
Content Placement and Service Scheduling

in Femtocell Caching Networks

Teng Liu and Alhussein A. Abouzeid

Department of Electrical, Computer and Systems Engineering

Rensselaer Polytechnic Institute

Troy, NY 12180-3590, USA

Email: liut7@rpi.edu, abouzeid@ecse.rpi.edu

Abstract—This work considers the joint problem of content
placement and service scheduling in femtocell caching networks,
to maximize the traffic volume served from the cache. The
problem is modeled as a Markov decision process. We combine
the Edmonds-Karp algorithm and the marginal allocation algo-
rithm to develop an efficient centralized policy called Infinite
CAche-filling (ICA), which can get arbitrarily close to optimal
asymptotically as the estimation time window increases. We also
design a randomized algorithm called Infinite CAche-filling with
Probabilistic scheduling (ICAP) that takes into consideration the
femtocells service capability due to interference or multiplexing
techniques. We derive a lower bound on the expected discounted
hit count of ICAP. We also derive an upper bound on the
probability that the performance of ICAP degrades from this
expected value. Numerical results show that ICAP scales well and
converges relatively fast in response to request pattern changes.

Index Terms—content-centric networking, femtocell network,
Markov decision process, randomized algorithm.

I. INTRODUCTION

As the demand for large content in cellular networks keeps

increasing, small cell architectures, such as femtocells, are

being deployed to better satisfy the ever-growing number of

users in cellular networks[1]. It has been shown that enabling

caching at base stations (BSs) and at small cell access points,

termed helpers, is a promising approach to alleviate congestion

at the network core and to decrease content access delay,

so small cell deployment can get even denser without much

efficiency degradation [2, 3]. [4] studied content placement

in a single-cell with one BS and multiple cache-enabled

helpers, given that each user has fixed connectivity with

helpers. However, in [4], the BS has to keep track of the

cached content in helpers and process two kinds of requests:

one from users and one from helpers, which complicates

the network architecture. In multiple cell architectures, BSs

(and/or helpers) may have coverage overlaps [5]. Therefore, a

user or a helper may have the opportunity of communicating

with more than one BS. Taking the coverage overlaps into

consideration, [6] developed a randomized content placement

policy in cellular networks, but the implicit assumption that

BSs can serve arbitrary number of users makes the policy

inapplicable. [7] studied both content placement and request

routing in multiple cells, while ignoring interference among

users and not considering small cells that incorporate helpers

between BS level and user level.

In this work, we study the joint problem of content place-

ment and service scheduling to maximize a measure of the

total traffic served from cache in order to alleviate the traffic

volume in the network core. The service capability constraint

of helpers is incorporated, which makes our model applicable

to a more practical scenario where only a limited number of

users can get service at a given time due to interference or

multiplexing techniques. We first provide the Infinite CAche-

filling algorithm (ICA) based on the marginal allocation

algorithm that gives a near optimal solution if there is no

service capability constraint. However, when this constraint is

added to the formulation, ICA may not give a valid solution.

So we develop the randomized algorithm called ICA with

Probabilistic scheduling (ICAP) with the consideration of this

constraint. We justify ICAP’s performance by showing the

expectation lower bound of the discounted hit count under

ICAP. Numerical results show that ICAP scales well with the

size of the network, and it performs significantly better than

the derived lower bounds. Specifically, we make the following

contributions:

• We incorporate the service capability constraint which

can reflect the interference among users, and formulate

the joint problem of content placement of service schedul-

ing as a Markov Decision Process.

• We develop an efficient online randomized algorithm

ICAP to alleviate the traffic in the network core by

maximizing the discounted value of traffic volume served

from cache.

• We derive the lower bound on the expected discounted hit

count of ICAP. We also upper bound the probability that

the performance of ICAP degrades from this expected

value.

The remainder of this paper is organized as follows. In

Section II we model the problem as a Markov decision process.

In Section III we present the problem formulation. In Section

IV, an efficient online algorithm called ICA is developed. In

Section V we incorporate the service capability constraint

and present a randomized algorithm ICAP, and justify its

performance by deriving a lower bound on its expected value.

Numerical results are presented in Section VI. We conclude

our work and discuss future extensions in Section VII.

Final version appears in IEEE GLOBECOM 2016

II. SYSTEM MODEL

A. Topology

We consider multiple cells, each of which consists of a BS,

a number of cache-enabled helpers, and a number of end users.

Upstream network is simplified by direct duplex connections

from BSs to a root server that stores all contents. The number

of files in a helper’s cache cannot exceed its cache size, which

is referred to as the cache size constraint. At any given time,

due to the interference or multiplexing techniques, a helper

can serve a limited number of users, which we call the service

capability constraint. Assume time is slotted, and a user sends

one request to helpers only at the beginning of a time slot.

Traffic is considered to be inelastic, which is a typical case in

real time large content transmission, and any unserved request

will be dropped at the next time slot before a new request is

sent. We assume a strictly hierarchical topology where BSs

can only serve helpers, and that helpers can only serve users.

Requests are handled as follows. Each user request is

received at every helpers that can cover it. A helper cannot

serve any user outside of its coverage, which is referred to

as the coverage constraint. Since requests are typically short,

their interference is negligible. A scheduling algorithm will

then assign users to helpers to optimize certain performance

metric. There is a cache miss if a helper is scheduled to serve

a user that requests an uncached file. In this case, the request

will be forwarded by the helper to the BS and get served by

the upstream network. A helper serves the request directly if

there is a cache hit.

B. Markov Decision Process (MDP) Modeling

We formulate the helpers’ decision making process, which

includes content placement and service scheduling, as an MDP

problem. The MDP during time slot t is demonstrated in Fig. 1.

Denote the set of users, helpers and files by U , H and F

requests
arrival

state s action a {{serve users based on s

content downloaded,
ready for next state{

requests
arrival

state j

t
+

(t +1)
−t

t t +1

t +1{
download content based on s

reward
gained

t
+

Fig. 1: MDP in the helper level during time slot t. Note that reward is gained
immediately when action a is determined

respectively. Define a ground set E of size |H ||F | with the

element eh,f representing caching file f in helper h. A state

s ∈ S is represented by a tuple s = (θs, γs), where θs ⊆
E is the caching state, and γs is the request state with γs

u

denoting the file that user u requests. Let Γ be the set of

all possible request states. After observing the current state,

the helpers make caching decision θ̂a ⊆ E, i.e. which files

to download into cache during this time slot, and scheduling

decision ωa, i.e. which users to serve. The scheduling decision

is an |H | × |U | matrix, where ωa
h,u = 1 if helper h schedules

service for user u in the current time slot, otherwise ωa
h,u = 0.

Thus an action can be expressed as a tuple a = (ωa, θ̂a). The

states evolve according to the transition probability P . We

assume the file popularity follows the Zipf-like distribution.

Let p(γ) be the probability that the requests vector from the

users is γ. Further assume a request is independent of any

previous request, then the transition probability from state s
to state j after taking action a is given by

P (j|s, a) = P (j|θ̂a) =

{

p(γj), ∀j : θj = θ̂a

0, otherwise
.

Define a hit matrix Ω(γs, θs) as the adjacency matrix of

the scheduling that accounts for cache hits between helpers

and users, i.e. Ωh,u = 1 if helper h schedules service for user

u that requests a cached file, otherwise Ωh,u = 0. Then the

one-step reward can be defined as the total number of cache

hits in the current time slot as follows

r(s, a) = |Ω(γs, θs)| ,
∑

h∈H

∑

u∈U

Ωh,u(γ
s, θs).

We adopt the discounted hit count (DHC) as the perfor-

mance metric, since the current network performance is valued

more than its performance in the far future due to the changing

wireless environment. Note that the discounted reward is finite

as long as the discount parameter λ is less than 1, because

the one-step reward is bounded for any state and action.

Therefore, the problem definition is: jointly determine the

content placement and service scheduling in a centralized

manner for maximizing the discounted hit count, subject to

the service capability constraint, the coverage constraint, and

the cache size constraint.

III. PROBLEM FORMULATION

In this section, we first define a θ-cluster that helps group

the states, then we present the formulation of the joint problem

of content placement and service scheduling.

Define the θ-cluster c(θ) as a set of states with the same

caching state θ. Note that given a state s ∈ c(θ), if the caching

action θ̂a is not changing the current cached contents, i.e. θ̂a =
θs = θ, then the next state is still in the same c(θ). So the

expected one-step reward if the next state is in a specific θ-

cluster c(θ∗) is given by

E[r(s, a) : θ̂a = θ∗] =
∑

j∈c(θ∗)

P (j|θ̂a = θ∗)r(j, a)

=
∑

γ∈Γ

p(γ)|Ω(γ, θ∗)|.

We now prove the optimal caching action is to cache content

according to the c(θ∗) whose states have the largest expected

one step reward. If we deviate from c(θ∗) from time slot t1
to t2, then all E[r] from t1 to t2 are smaller than the E[r] if

we stay in c(θ∗). Since the DHC is the weighted sum of E[r],
any deviation from c(θ∗) results in a smaller DHC. Therefore,

the optimal caching action will lead all states to c(θ∗). Note

that if the file popularity changes, the current optimal θ-cluster

may not be optimal anymore.

We now present some notations used in the problem formu-

lation. Denote the scheduling hit matrix with the maximum

hit count by Ω∗(γ, θ). The helpers, users, and the helpers’

coverage together form a bipartite graph G which we call the

coverage graph. The adjacency matrix of this coverage graph is

denoted by N with entry Nh,u = 1 if user u is in the coverage

of helper h, otherwise Nh,u = 0. Assuming all helpers have

the same service capability k, and denote the total service

capability of all helpers by K . Let Ch and C indicate the

cache size of helper h and the total cache size of all helpers

respectively. Define the subset Eh ⊆ E for every h ∈ H ,

which equals {eh,1, eh,2, . . . , eh,|F |}.

Assuming file popularities are known, the optimal determin-

istic action a∗ = (ω∗, θ̂∗) at state s can be formulated as

ω∗ =argmax
ωa

r(s, a) = Ω∗(γs, θs) (1)

θ̂∗ =argmax
θ

∑

γ∈Γ

p(γ)|Ω∗(γ, θ)| (2)

s.t.
∑

u∈U

ωh,u ≤ k, ∀h ∈ H (3)

Nh,u − ωh,u ≥ 0, ∀h ∈ H, ∀u ∈ U (4)

|θ ∩ Eh| ≤ Ch, ∀h ∈ H (5)

where (3) is the service capability constraint (SCC), (4) is the

coverage constraint (CVC), and (5) is the cache size constraint

(CSC). The DHC is given by:

DHC =
∞
∑

t=1

(
∑

γ∈Γ

p(γ)|Ω(γ, θ∗)|)λt−1

=
1

1− λ

∑

γ∈Γ

p(γ)|Ω(γ, θ∗)|. (6)

IV. FORMULATION ANALYSIS AND ICA ALGORITHM

In this section, we first solve the scheduling problem using

the Edmonds-Karp algorithm [8], then we prove if SCC is

removed, the cache placement problem is weakly concave

subject to a polymatroid constraint, so it can be solved

optimally by the marginal allocation algorithm [9]. Lastly, we

give an efficient approximation algorithm named ICA.

A. Scheduling Problem

The hit matrix in Eq. (1) can be solved for by some max-

flow algorithm on a bipartite graph G′ constructed from the

coverage graph G by the following three steps.

Step 1: Add a source node v, and add an edge from v to

each helper with the capacity equaling the helper’s service

capability. If there is no SCC, the capacity of this edge is set

to the cardinality of the helper’s coverage.

Step 2: Add a sink node t, and add an edge from each user

to t with capacity 1. This step assures that one user can be

served by only one helper at a time.

Step 3: For any edge (h, u) in graph G where user u requests

an uncached file in helper h, remove it from graph G.

Now we prove the optimality of the solution obtained by

running the max-flow algorithm on the new graph G′. The

solution is in the form of a one-to-many matching between

helpers and users, where a one-unit flow from a helper to a

user represents a cache hit. According to the flow conservation,

the amount of flow from the source to a helper equals the

number of cache hits in the helper. The max-flow algorithm

computes the maximum flow from the source to the network,

so the solution gives the maximum number of cache hits.

The max-flow problem can be solved by the well-known

Edmonds-Karp algorithm in O(V L2) time, where V and L is

the number of nodes and the number of edges respectively.

Therefore in the worst case, the scheduling problem can be

solved in O(|U |3) if |U | >> |H |.

B. Content Placement Problem

The inner problem in (2) is finding the optimal scheduling

given the state subject to SCC and CVC, and is solved in

Section IV.A. Its outer problem is finding the optimal caching

strategy given the optimal scheduling subject to CSC. We

will prove the outer problem is weakly concave subject to

a polymatroid constraint, so it can be solved optimally by the

marginal allocation algorithm (MAA) by incrementally adding

one more element to the solution which brings the most gain.

First we show that the CSC of the outer problem is a poly-

matroid constraint. Define a complete order R on the subset

θ ⊆ E such that θx ≤R θy if and only if f(θx) ≤ f(θy),
where f() is some function of θ. Additionally, we say θx ≤ θy

if all cached files in caching state θx are also cached in

corresponding helpers in caching state θy , i.e. θx ⊆ θy . The

CSC of the outer problem can be written as a partition matroid

P = {θ : θ ⊆ E, |θ ∩Eh| ≤ Ch}. Since a partition matroid is

a polymatroid, the CSC immediately satisfy (F1) through (F3)

in [9].

Then we prove that without SCC the content placement

problem is weakly concave by showing the complete order R
satisfies (R1) and (R3) in [9], both of which are paraphrased

and listed below. Since the affine combination of concave

functions are still concave, we only need to prove |Ω∗(θx)|
is weakly concave given a specific request state γ ∈ Γ.

So the complete order becomes: θx ≤R θy if and only if

|Ω∗(θx)| ≤ |Ω∗(θy)| for some specific request state γ.

(R1): if θy ≥ θx, θx ≥R θx∪eh,f , then θy ≥R θy∪eh,f , h ∈
H, f ∈ F .

Proof: adding file f to cache h does not decrease the overall

cache hit, so θx ≥R θx ∪ eh,f implies θx =R θx ∪ eh,f ,

which means no user within helper h’s coverage requests file

f . Therefore, adding eh,f to θy does not yield one more cache

hit, i.e. θy =R θy ∪ eh,f .

(R3): if θy ≥ θx, eh,f /∈ θx, eh,f /∈ θy, ep,q /∈ θx, ep,q /∈ θy ,

and θx ∪ eh,f ≥R θx ∪ ep,q, then θy ∪ eh,f ≥R θy ∪ ep,q .

Proof by contradiction: suppose adding eh,f to θy yields

less cache hits than adding ep,q to θy . This is true only if no

user within helper h’s coverage requests file f , while some

user within helper p’s coverage request file q. So in caching

state θx, caching file q in helper p will yield a cache hit, while

caching file f in helper h will not, i.e. θx∪eh,f <R θx∪ep,q.

By contradiction, (R3) holds. Note that this proof fails with

the presence of SCC.

Therefore, the complete order R is weakly concave if the

SCC is removed. From Theorem 2 in [9], the MAA algorithm

gives the optimal solution.

C. ICA algorithm

In this subsection, we modify the MAA in order to develop

an efficient approximation algorithm. The original MAA is not

efficient, which can be shown by the following observations.

The probability p(γ) can be calculated as the joint p.m.f. of

|U | requests, each of which follows the Zipf-like distribution.

The objective function (2) is the expectation of the maximum

hit counts, i.e. E[|Ω∗|]. According to MAA, the objective

function is evaluated for every additional file to be cached

in the helpers. To ensure the polynomial complexity of MAA,

the objective function should be evaluated in polynomial time.

However, the objective evaluation takes |F ||U| computations

of optimal hit counts, which is intractable as the file universe

grows large. Moreover, since the file popularity is typically

unknown in practice, p(γ) cannot be calculated a-priori.

Therefore, instead of brute-force calculation, we approximate

E[|Ω∗|] by sampling over an estimation time window.

We now describe the sampling approach with a time window

of T time slots. Construct an |H | × |F | zero matrix A. After

helpers received requests at the beginning of a time slot,

compute the optimal scheduling Ω∗(γ, θ ∪ eh,f) and add the

optimal hit count to entry Ah,f for all h and f such that

eh,f /∈ θ. At the next time slot, the same calculation is

executed, and the newly obtained hit counts are added to the

corresponding entries of A. After T time slots, the entry Ah,f

is holding the sum of previous T hit counts of caching the

content f to the helper h. Dividing all entries of A by T
yields the sample mean of those hit counts during the time

window T . Next, we allocate the file f to the helper h, which

corresponds to the largest sample mean. Using this sampling

approach, the objective evaluation takes O(T) computations

of optimal hit count as opposed to the original O(|F ||U|).
We now present the overall algorithm and its complexity.

Given the efficient evaluation method described above, we

run MAA to fill the cache of all helpers, and we call it the

cache-filling procedure, as demonstrated in Fig. 2. T |H ||F |
computations of optimal hit count are needed to add one more

file to the cache. Therefore, one run of caching-filling takes

O(TC|H ||F |) computations of optimal hit count. Due to the

sampling approach in the evaluation step, if we run the cache-

filling procedure back to back over an infinite time horizon,

the caching state can be updated in response to request pattern

changes. This Infinite CAche-filling is referred to as ICA

hereinafter. According to the Central Limit Theorem, ICA can

get arbitrarily close to the optimal if we drive the sample mean

close to the real mean by setting a large window T .

The ICA algorithm is computationally efficient. If the

Edmonds-Karp algorithm is used for computing the optimal

hit counts, during each time slot there are at most |H ||F |
runs of Edmonds-Karp algorithm. To reduce the average

{
γ
1

γ
T

.

. . .

. . .

requests

T

time

slots

Calculate Sample Mean

. . .

caching state

after C-th iteration:

caching state

after 1st iteration:

. . .
. . .

Ω
*
(γ

1
,θ 0
∪ e

1,1
) Ω

*
(γ

1
,θ 0
∪ e

|H |,|F|
)

Ω
*
(γ

T
,θ

0
∪ e

1,1
) Ω

*
(γ

T
,θ

0
∪ e

|H |,|F|
)

Ω
1,1

0
=
1

T
Ω
*
(γ τ ,θ

0
∪ e

1,1
)

τ=1

T

∑ Ω
|H |,|F|

0
=
1

T
Ω
*
(γ τ ,θ

0
∪ e

|H |,|F|
)

τ=1

T

∑

θ
1
= θ

0
∪ eh, f Ωh, f

0
≥ Ω

i, j

0
,∀h ≠ i, f ≠ j{ }

θ
C
= θ

C−1
∪ eh, f Ωh, f

C−1
≥ Ωi, j

C−1
,∀h ≠ i, f ≠ j{ }

Fig. 2: Cache-filling procedure based on MAA. θ0 is the initial caching state,
i.e. nothing in cache. |Ω̄i

h,f
| is the sample mean of the maximum hit count

of the i-th iteration if file f is allocated to helper h.

complexity over time, we can sample the requests every n
time slots instead of every time slot. To further reduce compu-

tational complexity, we can distributed the calculation across

H helpers if the information of request arrivals, coverage,

connectivity and cache size can be exchanged among them,

which is one possible direction of our future work.

V. PROBABILISTIC SCHEDULING BASED ON ICA

The above ICA algorithm gives a near-optimal solution with

the absence of SCC. However, its performance is unbounded

if we include SCC to model the more practical scenario where

a helper can only serve a limited number of users due to

interference or multiplexing techniques. Moreover, since we

only model the cache hits in (2), the resulting scheduling will

only serve those users who requests cached files, which has

potential fairness issue. Therefore, we develop a probabilistic

scheduling scheme based on ICA in Section V.A in order to

satisfy SCC and provide some degree of fairness among users.

We call the combination of the probabilistic scheduling and

the ICA caching scheme as ICAP. We derive the expectation

lower bound of the DHC under ICAP in Section V.B.

A. Algorithm Design

Denote the new probabilistic scheduling by the adjacency

matrix X(γ, θ∗) (abbreviated as X∗), which is obtained by

the following randomization steps on the scheduling Ω∗(γ, θ∗)
(abbreviated as Ω∗) returned by ICA. We abbreviate the notion

“set the corresponding entry of the scheduling X∗ to one/zero”

as “add/delete an edge to/from X∗” hereinafter. We refer to

the edges that corresponds to a one entry in Ω∗, as a “hit

edge”, otherwise it is a “miss edge”.

Step 1: Assign a probability to every edge in the coverage

graph G as follows: if it is a hit edge, assign it with probability

p1(Ω
∗) = P

|Ω∗| , where P ∈ [0, 1]. Otherwise, assign it with

p2(Ω
∗) = 1−P

|N |−|Ω∗| . Suppose P is set in such way that the

smallest possible p1(Ω
∗) is p1.

Step 2: Pick an edge at random from the coverage graph

G and add it to X∗. Each edge is picked with the assigned

probability in Step 1. We repeat this random pick for M times

with replacement. If an edge is selected but it is already added

to X∗, we just proceed to the next pick.

Step 3: After M picks, the number of incident edges to a

user u (denoted by Lu) may be greater than one. For each of

such user, we retain the hit edge and delete the rest. If none

of the user’s incident edges are hit edges, then we pick one

of them uniformly at random and delete the rest.

Step 4: For each helper with the number of incident edges

(denoted by Lh) more than its service capability, we repeatedly

pick one of its incident edges uniformly at random with

replacement, and stop until k different edges are picked or until

we picked for k ln k times (whichever happens first). Then, we

delete the edges that are not ever picked.

B. Lower bound on expected performance of ICAP

Denote the DHC under ICAP and ICA by ZICAP and ZICA

respectively. We have

E[ZICAP] ≥ ZICA(1 − e−
K
|N|)(1− (1− p1)

M). (7)

We can increase p1 and M to improve the lower bound.

However a large p1 may decrease the fairness, which is left to

our future work. The DHC can get arbitrarily low even with

a high expected value, therefore, we also provide an upper

bound of the probability that ZICAP degrades from the lower

bound (7):

Pr
[

E[ZICAP]− ZICAP ≥ 1
]

≤ 2e−(ln |F |)|U| 1−λ
k/2 . (8)

From (8) , we note it is almost impossible that ICAP’s

performance degrade from the lower bound of the expected

DHC, given a relatively large file universe and network size.

The derivation of the lower bound (7) and the upper bound

(8) are presented in the appendix.

VI. NUMERICAL RESULTS

In this section, we study the scalability, the effect of

the randomized edge-picking parameters P and M , and the

convergence of ICAP under different settings via MATLAB

simulation. In order to compare the ICAP performance against

the performance upper bound, we measure the Discounted Hit

Ratio (DHR), which is defined as the DHC normalized by

an upper bound computed by assuming all requested files

from the served users are cached. We approximate DHC

by feeding the same request stream for additional 100 time

slots (discounted parameter is set to 0.8). We compute the

normalized lower bound in the same manner using (7). The

request stream follows the Zipf-like distribution. Estimation

time window is set to 20 time slots. There are 3 helpers in

the network, each of which can cache at most 7 files. The

coverage is randomly generated in a way that every user can

be covered by at least one helper. The size of the file universe

is set to 100. M and P are set to |N | ln (|N |) and
2|N |−|Ω∗|
|N |2/|Ω∗|

respectively, unless specified otherwise. We average over 20

simulations to get each data point, except for Fig. 3d where

the DHRs are real time values when ICAP is running.

We first analyze the scalability of ICAP under different

request patterns and service capabilities. Fig. 3a and Fig. 3b

Number of Users
0 10 20 30

D
is

co
un

te
d

H
it

R
at

io
 (

D
H

R
)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
α=0.55
α=0.7
α=0.85

α=0.55 Lowerbound
α=0.7 Lowerbound
α=0.85 Lowerbound

(a) Scalability under different re-
quest patterns.

Number of Users
0 5 10 15 20 25 30

D
is

co
un

te
d

H
it

R
at

io
 (

D
H

R
)

0.1

0.15

0.2

0.25

0.3

0.35

0.4
S/N=0.2
S/N=0.5
S/N=0.8

S/N=0.2 Lowerbound
S/N=0.5 Lowerbound
S/N=0.8 Lowerbound

(b) Scalability under different ser-
vice capabilities. α = 0.7.

M
0 20 40 60 80 100

D
is

co
un

te
d

H
it

R
at

io
 (

D
H

R
)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
P=0.25
 P=0.5
P=0.75

(c) Impact of the edge-picking
parameters P and M on dis-
counted hit ratio. α = 0.7.

Time Slot
1000 2000 3000

D
is

co
un

te
d

H
it

R
at

io
 (

D
H

R
)

0

0.1

0.2

0.3

0.4

0.5
α=0.55
α=0.7
α=0.85

(d) Convergence of ICAP. Gray
dashed lines represent request
pattern changes.

Fig. 3: Discounted hit ratio of ICAP under different network settings

show that ICAP scales well with the growth of the number of

users. The dashed lines in the two figures are the expectation

lower bounds under corresponding settings. Fig. 3a plots the

scalability of ICAP under different request patterns. If the

exponent parameter of the Zipf-like distribution is increased,

ICAP yields higher DHR with the same network size. A

skewer Zipf-like distribution means higher ranked files are

more likely to be requested, so the sampling procedure can

detect these higher ranked files more accurately and download

them to cache. Fig. 3b shows the scalability of ICAP under

different service capabilities. Note that the service capability

k = N means a helper can serve all users within its coverage

during a time slot. Fig. 3b shows there is no significant differ-

ence when the service capability changes, which demonstrates

that ICAP solution scales well regardless of the SCC.

Then we analyze the effect of the two parameters P and

M in the randomized edge-picking procedure. If P is set to

a large value, more hit edges will be added to the scheduling

X in Step 1 of ICAP. Therefore the performance is better in

terms of DHR, as shown in Fig. 3c. From the lower bounder

(7), M should be large. However, if M increases to the point

where all hit edges have been picked and the edge-picking

procedure continues, more miss edges will be added to the

scheduling X in Step 1 of ICAP. Therefore, there will be more

miss edges incident to helpers after Step 3. This results in a

higher probability that a hit edge is removed in Step 4, thus

the performance slowly declines. Note that the fairness may

increase at a cost of DHR performance by setting a proper P
and M . We leave the study on fairness to our future work.

Finally, we discuss the convergence of ICAP and its perfor-

mance upon request pattern changes. We consider a network

of 20 users and 3 helpers. Each helper can serve at most 5

users during a time slot. We simulate ICAP for 3360 time

slots, where the ranking of files is changed at the 840-th

time slot and at the 2100-th time slot. As shown in Fig. 3d,

DHR converges after one run of cache-filling. Upon request

pattern changes, the performance declines as expected, and

then converges after one additional run of cache-filling. In

addition, DHR is affected more by the request pattern change

if the file popularity is skewer, because the file ranking change

of a flat file popularity does not affect the joint distribution

of requests as much as the same change of a skewer file

popularity does. No matter how request pattern varies, DHR

will surely converge after one run of cache-filling, that is TC
time slots where C is the total cache capacity of all helpers.

VII. CONCLUSION AND FUTURE WORK

In this paper, we study the joint problem of content place-

ment and service scheduling in femtocell caching networks,

with the objective of maximizing the discounted value of the

traffic served from cache. A deterministic ICA algorithm is

developed which can get arbitrarily close to optimal without

SCC. We also proposed a probabilistic ICAP algorithm to

satisfy SCC and provide some degree of fairness. However,

the fairness performance is unknown and worth further study.

In addition, a more efficient probabilistic scheduling and a

tighter lower bound warrant further investigation. Moreover,

if the BSs are also cache-enabled, we have a more general

hierarchical caching network, which is one promising direction

of our future work.

ACKNOWLEDGEMENT

This material is based upon work supported by the U.S. Na-

tional Science Foundation under grant numbers 1422153 and

1456887, and a Tekes FiDiPro Fellow award with University

of Oulu, Oulu, Finland.

REFERENCES

[1] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell
networks: A survey,” CoRR, vol. abs/0803.0952, 2008.

[2] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire,
“Femtocaching and device-to-device collaboration: A new ar-
chitecture for wireless video distribution,” IEEE Communica-
tions Magazine, vol. 51, no. 4, pp. 142–149, 2013.

[3] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch,
and G. Caire, “Wireless video content delivery through coded
distributed caching,” in ICC, pp. 2467–2472, IEEE, 2012.

[4] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch,
and G. Caire, “Femtocaching: Wireless video content delivery
through distributed caching helpers,” in INFOCOM, pp. 1107–
1115, IEEE, 2012.

[5] H. P. Keeler, B. Blaszczyszyn, and M. K. Karray, “Sinr-
based k-coverage probability in cellular networks with arbitrary
shadowing,” in ISIT, pp. 1167–1171, IEEE, 2013.

[6] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic
caching in cellular networks,” in ICC, pp. 3358–3363, 2015.

[7] K. Naveen, L. Massoulie, E. Baccelli, A. Carneiro Viana,
and D. Towsley, “On the interaction between content caching
and request assignment in cellular cache networks,” in 5th
Workshop on All Things Cellular: Operations, Applications and
Challenges, (New York, NY, USA), pp. 37–42, ACM, 2015.

[8] J. Edmonds and R. M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” J. ACM,
vol. 19, pp. 248–264, Apr. 1972.

[9] A. Federgruen and H. Groenevelt, “The greedy procedure for
resource allocation problems: necessary and sufficient condi-
tions for optimality,” Operations Research, vol. 34, pp. 909–
918, 1986.

[10] E. Chlebus, “An approximate formula for a partial sum of the
divergent p-series,” Applied Mathematics Letters, vol. 22, no. 5,
pp. 732 – 737, 2009.

APPENDIX

We now derive a lower bound on the expected DHC of

ICAP. An entry X∗
hu corresponds to a cache hit if X∗

hu = 1
given that Ω∗

hu = 1. We denote the number of such entries in

X∗ by g(X∗). From the linearity of expectation, we have

E[g(X∗)] =
∑

h,u: Ω∗
hu=1

E[X∗
hu]

=
∑

h,u

Pr[X∗
hu = 1|Ω∗

hu = 1]. (9)

We now derive the probability Pr[X∗
hu = 1|Ω∗

hu = 1].
If Ω∗

hu = 1, the probability that X∗
hu = 1 after Step 2 is

1− (1 − p1(Ω
∗))M ≥ 1− (1 − p1)

M . Step 3 does not affect

this edge if it is retained after Step 2. In Step 4, edge (h, u) will

remain in X∗ if Lh ≤ k, otherwise the edge remains in X∗

after d times of edge-picking with probability 1−(1− 1
Lh

)d ≥

1− (1− 1
N̂
)k ≥ 1− e−

K
|N| . So we have

Pr[X∗
hu = 1|Ω∗

hu = 1] = (1− (1 − p1(Ω
∗))M)Pr[Lh ≤ k]+

(1− (1 −
1

Lh
)k)(1 − (1− p1(Ω

∗))M)Pr[Lh > k]

≥ (1− e−
K
|N|)(1 − (1− p1)

M).
(10)

From (9) and (10), we have

E[g(X∗)] ≥ |Ω∗|(1 − e−
K
|N|)(1− (1− p1)

M). (11)

Denote the DHC under ICAP and ICA by ZICAP and ZICA

respectively. From (11) we have

E[ZICAP] =E
[1

1− λ

∑

γ∈Γ

p(γ)g(X∗)
]

≥
1

1− λ

∑

γ∈Γ

p(γ)|Ω∗|(1− e−
K
|N|)(1− (1 − p1)

M)

=ZICA(1− e−
K
|N|)(1− (1 − p1)

M).

We now derive the upper bound of the probability that

ZICAP degrades from the lower bound (7). By Hoeffding

bound, for any non-negative t we have

Pr[E[ZICAP]− ZICAP ≥|F ||U|t] ≤ 2e

−2|F |2|U|t2

∑
γ∈Γ(

Kp2(γ)
1−λ

) . (12)

Let t = |F |
−|U|

and let Q be the normalization parameter

of the Zipf-like distribution, i.e. Q = 1
∑|F |

i=1 i−α
≤ 1

ln |F | [10].

So
∑

γ∈Γ p
2(γ) ≤ Q|U|

∑

γ∈Γ p(γ) = Q|U| ≤ (ln |F |)−|U|.

Then (12) becomes

Pr
[

E[ZICAP]− ZICAP ≥ 1
]

≤ 2e−(ln |F |)|U| 1−λ
k/2 .

