Capacity Deficit in Mobile Wireless Ad Hoc Networks Due to Geographic Routing Overheads

Alhussein A. Abouzeid
ECSE Department
Rensselaer Polytechnic Institute

Joint work with Nabhendra Bisnik
Maintaining State in VTNs

- Variable Topology Networks exhibit dynamically changing network topology e.g. due to mobility, fading, etc.

- *We view that routing typically involves a problem of maintaining state*

- Due to changing topology, it is very difficult to keep consistent state information

- Aggressive updates vs. use of stale information
 - Aggressive updates => large overheads
 - Stale information => low packet delivery rates

- Previous studies have shown that existing routing protocols overhead does not scale well with network size and mobility
Impact on Transport Capacity

- The transport capacity scales poorly in MANETs (ignoring the capacity gains due to mobility in DTNs)
- The capacity analysis assumes that
 - ZERO overhead is required to ‘figure out’ the network eg [GK00]
 - Or, that you don’t need to figure out the network eg [GT01]
- However for many practical situations protocol information has to be continuously exchanged between nodes
- This protocol information reduces the *actual capacity* that is available for exchanging useful information

What is the deficit in capacity available to the end users caused by routing protocols?
Existing studies [BM98] show that routing protocols are not able to handle high mobility or large number of sources.
Objective: Limits on Protocol Information

- What is the lower bound on the routing overhead (state maintenance) that has to be incurred for reliable routing of packets in MANETs or VTNs in general?
- Caveat: Function of the designer’s definition of state
- Such bounds may
 - Provide yardstick for performance comparison
 - Inspire development of efficient routing protocols
 - Yield upper bounds on capacity deficit due to routing

![Diagram showing capacity, overheads, capacity deficit, and effective capacity]
In this paper...

- We consider geographical routing protocols i.e. state is geographic information
- Formulate the minimum routing overhead problem in geographic routing protocols as a rate-distortion problem
- Evaluate a lower bound on the rate at which a node has to transmit state information to ensure routing of packets with desired degree of reliability
 - What is minimum location update rate?
 - What is minimum beacon transmission rate?
- Evaluate an upper bound on the effective transport capacity available to the end users
- Characterize scenarios where complete transport capacity of a network may be consumed by routing overhead
State accuracy affects performance
There is always a distortion between actual and perceived state
In practice, can live with some distortion e.g. GPS driving directions are accurate within a few meters.
So, we are interested in the overhead subject to a specified distortion bound
Gives rise to a rate distortion problem
Prior work
[RG76]
- “consider basic limitations on the amount of protocol information that must be transmitted in a data communication network to keep track of source and receiver addresses and of the starting and stopping of messages.”
- “a protocol is a source code for representing control information”
[BA05]
- Considered link state routing
Location Error

- Should $\hat{X}_i(t)$ be equal to $X_i(t)$ at all times?
 - No!... Only when the location server is queried
- So to ensure high delivery ratio
 \[\hat{X}_i(t) \approx X_i(t) \text{ when } t = T_i(j) \forall j \geq 1 \]
- How does packet delivery ratio vary with error in location information?

Thus to ensure high packet delivery ratio, the error in location information must be greater than some threshold.
Network Model

- The network consists of n nodes, each performs Brownian motion with variance σ^2
- We consider two network deployments
 - One dimensional network – Circle with perimeter is L
 - Two dimensional network – A torus, with area A
- The dimensions of network is large in comparison to σ^2
- The network is assumed to be connected
- Topology change negligible during packet traversal
- $X_i(t)$ denotes the position of node i at time t
 \[
 X_i(t) = \{X_{i1}(t), X_{i2}(t)\}
 \]
 For 2-D case
- $\hat{X}_i(t)$ denotes the position of node i that is stored at its location server at time t
Coordinate System

- For deployment along circle, the coordinates of a node are determined by opening the circle into a straight line about a fixed point.
- Similarly for the 2-D case, we may open up the torus into a rectangle about a reference point.
- Similar to considering projecting Brownian motion on infinite plane to a rectangle.
- Let $X_i(t)$ denote the position of node i at time t.
 \[X_i(t) = \{X_{i1}(t), X_{i2}(t)\} \quad \text{For 2-D case} \]
- Let $\hat{X}_i(t)$ denote the position of node i that is stored at its location server at time t.
A location service scheme is used to assign location server to each host.

Hosts periodically update their location servers at some rate.

Each node maintains neighborhood information by transmitting beacons.

The source node contacts destination’s location server before sending out the packet.

The source host includes the location information of the destination in each packet.

Each intermediate node forwards packet to a neighbor that is closer to the destination than itself.

Sources of overhead:
1. Beacons
2. Location update packets
Traffic Model

- The j^{th} packet destined to node i is generated in the network at time $T_i(j)$
- $T_i(j) - T_i(j-1)$ is distributed according to p.d.f. $f_s(t)$ \forall $j \geq 1$ and $1 \leq i \leq n$
- Node i forwards k^{th} packet at time $\tau_i(k)$
- $\tau_i(k) - \tau_i(k-1)$ is distributed according to p.d.f $f_\tau(t)$ \forall $k \geq 1$ and $1 \leq i \leq n$
- $T_i(0) = \tau_i(0) \triangleq 0$
Distortion Measure

- The vector of positions of node i when first N packets are routed to it
 \[X_i^N = \{X_i(T_i(1)), X_i(T_i(2)), \ldots, X_i(T_i(N))\} \]

- The vector of positions used to route the packets is
 \[\hat{X}_i^N = \{\hat{X}_i(T_i(1)), \hat{X}_i(T_i(2)), \ldots, \hat{X}_i(T_i(N))\} \]

- We use squared-error distortion measure
 \[d(T_i(j)) = |X_i(T_i(j)) - \hat{X}_i(T_i(j))|^2 \]

- Distortion measure
 \[D_N = \frac{1}{N} \sum_{j=1}^{N} d(T_i(j)) \]

- To ensure high delivery ratio
 \[\overline{D} \leq \epsilon^2 \]
Rate-Distortion Formulation for Minimum Update Rate

- At what rate should a node transmit its location information to the server such that the distortion bound is satisfied?
- Natural to formulate it as rate distortion problem

Let $\mathcal{P}_N(\epsilon^2)$ be the family of probability distributions for which

$$\frac{1}{N} \sum_{j=1}^{N} \sum_{X_i^N, \hat{X}_i^N} P_N[X_i^N, \hat{X}_i^N](X_i(T_i(j)) - \hat{X}_i(T_i(j)))^2 \leq \epsilon^2$$

Then

$$R_N(\epsilon^2) = \min_{P_N \in \mathcal{P}_N(\epsilon^2)} \frac{1}{N} I_{P_N}(X_i^N; \hat{X}_i^N)$$

$$R(\epsilon^2) = \lim_{N \to \infty} \inf R_N(\epsilon^2)$$

Minimum rate which the node needs to transmit for first N packets

The minimum rate at which node should transmit location information
We show that mutual information between X_i^N and \hat{X}_i^N satisfies

$$\min_{P_N \in \mathcal{P}_N(\epsilon^2)} I_{P_N}(X_i^N; \hat{X}_i^N) \geq NR_1(\epsilon^2)$$

This implies that

$$R(\epsilon^2) \geq R_1(\epsilon^2)$$

$$R(\epsilon^2) \geq h(X_{i1}(T_1)) + h(X_{i2}(T_1)) - \log(\pi e \epsilon^2) \text{ bits/packet}$$

where

$$h(X_{i1}(T_1)) = - \int_{x=-\infty}^{\infty} f_X(x) \log \left(f_X(x) \right) dx$$

Differential entropy of $X_i(T_i(1))$ – depends on mobility pattern and packet inter-arrival process

$$f_X(x) = \int_{\tau=0}^{\infty} \frac{1}{\sqrt{\pi \sigma^2 \tau}} e^{-\frac{x^2}{\sigma^2 \tau}} f_S(\tau) d\tau$$

Distribution of $X_i(T_i(1))$ when $X_i(0) = 0$
Location Update Overhead for Different Packet Processes

- Interesting Insights from the paper for:
 - Deterministic arrival: has closed form expressions; can construct optimal update strategies for this case; has highest update rate among all distributions (Gaussian location change with highest variance)
 - Uniform/exponential inter-arrival: has highest entropy among cont time dist with finite/infinite base; yields max update rate

Location overhead increases with mobility and packet arrival rate
Nodes need to know who their neighbors are in order to make packet forwarding decisions.

Neighborhood information exchanged through exchange of beacons.

Again, consistent neighborhood information is required only at time instants when a node is forwarding packets.

At what rate must a node transmit its beacons such that its neighbors have consistent neighborhood information with high probability \((1 - \delta)\) when forwarding packets?

We perform a similar rate-distortion analysis.
Distortion Measure

Define indicator random variables

\[Z_{ij}(t) = \begin{cases}
1, & \text{if } j \in N_i(t) \\
0, & \text{otherwise}
\end{cases} \quad \hat{Z}_{ij}(t) = \begin{cases}
1, & \text{if } j \in \hat{N}_i(t) \\
0, & \text{otherwise}
\end{cases} \]

Define vectors of indicator random variables:

\[Z_{i,j}^N \triangleq \{ Z_{ij}(\tau_i(1)), Z_{ij}(\tau_i(2)), \ldots, Z_{ij}(\tau_i(N)) \} \]
\[\hat{Z}_{i,j}^N \triangleq \{ \hat{Z}_{ij}(\tau_i(1)), \hat{Z}_{ij}(\tau_i(2)), \ldots, \hat{Z}_{ij}(\tau_i(N)) \} \]

Actual and perceived neighborhood for N forwarded packets

Hamming distortion measure is used

\[d(Z_{ij}(t), \hat{Z}_{ij}(t)) = \begin{cases}
1, & \text{if } Z_{ij}(t) \neq \hat{Z}_{ij}(t) \\
0, & \text{if } Z_{ij}(t) = \hat{Z}_{ij}(t)
\end{cases} \]

E_{ij}(t) is defined as

\[E_{ij}(t) = Z_{ij}(t) - \hat{Z}_{ij}(t) \]

If E_{ij}(t) is zero then neighborhood information is correct
Minimum beacon rate problem: What is the minimum rate at which node j must transmit beacons such that

\[P[E_{ij}(\tau_i(k)) = 0] \geq 1 - \delta \quad \forall \ 1 \leq i \neq j \leq n, \ 1 \leq k < \infty \]

The rate distortion function is given by

\[R^{(b)}(\delta) = \lim_{N \to \infty} \min_{R^{(b)}_N(\delta)} R^{(b)}_N(\delta) \]

\[R^{(b)}_N(\delta) = \min_{P_N \in \mathcal{P}^{(b)}_N(\delta)} \frac{1}{N} I_{P_N}(Z^{N}_{ij}; \hat{Z}^{N}_{ij}) \]

Where \(\mathcal{P}^{(b)}_N(\delta) \) the family of joint distributions of \(Z^{N}_{ij} \) and \(\hat{Z}^{N}_{ij} \) for which the distortion constraint is satisfied.
Lower Bound for Beacon Rate

Similar to the minimum update rate analysis, we show that

\[R^{(b)}(\delta) \geq R^b_1(\delta) \]

Lower bound on beacon transmission rate is thus given by

\[R^{(b)}(\delta) \geq \mathcal{H}(p(l^*)) - \mathcal{H}\left(\frac{\delta}{2}, 1 - \delta, \frac{\delta}{2}\right) \text{ beacons/pkt} \]

Where

\[p(l^*) = P[Z_{ij}(\tau_i(1)) = 1 \mid |X_j(0) - X_i(0)| = l^*] \]

\[l^* \triangleq \arg \min_{-r \leq l \leq r} \left| P[Z_{ij}(\tau_i(1)) = 1 \mid X_j(0) = l] - 0.5 \right| \]

\(l^* \) is the initial distance between nodes i and j that maximizes \(\mathcal{H}(Z_{ij}(\tau_i(1))) \)
When nodes are highly mobile they need to transmit beacons LESS frequently.
If $C(n)$ is the transport capacity of a network, then the residual capacity, $C'(n)$, for network users is given by

$$C'(n) \leq C(n) - n \left(\eta \frac{\epsilon^2}{E[S]} + \frac{\tau}{E[\tau]} R(b)(\delta) \right)$$

where

- η: Average distance between a node and its location server.
- $E[S]$: Average inter-arrival time for packet destined to a node.
- $E[\tau]$: Average time interval between two packets forwarded by a node.
Residual Capacity

\[C'(n) \leq \left(\frac{\sqrt{\varepsilon}}{\pi} \frac{1}{\Delta} W \sqrt{nA} - n \frac{\eta}{E[S]} R(\varepsilon^2) - n \frac{r}{E[\tau]} R(b)(\delta) \right) \text{ bit – m/sec} \]

For high mobility and packet arrival rate, the entire transport capacity may be occupied by routing overheads.
Residual Capacity

Not only does capacity not scale well with the number of nodes, routing overheads scale at a higher rate.
For geographic routing, the upper bound on the maximum number of nodes that may be deployed in a network while ensuring that it has non-zero residual transport capacity is given by

\[n^* \leq \left(\frac{\sqrt{8}}{\pi} \frac{1}{\Delta} W \sqrt{A} \right)^2 \left(\frac{1}{\eta U(\epsilon^2) + r U(b)(\delta)} \right) \]

- Critical size increases with:
 - Transmission rate
 - Mobility
 - Packet arrival rate
 - Number of hops to reach a location server
 - Communication radius
- Critical size decreases with:
 - Deployment area
Conclusions

- We presented a rate-distortion framework for evaluating lower bounds on minimum routing overheads in geographic routing
- For high mobility and packet generation rate, entire capacity may be occupied by routing overheads
- Is it possible to design scalable routing protocols?
 - Exploit trade-offs to make routing protocols scalable
- For example, traffic shaping at source to reduce the effective packet generation rate
Future Work

- Design protocols whose update rates are close to the lower bounds
 - How to encode the change in location?
 - How to efficiently manage location servers?
 - What could be a more efficient way of maintaining neighborhoods
- Extend the model to other routing paradigms
- Unified cost measures for different types of state
Thanks.

Questions & Comments?