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Abstract—Spectrum auction is considered a suitable approach
to efficiently allocate spectrum among unlicensed users. In a
typical spectrum auction, Secondary Users (SUs) bid to buy
spectrum bands from a Primary Owner (PO) who acts as the
auctioneer. Existing spectrum auctions assume that SUs have
static and known values for the channels. However, in many
real world settings, SUs do not know the exact value of channel
access at first, but they learn it over time. In this paper, we study
spectrum auctions in a dynamic setting where SUs can change
their valuations based on their experiences with the channel. We
propose ADAPTIVE, a dynAmic inDex Auction for sPectrum
sharing with TIme-evolving ValuEs that maximizes the social
welfare of the SUs. ADAPTIVE is based on multi-armed bandit
models where for each user an allocation index is independently
calculated in polynomial time. ADAPTIVE has some desired
economic properties that are formally proven in the analysis.
Also, we provide a numerical performance comparison between
ADAPTIVE and the well known Vickrey second price auction as
a representative of static auctions.
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Theory, Auction, Multi-armed Bandit.

I. INTRODUCTION

Spectrum scarcity has become a major challenge as a result
of rapid growth in wireless communications. The Federal Com-
munications Commission (FCC) indicates that the problem is
not just the scarcity of spectrum but it is also the inefficient use
of the available wireless spectrum. Measurements reported by
the FCC’s Spectrum Policy Task Force show that many of the
allocated bands are idle or barely used in some areas [1]. To
achieve better spectrum utilization, studying efficient spectrum
allocation mechanisms seems imperative.

Cognitive radio network is considered as a novel com-
munication paradigm that improves spectrum utilization by
allowing dynamic spectrum sharing [2]. Dynamic spectrum
sharing enables unlicensed or Secondary Users (SUs) to access
idle spectrum bands that are owned by a Primary Owner
(PO). For this purpose, it is necessary to design mechanisms
that provide incentives for both PO and SUs to participate in
spectrum sharing.

Auction-based mechanisms are very well-suited to the
spectrum sharing problem. In an auction, the seller is not
necessarily required to have prior knowledge about the value
of items to the potential buyers. This is an advantage of auction
mechanisms compared to the traditional pricing mechanisms.
Also, with auctions efficient allocation can be easily obtained

by designing a mechanism that allocates to the bidders who
value the items the most. Yet another advantage of auctions
is that they induce less communication overhead compared
to the other market mechanisms which consequently makes
implementation easier and more practical.

In a simple spectrum auction, SUs bid to buy spectrum
bands from a PO that sells its idle bands for a profit. An
underlying assumption in existing spectrum auctions is that
SUs know the exact value of channel access, and they bid
accordingly. However, in real world scenarios, the value of
obtaining channel access is not exactly known to the SUs a
priori, but they learn it over time. In fact, SUs revise their
estimates of values of channel access based upon what they
experience.

In this paper, we study spectrum auctions with dynamically
evolving values. We consider a cognitive radio network with
one PO (a base station or an access point) who is willing to
auction its idle channel to the SUs. The setting allows SUs
to learn their valuations based on their experiences. In this
context, SU’s experience is estimated as a function of the
channel quality or Signal to Noise Ratio (SNR) of the channel.

In this setting, we propose ADAPTIVE, a dynAmic inDex
Auction for sPectrum sharing with TIme-evolving ValuEs. To
the best of our knowledge, ADAPTIVE is the first spectrum
auction that considers dynamically evolving values. ADAP-
TIVE is technically a repeated auction of a channel in which
SUs learn their values over time. The proposed auction results
in efficient allocation that maximizes the expected discounted
social welfare. Also, it has some desired economic properties.

Every auction is determined by a pair of functions (or
rules); the allocation function and the payment function. The
allocation part of ADAPTIVE is based on the infinite horizon
multi-armed bandit models [3]. The main idea is to allocate the
channel based on dynamic allocation indices of SUs that are
computed independent of each other. This rule provides us with
the efficient allocation. To obtain the payment function, we
take into account the externality that the winning SU imposes
on the other SUs, which is the surplus that other SUs could
have achieved in the absence of the winning SU. ADAPTIVE
runs in polynomial time and has desired economic properties
of Periodic Ex Post Incentive Compatibility, Periodic Ex Post
Individual Rationality and No Positive Transfers.

The main contributions of this paper can be summarized
as follows. We consider a dynamic spectrum auction setting



where SUs can use their experiences with the channel to
revise their valuations. This model allows learning of valu-
ations over time and it is more realistic compared to prior
work. We propose ADAPTIVE, a dynAmic inDex Auction
for sPectrum sharing with TIme-evolving ValuEs that results
in efficient allocation that maximizes the expected discounted
social welfare. To the best of our knowledge, ADAPTIVE is
the first spectrum auction that enables dynamically evolving
valuations. We formally prove the economic properties of
ADAPTIVE in the analysis, namely Periodic Ex Post Incentive
Compatibility, Periodic Ex Post Individual Rationality and
No Positive Transfers. Furthermore, we provide a numerical
performance comparison between ADAPTIVE and the well
known second price auction [4] with respect to revenue of the
PO, social welfare, average payments and average utilities of
SUs.

The remainder of the paper is organized as follows. In
Section II, we provide a brief review and discussion of related
work. Section III describes the system model that is the
basis of our proposed mechanism. In Section IV, we propose
the ADAPTIVE auction and prove its economic properties.
Numerical results are reported and discussed in Section V.
Finally, Section VI concludes this paper and provides some
guidelines for future work.

II. RELATED WORK

Several auction mechanisms have been proposed recently
for wireless spectrum management in different settings [5]–
[18]. In this section, we provide a brief overview of the most
relevant studies.

In [5], a contract based spectrum management mechanism
has been presented. The cognitive radio network consists of a
PO and several primary and secondary users. In their model,
the PO offers channels of different qualities. With the goal
of revenue maximization, the PO acts like a monopolist and
determines the qualities and prices for the available channels.
This approach, however, does not let SUs to express their
values (or submit bids). Thus, the PO requires some prior
information about SUs’ values for the channels. In [17], the au-
thors proposed an auction based spectrum sharing mechanism
with heterogenous channels for a similar network topology.
The work has been extended to a reserve price auction in [18]
where the PO can impose reservation prices on the channels.

In [6], the authors present a spectrum auction with multiple
POs. In their model, each SU selects one PO for bidding and
POs gradually raise their trading prices until the mechanism
converges to an equilibrium point where no SU and PO is
interested to deviate. Similarly, the authors in [7] study the
optimal pricing problem for two wireless service providers,
and the optimal service provider selection problem for SUs.
The authors show that the equilibrium price and its uniqueness
depend on the spectrum propagation characteristics and SUs’
geographical density. In [8], Niyato et al. study the dynamics
of spectrum pricing in a competitive environment with multiple
POs. They use noncooperative game theory to model the
competition among POs and evolutionary game theory to
model the behavior of SUs.

In [10], Zhou et al. proposed a general framework, called
TRUST, for truthful double spectrum auctions that provide
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Fig. 1. A cognitive radio network with one primary owner and four secondary
users.

spectrum reuse. This framework takes any reusability-driven
spectrum allocation mechanism as input, and applies its own
winner determination and payment rule. TAHES [9] is another
truthful double auction mechanism, but works for heteroge-
neous spectrums. In both models, there should be an external
third party who has complete information and holds the
auction.

The authors in [11] consider a model in which the spectrum
access opportunity is divided by frequency and time. Thus, SUs
can bid for a combination of frequencies at different times. The
problem then becomes a combinatorial auction and finding an
efficient allocation becomes NP-Complete. The authors present
approximate solutions to the general problem. In [12], a core-
selecting auction has been proposed in a setting that SUs can
bid for a combination of channels. The auction yields at least
the revenue of the VCG mechanism [4] and it is not vulnerable
to shill bidding.

Recently, a group of researchers considered online spec-
trum auctions where SUs can enter the auction and leave at
different times [13], [14]. However, an underlying assumption
is that SUs know the exact value of channel access every time
they participate in the auction.

Despite all the prior work, the problem of designing a
spectrum auction with dynamically evolving values for SUs
has not been addressed. In this paper, we tackle this problem.

III. SYSTEM MODEL

In this paper, we study the problem of auctioning a channel
where SUs’ valuations dynamically evolve over time based on
their experiences. We consider a cognitive radio network with
one PO (a base station or an access point) who is willing to
auction its idle channel to the SUs. An example of cognitive
radio network is depicted in Fig. 1.

The spectrum sharing process is modeled by an auction



in which PO acts as the auctioneer, and SUs are the bidders.
The objective is to maximize social welfare while satisfying
incentive compatibility and individual rationality. There are k
SUs competing with each other at each time step for an infinite
horizon. The type of SU i is denoted by θi ∈ [0,Θi] which is a
real number reflecting how much SU i values channel access.
It also captures the urgency for channel access, the more urgent
the channel access to SU i, the higher the monetary value θi.

SUs gain experience over time dealing with the channel.
We denote SU i’s experience at time t by ei,t ∈ ξi where ξi
can be a potentially arbitrary set. It should be noted that SU’s
experience evolves only when he gets the channel, otherwise
its experience does not change. An SU’s experience at the
instants that it gets the channel evolves in a Markovian model
(i.e. the process is semi-Markov). That is, the probability that
the next experience is ei,t+1 is P (ei,t+1|ei,t), only depends
on the current experience. In our model, we consider SU’s
experience as the channel quality or SNR of the channel.

SU’s valuation for the channel is a stationary function of its
type and experience. Without loss of generality, we assume that
all SUs use the same valuation function. It is worth noting that
even though the function is shared, the values of the parameters
of the function are private.1 This actually makes sense, since
SUs value a channel based on its capacity. So, the valuation
functions can be similar but with different parameters, as they
have different experiences and monetary preferences. SU i’s
valuation for the channel at time t is defined as:

v(θi, ei,t) = θi B log(1 + ei,t) (1)

Where B is the channel bandwidth. The function v takes
into account both the channel quality experienced by SUs and
SU’s monetary value that reflects urgency for channel access.
The expected (future) value of SU i for the channel at time
t equals to δt−1v(θi, ei,t) where 0 < δ < 1 is the common
discount factor.

We assume that bidders are rational which is an inherent
assumption in designing truthful auction mechanisms. That
implies, bidders act solely with the purpose of maximizing
their own utilities. If an SU gets the channel, its utility will
be the difference between its valuation for the channel and the
price he has to pay.

Also, we focus on direct mechanisms by using the Rev-
elation Principle [4]. The principle states that an outcome of
any indirect mechanism can be obtained by a (truthful) direct
mechanism.

IV. THE ADAPTIVE MECHANISM

In this section, we propose ADAPTIVE, a dynAmic inDex
Auction for sPectrum sharing with TIme-evolving ValuEs.
ADAPTIVE is a repeated auction for an infinite horizon that
allows SUs to dynamically learn and revise their values. The
proposed auction has some guaranteed economic properties
that will be proven in this section.

1This scheme should not be confused with common value auctions where
in the latter case, the item is of the same value for all bidders but they do not
know what this value is [4].

At each time step, SUs report (θi, ei,t) to the PO who takes
the role of the auctioneer and runs ADAPTIVE. The auction
should determine two output functions; the allocation and the
payment. Channel allocation is denoted by Q ∈ Q, where Q is
the set of all possible allocation rules. Q contains qi,t ∈ {0, 1}
that determine which SU gets the channel at every time step.
That is, qi,t = 1 indicates that the SU i has obtained the right to
access the channel at time t and qi,t = 0 otherwise. Similarly,
pi,t represents the payment of SU i at time t.

After the channel is allocated at each round, the winner gets
the chance to update its experience with the channel for the
next round. It should be noted that the PO knows the Markov
probability model for the evolution of experiences. Therefore,
with SUs’ reports, the PO can compute expected future values
and make decisions accordingly.

The objective is to find an efficient allocation scheme that
satisfies desired economic properties. An efficient allocation
rule maximizes bidders’ valuations. We can formally define
the expected future social welfare at time t as:

S(θ, et) = max
Q∈Q

E

[ ∞∑
t′=t

∑
i

δt
′−t qi,t′ v(θi, ei,t′)

∣∣∣θ, et
]

(2)

Where 0 < δ < 1 is the common discount factor, θ
and et are vectors of SUs’ types and experiences at time
t, respectively. To achieve efficiency, we need to find an
allocation scheme Q ∈ Q that maximizes the equation (2).
In the next subsection, we present a method to achieve the
efficient allocation.

A. Efficient Allocation Policy of ADAPTIVE

The ADAPTIVE mechanism utilizes concepts from multi-
armed bandit models to find the efficient channel allocation.
Multi-armed bandit problems refer to a class of sequential
resource allocation problems that are concerned with the
dilemma of making decisions that bring high current gains
or making decisions that sacrifice immediate payoffs with the
hope of better future rewards [3].

In a multi-armed bandit problem, there is an operator with
a collection of independent single-armed bandits. At each
time step, the operator chooses to operate exactly one of the
machines. The chosen machine generates a reward and updates
its state. All other machines retain their current states till the
next time step. The objective of the operator is to maximize
the sum of rewards.

In [19], Gittins and Jones presented an index policy for the
operator to obtain an optimal solution (that yields maximum
sum of rewards). They introduced a dynamic allocation index
which can be computed independently for each bandit. At each
time step, the operator needs to choose the highest index bandit
to achieve the optimal solution. Dynamic allocation index (also
called Gittins index) reduces the complexity of the problem
exponentially, since instead of finding the solution of a multi-
armed bandit problem, the operator is required to determine
Gittins indices for some single-armed bandit problems.

Now, our channel allocation problem in ADAPTIVE can
be transformed into a classical multi-armed bandit problem.



Each arm in the bandit model can be thought of as an SU and
rewards generated by pulling arms resemble SUs’ valuations.
The operator chooses a machine in the multi-armed bandit
model just like the PO chooses an SU to allocate the channel
to it. State change in the bandit model is similar to experience
update of the winning SU in the ADAPTIVE mechanism.
With the transformation, we see that the optimal solution to
the multi-armed bandit problem is equivalent to the efficient
channel allocation in ADAPTIVE.

Therefore, we can use the Gittins index policy to solve the
efficient allocation problem. According to this policy, the PO
gives the channel to the SU with the highest index. The Gittins
index of SU i at time t (conditioned on its current experience
and type) is defined as:

Gi(θi, ei,t) = max
τi

E

[∑τi
t′=t δ

t′−t v(θi, ei,t′)∑τi
t′=t δ

t′−t

∣∣∣θi, ei,t
]

(3)

An important feature of the Gittins index policy is that the
index of SU i can be computed independently and without
any information about other SUs. Also, it is worth noting
that, the index of SU i will not change if he does not get the
channel. There are several polynomial time algorithms to find
the indices. For instance, Sonin in [20] proposes an algorithm
to solve equation (3) in n3 +O(n2) operations.

In addition to the allocation policy, we need to specify the
payment function of the mechanism, i.e. the price the winning
SU has to pay. In the next subsection, we propose the payment
rule of the ADAPTIVE.

B. The Payment Rule of ADAPTIVE

We propose the payment rule of the ADAPTIVE mecha-
nism in this subsection and we discuss and prove its economic
properties in the next subsection. We specify payments such
that under the efficient allocation policy, each SU’s utility
coincides with its marginal contribution to the social welfare
[21].

Let mi,t denote SU i’s marginal contribution to the social
welfare at time t:

mi,t = S(θ, et)− S−i(θ, et)− δE
[
S(θ, et+1)− S−i(θ, et+1)

]
(4)

Where S−i(θ, et) is the expected future social welfare
without SU i. Since SU’s experience will not change without
getting the channel, S−i(θ, et) = S−i(θ, et+1). Therefore,
equation (4) becomes:

mi,t = v(θi, ei,t)− (1− δ) S−i(θ, et) (5)

Now, we want that SU’s immediate utility coincide with
its marginal contribution. That is:

mi,t = v(θi, ei,t)− pi,t (6)

As a result of combining equations (5) and (6), the winning
SU i at time t pays

pi,t = (1− δ) S−i(θ, et) (7)

If SU i does not get the channel at time t, then pi,t = 0.
Also, It should be noted that SU i has no control over its
payment and its valuation is excluded in equation (7). This
property disables SUs to manipulate their payments to gain
some profit. We will discuss the prove economic properties of
ADAPTIVE in the next subsection.

C. Economic Properties

An auction is required to satisfy certain economic proper-
ties such as incentive compatibility and individual rationality.
In this subsection, we define these properties and prove that
the ADAPTIVE mechanism satisfies them.

An auction is called ex post incentive compatible if truth-
telling is always the best strategy for bidders, regardless of
the history and current state (i.e. type and experience) of other
bidders [21]. We should note here that, SUs observe their
history which includes their past states, reports and allocations.
Also, it is worth noting that in dynamic settings, we have the
notion of periodic ex post incentive compatibility. That is, the
mechanism is ex post incentive compatible with respect to the
information received in time t, but it is not ex post with respect
to the information arriving after time t. In other words, a bidder
may get some information in the future that she would regret
its report at time t.

Before we formally define the properties, we need some
definitions. A reporting strategy for bidder i, denoted by Ri,
provides a mapping from its state (type and experience) to
a report. We denote the (joint) truth-telling strategy by T in
which all the bidders report truthfully. The expected future
utility of bidder i under (joint) reporting strategy R is defined
as:

UR
i,t = E

[ ∞∑
t′=t

δt
′−t (qRi,t′ v(θi, ei,t′)− pi,t′)

]
(8)

Where qRi,t is the allocation induced by R. Now, we can
define the economic properties.

• Periodic Ex Post Incentive Compatibility; An auc-
tion is periodic ex post incentive compatible if for
every bidder i and at any time t, truth-telling is the
best response to the truthfulness of the other bidders.

That is UT
i,t ≥ U

Ri,T−i

i,t , where U
Ri,T−i

i,t is the utility
of bidder i when i uses an arbitrary report strategy
Ri, while all the other bidders use the truth-telling
strategy T .

• Periodic Ex Post Individual Rationality; An auction
is periodic ex post individually rational if for every
bidder i and at any time t, we have UT

i,t ≥ 0. That
means, bidders do not suffer as a result of participating
in the auction.



Theorem 1: The ADAPTIVE mechanism is periodic ex
post incentive compatible and periodic ex post individually
rational.

Proof: Let SRi(θ, et) be the expected future social
welfare at time t when the bidder i uses the reporting strategy
Ri and all other bidders report truthfully, defined as:

SRi(θ, et) = max
Q∈Q

E

[ ∞∑
t′=t

∑
j

δt
′−t qRi

j,t′ v(θj , ej,t′)
∣∣∣θ, et

]

Where Q is the set of all possible allocation rules and
qRi

j,t′ is the allocation induced by (Ri, T−i) (when i uses
the reporting strategy Ri and others report truthfully). The
expected future social welfare at time t and without bidder i,
can be defined similarly:

S−i(θ, et) = max
Q∈Q−i

E

[ ∞∑
t′=t

∑
j �=i

δt
′−t qj,t′ v(θj , ej,t′)

∣∣∣θ, et
]

Where Q−i is the set of allocation rules that disregard
bidder i. Now, the marginal contribution of bidder i to the
social welfare, at time t, will be:

mi,t = SRi(θ, et)−S−i(θ, et)−δE
[
SRi(θ, et+1)−S−i(θ, et+1)

]
(9)

If bidder i does not get the channel at time t, mi,t = pi,t =
0. However, if bidder i gets the channel at time t, then:

SRi(θ, et) = v(θi, ei,t) + δE
[
SRi(θ, et+1)

]
Also, it should be noted that if bidder i gets the channel at

time t, other bidders’ state will not change (their experiences
with the channel remain the same). That is:

S−i(θ, et) = S−i(θ, et+1)

Therefore, the marginal contribution of bidder i (who gets
the channel at time t) can be rewritten from equation (9) as

mi,t = v(θi, ei,t)− (1− δ) S−i(θ, et) (10)

= v(θi, ei,t)− pi,t

Where the second equality uses the payment rule, equation
(7). The expected future utility of bidder i at time t when i
uses reporting strategy Ri and others report truthfully using
T−i is defined as (for simplicity of notation we omit T−i):

URi
i,t = E

[ ∞∑
t′=t

δt
′−t (qRi

i,t′ v(θi, ei,t′)− pi,t′)

]

= E

[ ∞∑
t′=t

δt
′−t mi,t′

]

= SRi(θ, et)− S−i(θ, et)

Where the second equality follows from equation (10) and
the third equality holds from definition of marginal contri-
bution, equation (9), and noting that all the terms except for
time t will cancel out. Clearly, S−i is independent of bidder i’s
reports. Also, since the social welfare is defined with respect to
the true states, SRi is maximized if bidder i reports truthfully.
Therefore, the auction is periodic ex post incentive compatible.
We can also see that UT

i,t ≥ 0 that is because ST ≥ S−i. As
a result, the ADAPTIVE mechanism is also periodic ex post
individually rational.

It is worth noting that the ADAPTIVE mechanism has no
positive transfers (another economic property), i.e. for all times
t and every bidder i we have pi,t ≥ 0. This can be easily seen
from the payment function, equation (7) which is sum of non-
negative numbers multiplied by a factor (1− δ) in [0,1].

V. NUMERICAL RESULTS

In this section, we provide a performance evaluation of
the ADAPTIVE mechanism. We compare the performance of
ADAPTIVE which is a dynamic valuation auction with the
well-known Vickrey auction (also called second price auction)
as the representative of static auctions. Thus, in the following
diagrams, static refers to the second price auction and dynamic
refers to our ADAPTIVE mechanism.

We set the common discount factor, δ, to 0.7 and change
the number of SUs from 3 to 21. Each setting is run 500 times
in MATLAB to eliminate the effect of random initialization.
Social welfare (sum of winning SUs’ valuations), discounted
social welfare, average payment of SUs, average utility of SUs,
and revenue of the PO (sum of SUs’ payments) are considered
as performance metrics. In order to study the impact of the
discount factor, we fix the number of SUs and compute the
revenue of PO when δ changes from 0 to 1.

The bandwidth B is set to 1 and SUs’ initial experiences
and types are randomly drawn from discrete uniform distri-
butions. So, SUs’ initial valuations can be computed. The
ADAPTIVE mechanism proceeds with the Gittins index policy
for allocation and equation (7) for determining payments.
We use Sonin’s algorithm [20] to compute Gittins indices in
polynomial time. The winner updates its experience and the
mechanism repeats. On the other hand, in the second price
auction, the SU with the highest valuation gets the channel
and pays the second highest value. The second price auction
continues with another random instance of experiences. In fact,
at every time step, each SU gets a random experience and there
will be no evolution.

In ADAPTIVE, we consider Signal to Noise Ratio (SNR)
of the channel experienced by the SUs as their experiences.
The winner updates its experience according to an Auto-
Regressive (AR) model. If SU i is the winner, we have
ei,t+1 = ei,t + z, where z is a discrete random variable. We
consider limited discrete values for SNR (ranging from -30db
to 30db with increments of 1db) which provides us a finite
small sized state space. Also, we use a Binomial distribution
with probability of 0.5 for z that gives us a good approximation
of a Gaussian distributed random variable centered at 0. With
this evolution model, we can easily build a Markov probability
model for transitions between experiences, P (ei,t+1|ei,t).
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Fig. 2. Social welfare versus the number of SUs.
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Fig. 3. Discounted social welfare versus the number of SUs.

In Fig. 2 the social welfare is shown versus number of SUs.
As can be seen, in both dynamic and static auctions the social
welfare increases with number of SUs. This is because when
more SUs participate in the auction, there will be a wider range
of valuations. Since SUs with high valuations are favored, it is
more probable that the winner has a higher valuation compared
to the case of having less SUs that consequently results in a
higher social welfare. Fig. 2 also indicates that the dynamic
ADAPTIVE mechanism results in a better social welfare than
the static second price auction. This happens due to the fact
that in the second price auction, SUs get random experiences
at each time step and there is no evolution of experiences,
which limits the chance of SUs for having higher values due to
good experiences with the channel. Also, we should note that
in ADAPTIVE, we have a probabilistic model of the future,
because of the experience evolutions model, and the auctioneer
takes into account expected future values. We observe a similar
behavior in Fig. 3 that shows the discounted social welfare of
the two auctions versus number of SUs.

The average payments of SUs is depicted in Fig. 4. We
observe that in both auctions as the number of SUs increases,
payments increase. This is because with more SUs, channel
access becomes more competitive. Thus, the winner causes
more externality to the other SUs, and consequently he has to
pay more. This figure also shows that the ADAPTIVE mecha-
nism induces higher payments than the second price auction. In
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Fig. 4. Average payments versus the number of SUs.
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Fig. 5. Revenue of the PO versus the number of SUs.

the payment function of the ADAPTIVE mechanism (equation
(7)), the PO takes into account the future expected values
and in the eye of ADAPTIVE, the winning SU causes more
externality than that of the second price auction (i.e. second
highest valuation). Therefore, the payments in ADAPTIVE are
higher than payments in second price auction.

High payments are favorable to the PO, as it leads to more
revenue. In Fig. 5 the revenue of the PO versus number of
SUs is shown. Since higher payments imply higher revenue,
we observe a similar behavior in this figure as in Fig. 4. In
both auctions the revenue of the PO increases with number of
SUs. In addition, the proposed dynamic auction yields more
revenue than the static second price.

From the SUs’ point of view, however, increase in the
number of competitors (another SUs) is not favorable. Fig. 6
shows the average utility of SUs versus the number of SUs.
We see that in both mechanisms, average utilities decreases
with the number of SUs. This is due to the increase in SU
payments that consequently lowers utilities (since utility is the
difference between valuation and paymnet).

In all the diagrams so far, we had a fixed discount factor,
δ = 0.7. Now, we fix the number of SUs at 12 and change the
discount factor from 0 to 1. Fig. 7 shows the revenue of the
PO versus the discount factor. clearly, the revenue from second
price remains constant, since it does not use the discount
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Fig. 6. Average utilities versus the number of SUs.

factor. However, we observe that the revenue from ADAPTIVE
slightly increases with δ. As δ increases, the summation in
the payment formula (S−i(θ, et) in equation (7)) increases as
well. This increase in summation leads to higher payments and
higher revenue, even though the factor (1− δ) in the payment
formula decreases. The revenue drops to zero with δ = 1
which clearly happens because the factor (1 − δ) becomes
zero. Actually, δ < 1 but we wanted to show the extremes.
Fig. 7 implies that the more we weigh the future (as opposed
to the current gains), the higher revenue we get.

VI. CONCLUSION

In this paper, we studied spectrum auctions in a realis-
tic setting where SUs are allowed to revise their estimates
of values of channel access, based upon what they experi-
ence over time. In this setting, we proposed ADAPTIVE, a
dynAmic inDex Auction for sPectrum sharing with TIme-
evolving ValuEs. To the best of our knowledge, ADAPTIVE is
the first spectrum auction that considers dynamically evolving
values. ADAPTIVE runs in polynomial time and results in
efficient allocation that maximizes the expected discounted
social welfare. In the analysis, we formally prove the economic
properties of ADAPTIVE, namely Periodic Ex Post Incentive
Compatibility, Periodic Ex Post Individual Rationality and
No Positive Transfers. Furthermore, we provide a numerical
performance comparison between ADAPTIVE and the well
known Vickrey auction (also called the second price auction)
as a representative of static auctions. In our model, we assumed
that SUs’ population is static, that is, SUs cannot leave or enter
the auction at arbitrary rounds. A possible direction for future
work is to extend ADAPTIVE to a dynamic population model
that will be a dynamic population and dynamic valuation
mechanism.
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