JOINT CODE AND DECODER DESIGN FOR IMPLEMENTATION-ORIENTED
(3, K)-REGULAR LDPC CODES

Tong Zhang and Keshab K. Parhi

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455, USA

ABSTRACT

Gallager’s Low-Density Parity-Check (LDPC) codes have recently received a lot of attention because of their excellent performance. The decoder hardware implementation is obviously one of the most crucial issues determining the extent of LDPC applications in the real world. The straightforward fully parallel decoder architecture usually incurs too high complexity for many practical purposes and should be transformed to a partly parallel realization. In this paper, we propose a joint code and decoder design approach to construct a class of (3, k)-regular LDPC codes which exactly fit to a partly parallel decoder implementation. The partly parallel decoder architecture is suitable for efficient VLSI implementation and it has been shown that the jointly developed (3, k)-regular LDPC codes have very good performance.

1. INTRODUCTION

Gallager’s Low-Density Parity-Check (LDPC) codes [1] have recently received a lot of attention because of their excellent performance and have been widely considered as a promising candidate error-correcting coding scheme for many real applications in telecommunications and magnetic storage.

However, little consideration has been given to the LDPC decoder hardware realization which is required in many applications. As we will see later, the LDPC decoding algorithm is essentially a fully parallel algorithm matching a random-like graph. Thus the fully parallel architecture is the most natural solution for the LDPC decoder hardware architecture design, e.g., a 1024bit, rate-1/2 fully parallel LDPC decoder with the maximum throughput of 1 Gbit/s has been physically implemented [2]. However, because of its apparent high complexity, such a fully parallel implementation is not suitable for many practical purposes, even short code length (less than 10000 bits) is used, and an effective design approach to reduce complexity is highly desirable.

To reduce the hardware complexity, we have to effectively transform the fully parallel architecture to partly parallel ones. However, due to the randomness of LDPC codes, it’s nearly impossible to find an effective transformation for an arbitrary given LDPC code. To solve this problem, Boutillon et al. [3] propose to reverse the code design sequence: Instead of trying to obtain a partly parallel decoder from a given LDPC code, we can use an available partly parallel decoder to define a constrained random LDPC code, which leads to the decoder-first code design [3]. However, the decoder obtained from this design approach contains many constrained random number generators which will incur much complexity for real implementations and make the entire design process very complicated.

In this work we consider the partly parallel decoder architecture design for LDPC codes with short block length (less than 10000 bits) and we believe these LDPC codes are of great interest from practical point of view. It’s well known that the LDPC decoding algorithm works well if the corresponding Tanner graph (as explained later) does not contain too many short cycles. Inspired by the criteria for less short cycles and the decoder-first code design methodology in [3], we propose a joint code and decoder design approach to develop a class of implementation-oriented (3, k)-regular LDPC codes which exactly fit to a partly parallel decoder architecture. Compared with decoder-first code design, our proposed joint design approach leads to a much more efficient decoder by eliminating those complicated random number generators. The performance of such (3, k)-regular LDPC code is nearly identical to the fully random LDPC codes as shown in two design examples presented in this paper.

2. LOW-DENSITY PARITY-CHECK CODES

A LDPC code is defined as the null space of a very sparse $M \times N$ parity check matrix H, and typically is represented by a bipartite graph, usually called Tanner graph, in which one set of N nodes, the variable (or message) nodes,
corresponds to the set of codeword, and another set of M
nodes, the check (or constraint) nodes, corresponds to the
set of parity check constraints, as illustrated in Fig. 1. The
construction of LDPC codes is typically random. We say
that a LDPC code is (j, k)-regular if each variable node has
a degree of j and each check node has a degree of k, where
the code rate will be $1 - j/k$ provided that H is full rank.

![Fig. 1. Tanner graph representation of a LDPC code and the
decoding message flow.](image)

LDPC codes can be effectively decoded by the iterative
belief-propagation (BP) algorithm. As shown in Fig. 1,
the structure of BP decoding algorithm directly matches the
Tanner graph: each variable node is initialized with intrinsic
(or channel) information, then decoding message (check-to-
variable and variable-to-check message), referred as extrin-
sic information in the following, is iteratively computed on
each node and exchanged through the edges between neigh-
boring nodes. Since BP algorithm works well when Tanner
graph doesn’t contain too many short cycles, LDPC code
is typically constructed under the constraint that the corre-
sponding Tanner graph is 4-cycle free.

3. JOINT DESIGN APPROACH

In this section, we propose a joint code and decoder de-
sign approach to obtain a partly parallel $(3, k)$-regular LDPC
decoder architecture which defines $(3, k)$-regular LDPC code
ensemble. As shown later, we may consider that each code
in this code ensemble is constructed by letting the decoder
insert certain random check nodes into the deterministic high-
girth $(2, k)$-regular LDPC code. Thus it is reasonable to ex-
pect that the Tanner graph doesn’t contain too many short
cycles and the corresponding code may assume good per-
formance, which will be further illustrated by two design
examples. We call such a design approach as joint code and
decoder design. Moreover, by exploiting their special struc-
tures, we propose a systematic efficient encoding scheme
for the implementation-oriented $(3, k)$-regular LDPC codes.

Before presenting the joint design approach, we intro-
duce the definition of girth average of a graph G [4]: Let $g(u)$
de note the length of the shortest cycle that passes through
node u in graph G, then $\sum_{u \in G} g(u)/N$ is denoted as girth
average of G, where $N = |G|$ is the total node number of
G. As proposed in [4], we can use girth average as an effect-
tive criterion for searching good LDPC code over one code
ensemble. The joint design approach is briefly described
next and the corresponding schematic diagram is shown in
Fig. 2.

1. Explicitly construct the two matrices, H_0 and H_1, so
that $H = [H_0^T, H_1^T]^T$ defines a $(2, k)$-regular LDPC
code denoted as C_2;
2. Obtain a $(3, k)$-regular LDPC decoder which defines a
random $(3, k)$-regular LDPC code ensemble and each
code in this ensemble is a sub-code of C_2;
3. Use the decoder to randomly generate a certain num-
ber of $(3, k)$-regular LDPC codes from which we se-
lect one code with good performance by girth average
comparison and computer simulations.

![Fig. 2. Joint design flow diagram.](image)

3.1. Construction of H_0 and H_1

In the following, we propose a novel method to con-
struct matrix $H = [H_0^T, H_1^T]^T$ which defines a $(2, k)$-regular
LDPC code with girth of 12. Although 12 is not a very large
girth value, our simulations show that it is sufficient for gener-
ating good implementation-oriented $(3, k)$-regular LDPC codes
for short code lengths (less than 10000 bits) which are
of interest. More important, such construction method will
lead to a very simple decoder architecture and provide more
freedom on the selection of code length: Given k, any code
length that could be factored as $L \cdot k^2$ is permitted, where L
can not be factored as $L = a \cdot b, \forall a, b \in \{0, \cdots, k - 1\}$.

![Fig. 3. Structure of submatrices H_0 and H_1.](image)
The structures of \(\mathbf{H}_0 \) and \(\mathbf{H}_1 \) are shown in Fig. 3. Each block matrix \(\mathbf{I}_{x,y} \) in \(\mathbf{H}_0 \) is an \(L \times L \) identity matrix and each block matrix \(\mathbf{P}_{x,y} \) in \(\mathbf{H}_1 \) is obtained by a cyclic shift of an \(L \times L \) identity matrix. Let \(T \) denote the right cyclic shift operator where \(T(\mathbf{U}) \) represents right cyclic shifting matrix \(\mathbf{U} \) by \(i \) columns, then \(\mathbf{P}_{x,y} = T^y(\mathbf{I}) \) where \(u = ((x - 1) \cdot y) \mod L \) and \(\mathbf{I} \) represents the \(L \times L \) identity matrix. For example, let \(L = 5 \), \(x = 3 \) and \(y = 4 \), we have \(u = (x - 1) \cdot y \mod L = 8 \mod 5 = 3 \), then

\[
\mathbf{P}_{3,4} = T^3(\mathbf{I}) = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}.
\]

Clearly, matrix \(\mathbf{H} = \left[\mathbf{H}_0^T, \mathbf{H}_1^T \right]^T \) defines a \((2,k)\)-regular LDPC code with \(L \cdot k^2 \) variable nodes and \(2L \cdot k \) check nodes. Let \(G \) denote the corresponding Tanner graph, we have the following theorem pertaining to the girth of \(G \):

Theorem 3.1 If \(L \) can not be factored as \(L = a \cdot b \), where \(a, b \in \{0, \ldots, k - 1\} \), then the girth of \(G \) is \(12 \) and there is at least one \(12 \)-cycle passing each check node.

3.2. \((3,k)\)-regular LDPC decoder architecture

Denote the \((2,k)\)-regular LDPC code defined by \(\mathbf{H} = \left[\mathbf{H}_0^T, \mathbf{H}_1^T \right]^T \) as \(C_2 \). In the following, we present an \((3,k)\)-regular LDPC decoder architecture as shown in Fig. 4. It will be shown that this decoder defines a \((3,k)\)-regular LDPC code ensemble in which each code has \(L \cdot k^2 \) variable nodes and \(3L \cdot k \) check nodes and is a sub-code of \(C_2 \).

Fig. 4. \((3,k)\)-regular LDPC decoder architecture.

This decoder contains \(k^2 \) memory banks, the \(i \)'th memory bank is represented as MEM BANK-(\(x, y \)), where \(x = ((i - 1) \mod k) + 1 \) and \(y = \left\lceil \frac{q}{L} \right\rceil + 1 \), and each one stores all the intrinsic information (in RAM \(I \)), extrinsic information (in two-port RAM \(E_1, E_2 \) and \(E_3 \)) and estimated decoded bits (in RAM \(C \)) associated with \(L \) variable nodes; a 1-layer shuffle network (\(\pi_{-1} \) or \(\text{Id} \)); a \(g \)-layer shuffle network; \(k \) Check Node processor Units (\(\text{CNU}_i \)'s) and \(k^2 \) Variable Node processor Units (\(\text{VNU}_i \)'s). One Address Generator (\(\text{AG} \)) is associated with each memory bank to provide the access address. The \(g \)-layer shuffle network consists of \(g \) 1-layer shuffle networks, each one is configured by a single control bit \(c_i \) leading to a given permutation \(\pi_i \) if \(c_i = 1 \) (\(\pi_i \)), or to the identity permutation (\(\text{Id} = \pi_0^0 \)) otherwise. Thus, configured by the \(g \)-bit word \(\mathbf{c} = (c_{g-1}, \ldots, c_0) \), the overall permutation pattern \(\pi \) is the product of \(g \) permutations: \(\pi = \pi_{g-1}^{c_{g-1}} \circ \cdots \circ \pi_0^{c_0} \). The control word \(\mathbf{c} \) is generated by Random Permutation Generator (RPG). Here we note that \(L \) can not be factored as \(L = a \cdot b \), where \(a, b \in \{0, \ldots, k - 1\} \).

In this decoder, the decoding message delivered along the same edge in Tanner graph are stored in the same memory location alternatively, and 3 extrinsic information (check-to-variable message or variable-to-check message) associated with the same variable node are stored in the 3 different RAMs, \(E_1, E_2 \) and \(E_3 \), respectively, with the same address. As shown in Fig. 4, intrinsic and extrinsic information are represented using \(p \) and \(q \) bits, respectively. This decoder completes each decoding iteration in \(3L \) clock cycles, and in each clock cycle it performs:

1. In each memory bank, if all the check-to-variable message associated with one variable node become available after previous clock cycle, then
 (a) Retrieve 1 intrinsic information and 3 check-to-variable message associated with this variable node;
 (b) \(\text{VNU} \) computes 3 variable-to-check message and updates the corresponding estimated decoded bit;
 (c) Store the 3 variable-to-check message back to RAM \(E_1, E_2 \) and \(E_3 \) and estimated decoded bit to RAM \(C \).
2. Retrieve \(k^2 \) variable-to-check message and the corresponding estimated decoded bits from the \(k^2 \) memory banks to the addresses provided by \(\text{AG}_i \)'s;
3. Shuffle the \(k^2 \) variable-to-check message and estimated decoded bits according to \(c_{-1} \) and \(\mathbf{c} \) provided by the comparator and RPG, respectively;
4. Each \(\text{CNU}_i \) computes \(k \) check-to-variable message and performs the parity check on the corresponding \(k \) estimated decoded bits;
5. Unshuffle the \(k^2 \) check-to-variable message and store them back into the \(k^2 \) memory banks at the initial location.

Since \(E_1, E_2, E_3 \) are two-port RAMs, we can perform the step 1 in the above decoding process in parallel with all other steps. Moreover, this decoder has the following
properties:

- Each Address Generator (AG) associated with MEM BANK-\((x, y)\) denoted as AG\(_{x, y}\) is realized by a simple modulo-\(L\) binary counter. Each counter is preset with initial value \(D_{x,y}\) every \(L\) clock cycles, \(i.e.,\) at \(r = 0, L, 2L\), and

\[
D_{x,y} = \begin{cases}
0, & r = 0 \\
((x - 1) \cdot y) \mod L, & r = L \\
t_{x,y}, & r = 2L
\end{cases}
\]

where each \(t_{x,y}\) is chosen in random with the following constraints:

Given \(x\), we have \(t_{x,y} \neq t_{x,y}^\prime, \forall y_1, y_2 \in \{1, \cdots, k\}\); Given \(y\), we have \(t_{x_1,y} - t_{x_2,y} \neq ((x_1 - x_2) \cdot y) \mod L, \forall x_1, x_2 \in \{1, \cdots, k\}\).

- Provided with the address from each AG, the RAMS \(E1, E2\) and \(E3\) are accessed by the CNU array in the 1\(^{st}\), 2\(^{nd}\) and 3\(^{rd}\) \(L\) clock cycles, respectively. Thus in one iteration, the variable-to-check message will be computed by VNU only in the last (3\(^{rd}\)) \(L\) clock cycles;

- The 1-bit output of comparator \(c_{r=1} = 1\) if \(r < L\), \(c_{r=1} = 0\) otherwise;

- The 1-layer shuffle network (\(\pi_{r=1}\) or Id) performs the permutation \(\pi_{r=1}\). \(\pi_{r=1}\) permutes an input data sequence \(\{x_0, \cdots, x_{k^2-1}\}\) to \(\{x_{\pi_{r=1}(0)}, \cdots, x_{\pi_{r=1}(k^2-1)}\}\), where

\[
\pi_{r=1}(i) = (i \mod k) \cdot k + \lfloor i/k \rfloor.
\]

- During the first \(2L\) clock cycles, the output of RPG is a zero vector so that the \(g\)-layer shuffle network performs the identity permutation, and during the last \(L\) clock cycles, RPG performs as a hash function \(f\):

\[
\{2L, \cdots, 3L - 1\} \rightarrow \{0, \cdots, 2^L - 1\}.
\]

We can easily verify that the above presented decoder architecture defines a \((3, k)\)-regular LDPC code ensemble in which each code has a Tanner graph with \(L \cdot k^2\) variable nodes and \(3k \cdot L\) check nodes and the corresponding parity check matrix can be divided into 3 submatrices: each one is \(L \cdot k\) by \(L \cdot k^2\) and corresponds to the interconnections among all the \(L \cdot k^2\) variable and \(k \cdot L\) check nodes realized by this decoder in the 1\(^{st}\), 2\(^{nd}\) or 3\(^{rd}\) \(L\) clock cycles in each decoding iteration.

It can be proved that the first two submatrices of each code are always identical to matrix \(\mathbf{H}_0\) and \(\mathbf{H}_1\) presented in last section. The third submatrix, denoted as \(\mathbf{H}_2\), of each code is jointly specified by all \(t_{x,y}\)'s, the hash function \(f\) and the \(g\)-layer shuffle network. Recall that we denote the high-girth (2, \(k\))-regular LDPC code specified by \(\mathbf{H} = [\mathbf{H}_0^T, \mathbf{H}_1^T]^T\) as \(C_2\), we know that each code in this code ensemble is actually a sub-code of \(C_2\). Moreover, we may consider that each code is constructed by using the decoder to introduce extra \(L \cdot k\) check nodes into \(C_2\).

We can prove that if we construct the hash function \(f\) and the \(g\)-layer shuffle network in a fully random manner and generate the value of each \(t_{x,y}\) in random with the constraints as described above, the code ensemble defined by this decoder only contains 4-cycle free codes which is desirable in practice. Furthermore, from its special structure, it can be proved that the parity check matrix of each code at least contains 2 redundant checks, which just means that the actual code rate may be slightly higher than what the parity check matrix indicates, \(i.e.,\) \(1 - 3/k\).

For real applications, we must select a good code from the implementation-oriented \((3, k)\)-regular LDPC code ensemble. In this work, we propose to combine the girth average comparison and computer simulations together to find a good code: first randomly generate a certain number of implementation-oriented \((3, k)\)-regular LDPC codes, then pick several codes with high girth averages and select the one leading to the best simulation result in extensive computer simulations.

3.3. Design Examples

To illustrate the above design methodology, we develop two implementation-oriented \((3, 6)\)-regular LDPC codes with different code length.

Let \(L_1 = 64\) and \(L_2 = 128\). Then, using the above presented decoder architecture, we may obtain two code ensembles with different code length: \(N_1 = L_1 \cdot k^2 = 2304\) and \(N_2 = L_2 \cdot k^2 = 4608\). In both cases, we set \(g = 3\) and independently generate 500 groups of hash function \(f\), \(3\)-layer shuffle network and all \(t_{x,y}\) in random with the above two constraints on \(t_{x,y}\). Then we feed these parameters to the \((3, 6)\)-regular LDPC decoder as shown in Fig. 4 and obtain two code ensembles, each one contains 500 codes. The histograms of the girth averages of these two code ensembles are shown in Fig. 5 (b) and (d). In each ensemble, we choose 5 codes with relatively high girth averages and select the one leading to the best performance based on the extensive computer simulations. In the computer simulation, we assume that the LDPC codes are modulated by BPSK and transmitted over AWGN channel.

We denote the selected implementation-oriented \((3, 6)\)-regular LDPC codes with \(N_1 = 2304\) and \(N_2 = 4608\) as \(C_3^1\) and \(C_3^2\), respectively. Since the parity check matrices of both \(C_3^1\) and \(C_3^2\) contain 2 redundant checks, \(C_3^1\) and \(C_3^2\) are \((2304, 1154)\) and \((4608, 2306)\) codes, respectively. Moreover, we randomly generate two fully random 4-cycle free \((3, 6)\)-regular LDPC code ensembles with code length \(N_1 = 2304\) and \(N_2 = 4608\), respectively. Each code ensemble contains 500 codes and the histogram of the girth averages is shown in Fig. 5. In each ensemble, we also choose 5 codes with relatively high girth averages and select the one leading to the best performance. We denote the selected fully random LDPC codes with \(N_1 = 2304\)
and $N_2 = 4608$ as C^1_R and C^2_R, respectively. In this work, C^1_R and C^2_R are (2304, 1152) and (4608, 2304) code, respectively.

![Fig. 5. Histograms of girth average for (a) fully random codes, and (b) implementation-oriented codes.](image)

The finite precision simulation results of each C^j_R and C^k_R are shown in Fig. 6. In the finite precision simulations, we adopt the quantization scheme developed in [5]: received data is quantized with 4 bits and all intrinsic and extrinsic information are represented with 6 bits. In order to guarantee the simulation accuracy, especially at high SNR, each point in the simulation results is obtained under the condition that the block error number at least exceeds 100. As shown in Fig. 6, the performance of the (3, k)-regular LDPC codes developed by these two different approaches are almost identical, but we note that it’s nearly impossible to develop a partly parallel decoder for those fully random LDPC codes.

![Fig. 6. Finite precision simulation results where solid lines and dash lines correspond to C^j_R and C^k_R, respectively.](image)

5. REFERENCES

4. CONCLUSIONS

In this paper, based on a novel method of constructing deterministic high-girth (2, k)-regular LDPC code, we present a partly parallel (3, k)-regular LDPC decoder architecture which defines an implementation-oriented (3, k)-regular LDPC code ensemble. Each code in this ensemble is actually constructed by inserting certain check nodes into the high-girth (2, k)-regular LDPC code, thus it’s reasonable to expect a good performance for such codes which is illustrated by the two design examples. Compared with the decoder-first code design approach, this joint design approach eliminates the implementations of those random number generators in the decoder so that the complexity is much lower and the entire design process is more simple. We believe such joint design approach should be a key for practical LDPC coding system implementations and future research work will be directed towards extending this joint design methodology to the more general (j, k)-regular LDPC codes and irregular LDPC codes.