Electronic Instrumentation

Experiment 1

* Part A: Circuit Basics, Equipment, Sound Waves
* Part B: Resistors, Circuit Analysis, Voltage Dividers
* Part C: Capture/PSpice
Motivation

- Modern Systems
 - mechanical component
 - electrical component
 - (computer component)
- You will be able to communicate with EE’s
- You will be able to take the electronics sections of the FE exam
- You will be using Engineering problem solving skills.
Automobile Electronics

- Previously all mechanical systems have become increasingly electronic
- Over the past few years, for example, the automobile has begun to use more computers (microcontrollers)
- How many microcontrollers are typically found in a modern automobile?
Part A

- Circuit Basics
- Equipment
- Sound Waves
Physical Model for a DC circuit

pump = voltage source
water = flow of current
ocean = ground
pipe = wire
Physical Model for Resistance

pebbles in pipe = resistance to flow of current

LOW RESISTANCE
Small drop in pressure
Large current flow through pipe

HIGH RESISTANCE
Large drop in pressure
Small current flow through pipe
Symbols

<table>
<thead>
<tr>
<th></th>
<th>symbol</th>
<th>units</th>
<th>analogy</th>
<th>icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>voltage</td>
<td>V</td>
<td>volts</td>
<td>pressure</td>
<td></td>
</tr>
<tr>
<td>current</td>
<td>I</td>
<td>amps</td>
<td>flow of water</td>
<td></td>
</tr>
<tr>
<td>resistance</td>
<td>R</td>
<td>ohms (Ω)</td>
<td>pebbles in pipe</td>
<td></td>
</tr>
<tr>
<td>ground</td>
<td>GND</td>
<td></td>
<td>ocean</td>
<td></td>
</tr>
</tbody>
</table>
Physics vs. Electronics

Physics

Flow of electrons from negative to positive

Electronics

Flow of current (positive charge) from positive to negative
Ohm’s Law: \(V = IR \)
Alternating Current Generators

http://micro.magnet.fsu.edu/electromag/java/generator/ac.html
AC Circuits

\[v(t) = i(t) \cdot R \]

\[v(t) = A \sin(\omega t + \phi) \]
\[i(t) = i_{\text{max}} \sin(\omega t + \phi) \]
\[i_{\text{max}} = \frac{A}{R} \]

Note symbol for AC voltage source
Review of Sinusoids

\[v(t) = A \sin(\omega t + \phi) \]

\[(\omega t + \phi) = \omega(t - t_0) \]
\[\phi = -\omega t_0 \]

\[T = 1.5\text{ms} - 0.5\text{ms} = 1\text{ms} \]
\[f = 1/1\text{ms} = 1\text{K Hz} \]
\[\omega = 2\pi f = 2\pi 1\text{K Hz} = 2\pi \text{ rad/sec} \]
\[\phi = -\omega t_0 = -2\pi 0.5 = -\pi \text{ radians} \]
\[\phi = -2\pi (1/2 \text{ cycle}) = -\pi \text{ radians} \]

\[A = 2\text{V} \]
\[V_{p-p} = 4\text{V} \]
\[V_{ave} = 0\text{V} \]
\[V_{rms} = \frac{A}{\sqrt{2}} = 1.41 \text{V} \]
More on Phase Shift

\[(\omega t + \phi) = \omega(t - t_0) \]
\[\phi = -\omega t_0 \]

Negative phase shift: “Lag in phase, lead in time”

\[t_0 = 0.08ms \quad \omega = 2\pi(1K) \quad \phi = -(0.08m)(2K)(\pi) = -0.5 \text{ rad} \]

Positive phase shift: “Lead in phase, lag in time”

\[t_0 = -0.08ms \quad \omega = 2\pi(1K) \quad \phi = -(-0.08m)(2K)(\pi) = +0.5 \text{ rad} \]
Special Cases of Phase Shift

\[
\phi = -\omega t_0 = -2\pi ft_0 = -2\pi \left(\frac{t_0}{T} \right)
\]

- \(\phi = 0 \text{ rad} \)
- \(\phi = \pi \text{ rad} \)
- \(\phi = +\frac{\pi}{2} \text{ rad} \)
- \(\phi = -\frac{\pi}{2} \text{ rad} \)
General form of the Sinusoid

\[v(t) = A \sin(\omega t + \phi) + V_{DC} \]

\[(\omega t + \phi) = \omega (t - t_0) \]

\[\phi = -\omega t_0 \]

\[T = 1.75\text{ms} - 0.75\text{ms} = 1\text{ms} \]

\[f = \frac{1}{1\text{ms}} = 1\text{K Hz} \]

\[\omega = 2\pi f = 2K\pi \text{ rad/sec} \]

\[\phi = -\omega t_0 = -2K\pi(-0.75) = \frac{\pi}{2} \text{ radians} \]

\[\phi = -2\pi(-1/4 \text{ cycle}) = \frac{\pi}{2} \text{ radians} \]

\[A = 2\text{V} \]

\[V_{p-p} = 4\text{V} \]

\[V_{ave} = V_{DC} = 5\text{V} \]

\[V_{rms} = \frac{A}{\sqrt{2}} = 1.414 \text{ V} \]
Sinusoid Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>amplitude</td>
<td>A</td>
<td>volts (V) or amps (A)</td>
</tr>
<tr>
<td>frequency</td>
<td>f</td>
<td>1/sec = Hertz (Hz)</td>
</tr>
<tr>
<td>period</td>
<td>T</td>
<td>seconds (s)</td>
</tr>
<tr>
<td>phase</td>
<td>φ</td>
<td>radians (rad)</td>
</tr>
<tr>
<td>angular frequency</td>
<td>ω</td>
<td>rad/s</td>
</tr>
</tbody>
</table>

Note: In physics, ω is called angular velocity.
Note: The connection that looks like the ground symbol is the ground for the building, not the return path for the circuit.
DC Source for section 1
Function Generator 33120A – Only available in JEC 4107

Note: The SYNC connection will give you a signal, but it will not be the one you have set the function generator to display. Do not accidentally plug into it.
Function Generator
Digital Multimeter 34401A – We will have some hand held meters in section 1 for resistance measurements.

Note: Always use the voltage plugs on the right as indicated.
The IOBoard can read voltages but it isn’t an Ohmmeter. We will use handheld meters for resistance measurements.
Oscilloscope 54600B – you guessed it – JEC 4107

Note: Black lead of scope channel is ALWAYS ground
Protoboards

Note: Banana connectors are not connected internally to the holes in the board.
Reading Resistors

Bands: XYZT Resistance = $XY \times 10^Z \pm T\% \, \Omega$

http://www.dannyg.com/javascript/res/resload.htm
How Ears Work

Pitch = frequency Amplitude = loudness
Some pitches sound louder to your ears.

http://members.aol.com/tonyjeffs/text/dia.htm
Part A – Do the lab now

- Use your kit if you purchased one, purchase one if you haven’t
- Some of Part A can be done without the kit, just with the IOBoard
- If you don’t have a kit
 - Make sure that you have the software loaded and that the IOBoard is working
 - We have some spare protoboards and speakers
 - There will be time during the next 2 classes to catch up
- Next class we start Part B of Experiment 1
- Any questions?
Part B

- Resistors
- Voltage Dividers
- Impedance
- Capacitors and Inductors
- Equipment Impedances
- Circuit Analysis
- Agilent IntuIlink Software
Combining Resistors in Series

\[RT = R_1 + R_2 \]

\[RT = R_1 + R_2 + \ldots + R_n \]
Combining Resistors in Parallel

\[
\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}
\]

\[
R_T = \frac{R_1 \cdot R_2}{R_1 + R_2}
\]

\[
\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_n}
\]
Measuring Voltage

Total Voltage: \(V_1 = V_{R1} + V_{R2} \)

Voltage across resistors: \(V_{R1} = V_A - V_B \), \(V_{R2} = V_B - V_C \)

Voltage at points wrt GND: \(V_A = V_1 \), \(V_B = V_{R2} \), \(V_C = 0 \)
Voltage Dividers

The voltage is divided up in a manner that is proportional to the resistances of the resistors in a series circuit.

\[
V_a = \frac{R_2}{R_1+R_2} \cdot V_s
\]

\[
V_{R_2} = V_a
\]

\[
V_{R_1} = \frac{R_1}{R_1+R_2} \cdot V_s
\]

\[
V_a = \frac{1K}{1K+1K} \cdot 5V = 2.5V
\]

\[
V_a = \frac{4K}{1K+4K} \cdot 5V = 4V
\]
More on Voltage Dividers

Always add up resistors relative to ground to get the voltage at a point.

\[4V = \frac{(3K + 1K)}{1K + 3K + 1K} (5V) \]

You cannot use a voltage divider on a non-series circuit.

\[4V \neq \frac{(8K)}{1K + 8K} (5V) \]

You can use a voltage divider on a series portion of a circuit.

\[2V = \frac{(4K)}{4K + 4K} (4V) \]
Impedance vs. Resistance

- Resistance is a property of a material that causes a reduction in the rate of flow of electrons.
- Impedance is the reduction in the rate of flow of electrons caused by the material (resistance) AND other the properties of the component involved (reactance).
- Resistors have no reactance. So the impedance of a resistor is equal to its resistance only.
- Reactance varies with the frequency of the input. Resistance remains the same at all frequencies.
- Both impedance and resistance are measured in ohms.
Impedance

- Definition: A general measure of how a component or group of components pushes against the current flowing through it.
- Impedance = resistance + reactance
- Impedance is used to refer to the behavior of circuits with resistors, capacitors and other components.
- When we consider components in a theoretical circuit diagram, the impedance of inductors and capacitors is their reactance only. Any resistance is modeled separately as a resistor. So theoretical capacitors and inductors have impedance, but no resistance.
Comparison of Components

<table>
<thead>
<tr>
<th></th>
<th>resistor</th>
<th>capacitor</th>
<th>inductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>symbol</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>equation</td>
<td>$V = IR$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>icon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>series</td>
<td>$R_T = R_1 + R_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>parallel</td>
<td>$R_T^{-1} = R_1^{-1} + R_2^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>low freq</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>high freq</td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Capacitors

Capacitors consist of two plates with a dielectric material in-between. When a potential difference is placed across the plates, a charge builds up until it is large enough to cause a discharge across the plates through the material.

A parallel-plate capacitor with no dielectric between the plates, resulting in a large electric field.

A parallel-plate capacitor with a dielectric. The electric field is reduced between the plates because the dielectric material is polarized, producing an opposing field.
Larger capacitors have the number of microfarads written on them directly. Smaller capacitors use a code based on the number of picofarads. We generally use microfarads, so...

\[XYZ = XY \times 10^Z \times 10^{-6} \ \mu F \]
Capacitors in Series

\[\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} \quad \text{and} \quad C_T = \frac{C_1 \cdot C_2}{C_1 + C_2} \]

\[\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n} \]
Capacitors in Parallel

\[CT = C_1 + C_2 \]

\[CT = C_1 + C_2 + \cdots + C_n \]
Understanding Capacitor Behavior

\[I_C = C \frac{dV_C}{dt} \quad I_C = C \frac{V_1 - V_0}{t_1 - t_0} \]

General Equation

If voltage change is linear.
Capacitor Impedance

<table>
<thead>
<tr>
<th>frequency</th>
<th>frequency approaches</th>
<th>impedance approaches</th>
<th>looks like</th>
<th>called</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>-->0</td>
<td>-->infinity</td>
<td>----- • • ****</td>
<td>open circuit</td>
</tr>
<tr>
<td>high</td>
<td>-->infinity</td>
<td>-->0</td>
<td>---------------</td>
<td>short</td>
</tr>
</tbody>
</table>

Note: Real capacitors have effectively no resistance, so impedance is reactance for all capacitors.
Comparison of Components

<table>
<thead>
<tr>
<th></th>
<th>resistor</th>
<th>capacitor</th>
<th>inductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>symbol</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>equation</td>
<td>$V_R = I_R R$</td>
<td>$I_c = C \frac{dV_C}{dt}$</td>
<td></td>
</tr>
<tr>
<td>icon</td>
<td>![Resistor Icon]</td>
<td>![Capacitor Icon]</td>
<td></td>
</tr>
<tr>
<td>series</td>
<td>$R_T = R_1 + R_2$</td>
<td>$C_T^{-1} = C_1^{-1} + C_2^{-1}$</td>
<td></td>
</tr>
<tr>
<td>parallel</td>
<td>$R_T^{-1} = R_1^{-1} + R_2^{-1}$</td>
<td>$C_T = C_1 + C_2$</td>
<td></td>
</tr>
<tr>
<td>low freq</td>
<td>R</td>
<td>open circuit</td>
<td></td>
</tr>
<tr>
<td>high freq</td>
<td>R</td>
<td>short circuit</td>
<td></td>
</tr>
</tbody>
</table>
An inductor is a coil of wire through which a current is passed. The current can be either AC or DC.
Inductors

$$V_L = L \frac{dI_L}{dt}$$

This generates a magnetic field, which induces a voltage proportional to the rate of change of the current.
Combining Inductors

- Inductances add like resistances
- Series
 \[L = L_1 + L_2 + \ldots + L_N \]
- Parallel
 \[\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \ldots + \frac{1}{L_N} \]
Inductor Impedance

Note: Real inductors always have a small resistance (that is not shown in these circuits). The impedance of the theoretical inductor shown is only its reactance.
Comparison of Components

<table>
<thead>
<tr>
<th></th>
<th>Resistor</th>
<th>Capacitor</th>
<th>Inductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>R</td>
<td>C</td>
<td>L</td>
</tr>
<tr>
<td>Equation</td>
<td>$V_R = I_R R$</td>
<td>$I_C = C \frac{dV_C}{dt}$</td>
<td>$V_L = L \frac{dI_L}{dt}$</td>
</tr>
<tr>
<td>Icon</td>
<td>![Resistor Icon]</td>
<td>![Capacitor Icon]</td>
<td>![Inductor Icon]</td>
</tr>
<tr>
<td>Series</td>
<td>$R_T = R_1 + R_2$</td>
<td>$C_T^{-1} = C_1^{-1} + C_2^{-1}$</td>
<td>$L_T = L_1 + L_2$</td>
</tr>
<tr>
<td>Parallel</td>
<td>$R_T^{-1} = R_1^{-1} + R_2^{-1}$</td>
<td>$C_T = C_1 + C_2$</td>
<td>$L_T^{-1} = L_1^{-1} + L_2^{-1}$</td>
</tr>
<tr>
<td>Low Freq</td>
<td>R</td>
<td>Open Circuit</td>
<td>Short Circuit</td>
</tr>
<tr>
<td>High Freq</td>
<td>R</td>
<td>Short Circuit</td>
<td>Open Circuit</td>
</tr>
</tbody>
</table>
Equipment Impedances

- Each measuring device changes the circuit when you use it.
- The impedance of the device helps you understand how much.
- Device Impedances
 - Function Generator: 50 ohms
 - ‘Scope: 1Meg ohms
 - DMM (DC voltage): 10Meg ohms
 - DMM (AC voltage): 1Meg ohms
 - DMM (DC current): 5 ohms (negligible)
Effect of Impedance on Circuit

Function generator thinks it is putting out the same thing.

Output is clearly different.
Effect of Impedance on Circuit

The IOBoard function generator has an output impedance of much less than 50Ω, so we can ignore it. Our battery however is a different story, as you will see in the experiment.

\[
V_{out} = \frac{50}{50 + 50} (V_{in})
\]

\[
V_{out} = \frac{V_{in}}{2}
\]

\[
V_{out} = \frac{1 \times 10^6}{1 \times 10^6 + 50} (V_{in})
\]

\[
V_{out} \approx V_{in}
\]
Kirchhoff’s Laws

KVL

1. **Loop 1:** \(V_s - V_{R1} - V_{R2} = 0 \)
2. **Loop 2:** \(V_{R2} - V_{R3} - V_{R4} = 0 \)
3. **Loop 3:** \(V_s - V_{R1} - V_{R3} - V_{R4} = 0 \)

Sum of voltages in any loop is zero

KCL

1. **Junction:** \(I_{R1} = I_{R2} + I_{R3} \)
2. **Also:** \(I_s = I_{R1} \)
3. \(I_{R3} = I_{R4} \)

Sum of currents entering a junction is the same as the sum of the currents leaving a junction
Circuit Analysis (Combination Method)

1. 1K $\frac{1\text{K}}{4\text{K}}$ 5V $\frac{8\text{K} \cdot 8\text{K}}{8\text{K} + 8\text{K}}$

$V_a = \frac{4\text{K}}{1\text{K} + 4\text{K}} \times 5\text{V} = 4\text{V}$

$V_{R1} = 5\text{V} - V_a = 1\text{V}$

$I_{R1} = \frac{V_{R1}}{1\text{K}} = 1\text{mA}$

$V_{R2} = V_a = 4\text{V}$

$I_{R2} = \frac{V_{R2}}{8\text{K}} = 0.5\text{mA}$

$solution$

2. 1K $\frac{1\text{K}}{8\text{K}}$ 5V $\frac{8\text{K}}{8\text{K} + 8\text{K}}$

$V_b = \frac{4\text{K}}{4\text{K} + 4\text{K}} \times V_a = 2\text{V}$

$V_{R4} = V_b = 2\text{V}$

$I_{R4} = \frac{V_{R4}}{4\text{K}} = 0.5\text{mA}$

$V_{R3} = V_a - V_b = 2\text{V}$

$I_{R3} = I_{R4} = 0.5\text{mA}$
Useful Aside: SI Suffixes

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pico</td>
<td>p</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>micro</td>
<td>µ (u)</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>Kilo</td>
<td>k</td>
<td>10^{3}</td>
</tr>
<tr>
<td>Mega</td>
<td>M (Meg)</td>
<td>10^{6}</td>
</tr>
<tr>
<td>Giga</td>
<td>G</td>
<td>10^{9}</td>
</tr>
<tr>
<td>Tera</td>
<td>T</td>
<td>10^{12}</td>
</tr>
</tbody>
</table>

\[n = \frac{1}{G} \quad G = \frac{1}{n} \]
\[\mu = \frac{1}{M} \quad M = \frac{1}{\mu} \]
\[m = \frac{1}{k} \quad k = \frac{1}{m} \]

ex. \[\frac{1}{10k} = \frac{1}{10} \cdot \frac{1}{k} = 0.1m \]
Part C

- Capture
 - Create circuits visually
 - Set up simulation parameters

- PSpice
 - Analyzes circuit
 - Displays results
Simulations

\[\text{run to time} \approx \frac{\# \text{cycles}}{\text{freq}} \quad \text{step size} \approx \frac{\text{run to time}}{1000} \]
PSpice

Note: To get copy of trace into word use Window menu ➔ ”copy to clipboard”
Cursors

Note: You can drag the left mouse button to move one cursor and the right mouse button to move the other.
Adding Traces

Note: To add a trace use Trace menu → "Add Trace"
Part D

- Oscilloscopes
- Lissajous Figures
Cathode Ray Tubes

Variation in potential difference (voltage) placed on plates causes electron beam to bend different amounts.

“Sweep” refers to refreshing repeatedly at a fixed rate.

http://www.chem.uiuc.edu/clcwebsite/video/Cath.avi
Cathode Ray Tube Animation

Oscilloscopes

Horizontal sweeps at a constant rate. Vertical plates are attached to an external voltage, the signal you attach to the scope.

http://boson.physics.sc.edu/~hoskins/Demos/CathodeRay.html
Lissajous Figures

http://encyclozine.com/Science/Mathematics/Graphs/Lissajous/
Lissajous Figures

Normally the scope will plot a voltage signal with respect to time. In a Lissajous figure, two voltage signals are plotted against each other.

\[V_y(t) = A \sin(\omega t + \phi) \]

Normal operation of `scope`

\[V_x(t) = B \sin(\omega t + \phi) \]

Generating Lissajous figures
Lissajous Example 1

\[Vy(t) = A \sin(\omega t + \phi) \]

<table>
<thead>
<tr>
<th>time</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t1</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>t2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t3</td>
<td>-B</td>
<td>-A</td>
</tr>
<tr>
<td>t4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Lissajous Example 2

\[V_y(t) = A \sin(\omega t + \theta) \]

<table>
<thead>
<tr>
<th>time</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>t1</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>t2</td>
<td>-B</td>
<td>0</td>
</tr>
<tr>
<td>t3</td>
<td>0</td>
<td>-A</td>
</tr>
<tr>
<td>t4</td>
<td>B</td>
<td>0</td>
</tr>
</tbody>
</table>

Circle iff
A=B

\[V_x(t) = B \sin(\omega t + \pi/2) \]
Lissajous Example 3

\[V_y(t) = A \sin(\omega t + \phi) \]

<table>
<thead>
<tr>
<th>time</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t1</td>
<td>B</td>
<td>.7A</td>
</tr>
<tr>
<td>t2</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>t3</td>
<td>-B</td>
<td>.7A</td>
</tr>
<tr>
<td>t4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t5</td>
<td>B</td>
<td>- .7A</td>
</tr>
<tr>
<td>t6</td>
<td>0</td>
<td>- A</td>
</tr>
<tr>
<td>t7</td>
<td>-B</td>
<td>- .7A</td>
</tr>
<tr>
<td>t8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[V_x(t) = B \sin(2\omega t + \phi) \]
More Figures

FREQUENCY RATIO
X:Y

PHASE SHIFT

1:1

0° 45° 90° 180° 270° 360°

1:2

0° 22°30' 45° 90° 135° 180°

1:3

0° 15° 30° 45° 60° 90° 120°

1:4

0° 11°15' 22°30' 45° 67°30' 90°