Routing in Variable Topology Networks

Dr. Alhussein Abouzeid

Electrical, Computer and Systems Engineering (ECSE)

Rensselaer Polytechnic Institute
Variable Topology Networks

- **P2P networks** for distributed resource sharing: File sharing: Gnutella, Freenet, ..etc. or CPU sharing: Globus, BlueGrid.
 - Topology changes: resources (e.g. peers, files, etc.) appear/disappear.
 - **Find** (discover) where the resource is.
 - **Allocate** “jobs” to “resources” so as to maximize/minimize some performance measure.

- **Sensor/actuation networks**
 - Topology changes: unreliable nodes (turn ON/OFF randomly) and random dynamic environment (e.g. winds).
 - Need to disseminate information to/from the sensors/sinks.

- **Mobile ad-hoc networks**
 - Topology changes: continuous node movement
 - Need to discover a peer/destination.
Single-Path Routing in Ad-hoc Networks

• Assumptions

 - Stationary but unreliable nodes representing
 • an unreliable sensor network, nodes turn ON/OFF randomly
 • an unreliable computing grid, random service interruptions

 - A state-full reactive routing protocol is used

• Fundamental Question:

 • What is the interplay between application-level traffic requirements, network topology (e.g. node density and size) and routing overhead?

 • Can a state-full routing protocol be infinitely scalable?

 • We will consider
 - Regular or Random Node placement
 - Flat Routing
Traffic and Routing Scalability

• **Argument:** If all nodes communicate with all other nodes with equal probability, routing overhead grows without bound as \(N \) grows.

• If nodes tend to communicate with “nearby” nodes, will the routing overhead be bounded (i.e. \(O(1) \)) as \(N \to \infty \)?

• But we still want to keep the model that any node can communicate with any other node.
A Manhattan grid (degree 4 graph). Nodes turn ON/OFF randomly. Network is always connected.

Two nodes i and j at a distance $r_{i,j}$ hops have an active path (i.e. $I=1$) with probability

$$P[I=1] = P(r_{i,j}) = \frac{c}{r_{i,j}^k}$$

- c is a scaling constant
- k is a design-controlled constant
- What is the minimum k to guarantee scalable operation?
Summary of Results

• For a given node, compute

- \(E[S_i] := \) average number of sessions initiated by the node
- \(E[S_t] := \) average number of sessions destined to the node
- \(E[S_r] := \) average number of sessions passing through the node
- \(T(a) := \) Min Time To Live “T” such that the probability of not finding the destination node is less than a small value “a”
- \(E[N_{\text{find}}] := \) average number of RREQ packets
- \(E[N_{\text{off}}] := \) average number of RERR packets
Flooding of Control Packets

• Many protocols perform (potentially limited) flooding of control packets (instead of data packets) to discover routes (paths)

• Discovered routes are subsequently used to send data

• Overhead of control packet flooding is amortized over data packets transmitted between consecutive control packet floods

• E.g. DSR and AODV
Dynamic Source Routing (DSR) [Johnson96]

- Initiated when node S wants to send data to node D, but does not know a valid route to node D, node S initiates a route discovery by flooding the network with a Route Request (RREQ) packet.

- Each node appends own identifier when forwarding RREQ.
- Destination D on receiving the first RREQ, sends a Route Reply (RREP).

- RREP is sent on a route obtained by reversing the route appended to received RREQ.

- RREP includes the route from S to D on which RREQ was received by node D.
Ad Hoc On-Demand Distance Vector Routing (AODV) [Perkins99Wmcsa]

- DSR includes source routes in packet headers
 - Resulting large headers can sometimes degrade performance, particularly when packet payload is small

- AODV attempts to improve on DSR by maintaining routing tables at the nodes, so that data packets do not have to contain routes

- RREQ/RREP packets are forwarded similar to DSR
Route Caching

- Each node caches a new route it learns by *any means*.

- Node X on receiving a Route Request for some node D can send a Route Reply if node X knows a route to node D.

- Use of route cache
 - can speed up route discovery
 - can reduce propagation of route requests
Note on Route Error Notification

- Two paths as shown, and node B fails.
- Two modes:
 - "Source-route" error notification (e.g. DSR): node D receives two RERR packets from C, one for each route
 - "Distance-vector" error notification (e.g. AODV): node D receives only one RERR from C.
TTL Optimizations: Expanding Ring Search

- TTL field is initialized to some value which is the maximum number of hops that the packet should travel.

- Every intermediate node decrements this field by one.

- If the value of the field is zero, the packet is dropped.

- Route Requests are initially sent with small Time-to-Live (TTL) field, to limit their propagation
 - DSR also includes a similar optimization

- If no Route Reply is received, then larger TTL tried
Summary of Results

• For a given node, compute

- $E[S_i] :=$ average number of sessions initiated by the node
- $E[S_t] :=$ average number of sessions destined to the node
- $E[S_r] :=$ average number of sessions passing through the node
- $T(a) :=$ Min Time To Live “T” such that the probability of not finding the destination node is less than a small value “a”
- $E[N_{\text{find}}] :=$ average number of RREQ packets
- $E[N_{\text{off}}] :=$ average number of RERR packets
Summary of Results

• For an (infinite network) $N \rightarrow \infty$:

\[
T(\alpha) = \min \left\{ i \left| \frac{\sum_{d=i+1}^\infty \frac{1}{d^{k-1}}}{\sum_{d=1}^\infty \frac{1}{d^{k-1}}} \leq \alpha \right. \right\}; k > 2
\]

\[
E[S_r] = 4c \cdot f(k-1); k > 2
\]

\[
E[S_r] = 4c \cdot (f(k-2) - f(k-1)); k > 3
\]

\[
E[S] = 4c \cdot (f(k-2) + f(k-1)); k > 3
\]

\[
p^r = 1 - \frac{2f(k-1)}{f(k-2) + f(k-1)}
\]

\[
N_{\text{find}} = 1 + 2T(T - 1)
\]

\[
E[N_{\text{off}}] = 4c \cdot (f(k-2) - f(k-1)); k > 3
\]

(local repair with src route notif.)

\[
E[N_{\text{off}}] = 4c \cdot (f(k-3) - f(k-2)); k > 4
\]

(src route notif.)

where \(f(k) \) @ \(\sum_{d=1}^\infty \frac{1}{d^k} \)

• Main Result: $k > 4$ necessary for bounded overhead.
Validations Through Simulations

- We use ns-2 simulator with CMU’s ad-hoc networks extensions (MAC 802.11, Omni antenna, etc.)

- Purpose: Validate the dependencies (trends) rather than absolute values

- Difficulty: Cannot simulate too large networks

- Networks of size $N=49, 121, 225, 361$ and 529

- Use CBR \sqrt{N}

- Each point represents average of 5 runs with same topology but different random traffic seed

- Sum from 1 till the network diameter
\[E[S_+] \]

- \(k > 2 \)
\[E[S] \]

- \(k > 3 \)
p_r
\[E[N_{\text{off}}] \]

- \(k > 4 \)
$T(k) \quad k=2$

- $k>2$
$\mathcal{T}(\Xi)$

- $k=3$

Successful percentage of finding paths

TTL (hop)

$N=49$

$N=225$

$N=529$

\triangle Theory

$k=3$
\[T(k) \]

- \(k > 2 \)
- \(k = 4 \)
More Realistic Network Model

\[P_N(n) = \frac{(\lambda A)^n}{n!} e^{-\lambda A} \]

\[P(r_{i,j}) = \begin{cases}
\frac{c}{r_1^k} & 0 \leq r_{i,j} < r_1 \\
\frac{c}{r_i^k} & r_{i,j} \geq r_1
\end{cases} \]

where \(0 \leq c \leq r_1^k \)

\[h_{i,j} \approx \beta \frac{r_{i,j}}{r_0} \]

Random distribution (Poisson Field) with average degree 10 (above connectivity threshold)
Validations Through Simulations

- We use ns-2 simulator with CMU's ad-hoc networks extensions (MAC 802.11, Omni antenna, etc.)
- Purpose: Validate the dependencies (trends)
- Difficulty: Cannot simulate too large networks
- Networks of size $N=49, 121, 225, 361$ and 529
- For random topologies, choose area A, average degree g

$$g : \Theta(\log N)$$

$$A = \frac{\pi r_0^2 N}{g}$$

$r_0 = 250\text{m.}$
$E[S_+]$

- $k > 2$
$E[N_{off}]$

- $k > 3$
\(E[N_{\text{off}}] \)

- \(k > 4 \)