]

\[
R_T = 1120 \text{ ohms (exactly 1118.5)}
\]

b) (4 points) Find the voltage across \(R_1 \).

\[
V_{R1} = \frac{(V_1)(R_1)}{R_1 + R_{1234}} = \frac{5(50)}{1118.5} = 0.22 \text{ volts}
\]

\[V_{R1} = 0.2 \text{ volts} \]

c) (8 points) Find the current through \(R_4 \).

\[
V_{25} = V_{34} = V_1 - V_{R1} = 5 - 0.22 = 4.78 \text{ volts}
\]

\[
I_{34} = I_4 = \frac{V_{34}}{R_{34}} = \frac{4.78}{1550} = 3.08 \text{ milliamps}
\]

\[I_4 = 3.1 \text{ milliamps} \]

Check: \(I_{25} = \frac{V_{25}}{R_{25}} = \frac{4.78}{3440} = 1.39 \text{ milliamps} \)

\[
I_{R1} = \frac{V_1}{R_T} = \frac{5}{1120} = 4.46 \text{ milliamps}
\]

\[
I_{R1} = I_{25} + I_{34} = 4.46 + 3.08 = 4.47 \text{ (close enough)}
\]
3. Resistive circuits (20 points)

Given: $V_1 = 5 \text{ volts}$, $R_1 = 2000 \Omega$, $R_2 = 1000 \Omega$, $R_3 = 500 \Omega$, $R_4 = 400 \Omega$

e) (8 points) Find the total resistance of the circuit.

b) (6 points) Find the voltage across R_1.

c) (6 points) Find the current through R_4.
Fall 2002 solution

1. Resistive circuits (20 points)

Given: $V_1 = 5$ volts. $R_1 = 2000\Omega$, $R_2 = 1000\Omega$, $R_3 = 500\Omega$, $R_4 = 400\Omega$

f) (8 points) Find the total resistance of the circuit.

\[R_T = R_1 + R_2/(R_3 + R_4) \]
\[(R_3 + R_4) = .5K + .4K = .9K \]
\[R_{234} = R_2/(R_3 + R_4) = (1K* .9K)/(1K + .9K) = 0.474K \]
\[R_T = 2K + 0.474K = 2.474\text{ Kohms} \]

b) (6 points) Find the voltage across R_1.

\[I_T = V_T/R_T = 5V/2.474K = 2.02 \text{ mamps} \]
\[V_1 = I_T * R_1 = 2.02m * 2K = 4.04 \text{ volts} \]

c) (6 points) Find the current through R_4.

\[V_2 = V_T - V_1 = 5 - 4.04 = 0.96 \text{ volts} \]
\[I_2 = V_2/R_2 = 0.96/1K = 0.96 \text{ mamps} \]
\[I_3 = I_4 = I_T - I_2 = 2.02m - 0.96m = 1.06 \text{ mamps} \]
In the circuit above, V1=5 volts. R1= 2000Ω, R2= 1000Ω, R3= 500Ω, R4= 10,000Ω

a) (10 points) Find the amplitude of the voltage across R1.

b) (10 points) Find the current through R4.
1. Resistive circuits (20 points)

In the circuit above, $V_1=5$ volts. $R_1=2000\Omega$, $R_2=1000\Omega$, $R_3=500\Omega$, $R_4=10,000\Omega$

a) (10 points) Find the amplitude of the voltage across R_1.

$$R_{24} = \frac{R_1 \cdot R_3}{R_1 + R_3} = \frac{2000 \cdot 500}{2000 + 500} = 409\, \Omega$$

$$V_1 = I_T \cdot R_1 = (1.4667\, mA) (2\, \Omega)$$

$$V_1 = 2.9\, V$$

b) (10 points) Find the current through R_4.

$$V_{24} = I_T \cdot R_{24} = (1.4667\, mA) (409\, \Omega)$$

$$V_4 = I_4 \cdot R_4$$

$$1.33 = I_4 (10,000)$$

$$I_4 = 0.133\, mA$$
1. Resistive circuits (20 points)

In the circuit above, $V_1 = 15$ volts.

a) (10 points) Find the amplitude of the voltage across R_2.

$$R_{32} = \frac{R_3 V_1}{R_2} = \frac{15 \times 10 \times 1 \times 10}{15 \times 10 \times 10} \times 6 \times 10 = \frac{150}{2} \times 10 = 6 \times 10$$

$$V_{R_2} = \frac{R_2}{R_1 + R_2 + R_{32}} V_1 = \frac{8 \times 10}{8 \times 10 + 8 \times 10} \times 15 = 8 \times 10$$

b) (10 points) Find the current through R_4.

Hint: First find the voltage across the combination of R_3 and R_4, then use the Ohm's law on R_4.

$$V_{R_{34}} = \frac{R_{34}}{R_1 + R_2 + R_{34}} V_1 = \frac{8 \times 10}{8 \times 10 + 8 \times 10} \times 15 = 6 \times 10$$

$$V_{R_4} = V_{R_{34}}$$

$$I_{R_4} = \frac{V_{R_4}}{R_4} = \frac{6 \times 10}{10} = 0.6 \text{ mA}$$
Fall 2000
1. Resistance Calculations (20 Points)

In the circuit above, determine the voltage between the two points marked A and B.

You have just found the Thevenin voltage V_{th} for this configuration V_{TH}. Now find the Thevenin equivalent resistance R_{th}. Be careful, the source leg in the circuit has finite resistance.
Fall 2000 solution
(none available)