Motion control of magnetized Tetrahymena pyriformis cells by magnetic field with Model Predictive Control

Yan Ou, Dal Hyung Kim, Paul Kim, Min Jun Kim and A. Agung Julius

The International Journal of Robotics Research published online 23 October 2012
DOI: 10.1177/0278364912464669

The online version of this article can be found at:
http://ijr.sagepub.com/content/early/2012/10/17/0278364912464669

Published by:
SAGE
http://www.sagepublications.com

On behalf of:

Multimedia Archives

Additional services and information for The International Journal of Robotics Research can be found at:

Email Alerts: http://ijr.sagepub.com/cgi/alerts

Subscriptions: http://ijr.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

>> OnlineFirst Version of Record - Oct 23, 2012

What is This?
Motion control of magnetized \textit{Tetrahymena pyriformis} cells by a magnetic field with Model Predictive Control

Yan Ou1, Dal Hyung Kim2, Paul Kim2, Min Jun Kim2 and A Agung Julius1

Abstract

This paper presents the Model Predictive Control (MPC) of magnetized Tetrahymena pyriformis (T. pyriformis) using a magnetic field. The magnetized T. pyriformis are generated by feeding spherical iron oxide particles into the cells. Using an external magnetic field, we change the movement direction of the cell, but the speed of the cell remains constant regardless of the strength of the external magnetic field. The contributions of this paper are threefold. First, the discrete-time plant model of the magnetized cell is generated using the least-squares method. Second, using the model of each cell, they are controlled to follow a reference track by an external magnetic field with MPC. Third, by using a predictor-like scheme to execute the plant input before the measurement of the cell position, we successfully solve the image-processing delay problem in the feedback system. In our results, we show three comparisons between different control schemes and an initial tracking to prove the effectiveness of the control approach.

Keywords

Magnetotaxis, microrobots, model predictive control, motion control, time delay, \textit{Tetrahymena pyriformis}

1. Introduction

The control of microrobots is a novel research area and has many applications, for example, microdelivery (Martel 2006), parallel assembly (Donald et al. 2008), and micro-manipulation Hunter et al. (1990). Among the existing work in this field, the main focus has been on developing artificial microrobots (Martel et al. 2006; Abbott et al. 2007; Martel et al. 2009; Pawashe et al. 2009; Zhang et al. 2009). Compared with microorganisms, artificial microrobots are easier to control because the plant model is easier to identify and contains less uncertainty. Artificial microrobots can be actuated by multiple power sources. However, there are two main challenges: one is the high cost; the other is the difficulty in supplying sufficient power to artificial microrobots in a microfluidic environment.

Microorganisms (Itoh 2000; Yi et al. 2000; Itoh et al. 2005), such as \textit{Escherichia coli}, \textit{Serratia marcescens}, and \textit{T. pyriformis}, are easy and cheap to produce Julius et al. (2009). The biomolecular motor, like flagellum which is embedded in microorganisms, generates a swimming force by consuming chemical energy in the fluidic environment. Accordingly, several researchers have begun to use multiple stimuli to propel microorganisms as microbiorobots.

Currently, controlling swarms of prokaryotic cells, especially bacteria, as microbiorobots attracted major attention among researchers. For example, Martel et al. (2006) used magnetotactic bacteria to manipulate microobjects, and Sakar et al. (2010) described the construction and operation of truly microsized, biocompatible ferromagnetic microtransporters driven by external magnetic fields. Steager et al. (2011) used ultraviolet light and current electric fields to control the rotation and movement of a microbiorobot that was covered with the bacterium \textit{S. marcescens}, and Julius et al. (2009) developed a model for a microstructure blotted with bacteria moving in a microchannel propelled by the flagella of the bacteria.

There are also some researchers focusing on controlling eukaryotic cells as microbiorobots. Normally, the size of eukaryotic cells is much larger than that of prokaryotic cells. This property makes it easy for us to generate the plant model and measure the positions of a single eukaryotic cell. Fearing (1991) used electrodes to investigate the control of \textit{Paramecium} as a prototypical microrobot and Weibel et al. (2005) demonstrated the biological propulsion of microscale loads by the unicellular photosynthetic algae...

1Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, USA
2Department of Mechanical Engineering and Mechanics, Drexel University, USA

Corresponding author:
Yan Ou, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
Email: ouy2@rpi.edu
Chlamydomonas reinhardtii. Itoh and Toida (2001) aimed to control bioconvection by applying an electrical field and then applying this bioconvection as an energy or mechanical power source.

Tetrahymena pyriformis (T. pyriformis) is a eukaryotic pear-shaped cell of size 50 µm long and 25 µm wide. The body of T. pyriformis is covered by approximately 600 oral or locomotive cilia. The locomotive cilia facilitate the swimming behavior of T. pyriformis, which can be influenced by external stimuli, such as magnetotaxis, chemotaxis, phototaxis, aerotaxis, galvanotaxis, and gravitaxis. T. pyriformis is a very powerful swimmer and has been shown to be responsive to many stimuli, making it a highly attractive candidate for microrobotic tasks such as microassembling and micromanipulation. This paper focuses on the control of the individual cell rather than a collective group of cells, which is the case with bacteria (Martel et al. 2006; Sakar et al. 2010; Steager et al. 2011). Magnetotaxis is used in our project because of its relative ease of use and effective results. It also does not affect the culture medium unless there are other magnetic materials present. Kim et al. (2009) demonstrated the galvanotactic and phototactic control of T. pyriformis as a microfluidic workhorse. Kim et al. (2011) used real-time feedback control and the rapidly-exploring random tree (RRT) for path planning to control the magnetotactic T. pyriformis as a microbiorobot. However, this method is not robust when making the cell follow a trajectory with sharp turns and does not take plant model information into account.

Model Predictive Control (MPC) (Carlos et al. 1989; Muske and Rawlings 1993; Li et al. 2005) is an advanced control algorithm widely used in the process control industry. Compared with proportional–integral–derivative (PID) controller, MPC shows its advantages in dealing with time delays and high-order dynamics. Nygaard and Navdal (2006) presented a nonlinear model predictive control scheme for stabilizing the well pressure during oil well drilling, and Lynch and Bequette (2002) implemented a constrained model predictive controller on a simulated Type-I diabetic patient. However, because of the hardware limitation in the high computational cost, it takes a long time for an MPC controller to solve optimization problems. Therefore, there are only a few studies that focus on implementing MPC in motion control, which requires fast computation for the controller (Poignet and Gautier 2000).

In this paper, the MPC controller is used for the motion control of an artificially magnetotactic T. pyriformis as a microbiorobot based on the discrete-time plant model. The research reported in this paper follows our previous work (Ou et al. 2012) and makes three main contributions: First, we derive a discrete-time first principle based model of the plant and measure the plant model parameters by the least-squares method. Second, we use the feedback control with an MPC controller to make T. pyriformis follow a predefined track by using an external magnetic field. Third, we use the predictor-like scheme, which executes the plant input before the measurement of the cell position, to deal with the image processing time-delay problem (Asada et al., 2011). In these cases, our theoretical conclusions are confirmed by the experimental validations.

2. Experimental setup

The experiment setup mentioned in this paper is located at the Biological Actuation, Sensing and Transport (BAST) lab at Drexel University, Philadelphia. The same setup was used and reported in our earlier work (Kim et al. 2011; Ou et al. 2012; Wang et al. 2012).

2.1. Cell culture

T. pyriformis was cultured in an appropriate culture medium. The saturated culture has 10^6 cells per mL. The cell culture medium was diluted with a fresh culture medium in a 1 : 3 ratio (the working cell density was 3.3 × 10^5 cells per mL) in order to lower the cell concentration for single-cell detection.

2.2. Fabrication of artificially magnetotactic T. pyriformis

Figure 1 shows the process that is used to create the artificially magnetotactic T. pyriformis. In Figure 1(a), 0.1% iron oxide particles (magnetite, Fe_3O_4) are added to the culture medium. In Figure 1(b), the culture medium with iron oxide particles is gently agitated and left for about 10 min to ensure sufficient internalization of the magnetite. The swimming behavior of the magnetite-loaded T. pyriformis is identical to normal cells (Rifkin and Ballentine 1976). Figure 1(c) shows that a permanent magnet is applied around the cell culture for about 1 min to magnetize the internalized particles. After magnetization, T. pyriformis swims freely without an external magnetic field. Kim et al. (2010) have empirically observed...
that the particles are always aligned with the major axis of
the cell. The magnetization of the cells holds for over 1 h
after the permanent magnet is removed. It was observed
in our experiment that there is no apparent degeneration
of the cells’ response to the magnetic field. Therefore, it
is assumed that the internalized particles are still saturated
during the experiments.

2.3. Closed-loop system
The system shown in Figure 2(a) is used for the feedback
control of magnetotactic T. pyriformis, which includes a
microscope, a camera, a computer, a control board, two
power supplies, and a set of approximate Helmholtz coils.
The camera is used to capture images of the cell motion.
The computer is used for image processing and the control
algorithm. The control board and power supplies provide
power to the approximate Helmholtz coils to generate a 2D
magnetic field. Within the workspace of size 2 × 2 mm, the
magnetic field is approximately constant (Kim et al. 2011).
We use a 640 × 512 pixel video with 2.32 µm/pixel to record
the experiment process in this field of view. Figure 2(b)
illustrates the control block diagram.

3. Plant Model
3.1. Structure of the model
From the data shown in Figure 3, we have empirically
discovered that the swimming speed of the cell remains
constant regardless of the influence of the external mag-
netic field. The Helmholtz coils generate an approximately
homogeneous magnetic field in the field of view of the

Fig. 2. (a) Experimental setup for feedback control. (b) Control block diagram. In this picture, (x_r, y_r) is the set-point while (x, y) is the
cell position. Reproduced from Kim et al. (2011).
microscope, which is limited to 2 mm for each axis (Kim et al. 2011). Once we apply the magnetic field, the angular difference between the magnetic field and the internalized particles produces a torque on *T. pyriformis* to change its moving direction and leads the cells to align with the magnetic field (Kim et al. 2010), shown in Figure 4. In this paper, we generate the plant model by fixing the magnetic field strength while changing the magnetic field angle. Because the experiment is performed in a low Reynolds number fluidic environment, the inertia effect is negligible. Therefore, the relationship between the torque and the angular velocity is approximately linear. We derive the following relation:

\[\tau = m \times B = \|m\| \|B\| \sin(\theta_t - \theta_m) = -\gamma \dot{\theta}_t, \]

where \(\gamma \) is constant; \(\|m\| \) is the norm of the magnetic moment; \(\|B\| \) is the norm of the magnetic field; \(\tau \) is the torque generated by the magnetic field and the magnetic moment; \(\theta_t \) is the cell angle and \(\theta_m \) is the magnetic field angle. We discretize the continuous-time plant model,

\begin{align*}
\theta_t(k) &= \theta_t(k-1) + a_1 \sin(\theta_m(k-1) - \theta_t(k-1)), \\
x(k) &= x(k-1) + \nu(k) \cos(\theta_t(k)), \\
y(k) &= y(k-1) + \nu(k) \sin(\theta_t(k)),
\end{align*}

where \(k \) represents the time-step; \(\nu(k) \) is the cell position distance between two consecutive sampling time, which is almost constant and can be approximately calculated by averaging the previous 10 steps cell velocities; \(a_1 \) is a function of \(\|m\|, \|B\| \), and \(\gamma \) which represents the cell’s angular changing rate with respect to the magnetic field. \(a_1 \) is different between the cells because of different cell characteristics and different amounts of iron particle internalization; \((x(k-1), y(k-1))\) and \((x(k), y(k))\) are the cell positions.

3.2. Parameter identification

To identify the parameter \(a_1 \) for each individual cell, we need to conduct manual control before each automatic control. From the manual control result, we collect the input and output data, \(\theta_m(0), \theta_m(1), \ldots, \theta_m(k), \ldots, \theta_m(n) \), and \(\theta_t(0), \theta_t(1), \ldots, \theta_t(k), \ldots, \theta_t(n) \). Then, the following equation can be derived based on equation (2):

\[
\begin{bmatrix}
\theta_t(1) - \theta_t(0) \\
\theta_t(2) - \theta_t(1) \\
\vdots \\
\theta_t(k) - \theta_t(k-1) \\
\vdots \\
\theta_t(n) - \theta_t(n-1)
\end{bmatrix} =
\begin{bmatrix}
sin(\theta_m(0) - \theta_t(0)) \\
sin(\theta_m(1) - \theta_t(1)) \\
\vdots \\
sin(\theta_m(k-1) - \theta_t(k-1)) \\
\vdots \\
sin(\theta_m(n-1) - \theta_t(n-1))
\end{bmatrix} a_1.
\]

We rewrite this equation as \(Y = \Phi a_1 \). Based on the least-squares method, the best fit parameter set for the data is given by \(a_1^* = \Phi^\dagger Y \) (Bishop 2006; Wang and Boyer 2012), where \(\Phi^\dagger = (\Phi^T \Phi)^{-1} \Phi^T \) is the pseudoinverse of \(\Phi \).

4. MPC Controller design

4.1. Path-generation method

In this paper, we test the control algorithm by making the cell follow different reference tracks. The set-points are generated at each time-step by a heuristic method in order to minimize the distance between the cell’s position and the reference track. We explain this method using a simple track that is made up of two lines and two semicircles, as shown in Figure 5. The goal is to make the cell follow this track counterclockwise. From the discrete-time plant model in
point along the path from the current cell position to ξ satisfies the following condition:

$$\text{In Case I rapidly. So the selection of the threshold value is a trade-off. If the threshold value}
$$

not satisfy the inequality constraint. If the threshold value is too high, in some cases the angular change of the cell does

the constraint in equation (6). If the threshold value is set

lar changing rate, which the cell can follow while satisfying

Case II

nu length

0.2 is defined heuristically to separate

Case I

nu

1 is larger than

1

is a point in the track with distance $v + 2d$ to the cell position; Δ is the

angular difference between two step cell positions.

$$\text{Equation (8) is a monotonically increasing function with respect to d and } \sin(\Delta) \leq 0.5 < 0.5646 \approx \sin(0.6) \leq \sin(a_1). \text{ The inequality in equation (6) is still satisfied in this case. Regardless of the above conditions, if the cell’s}
$$

angular changing rate a_1 is set too small, the generated set-points still do not satisfy the inequality constraint. If the threshold value is set too low, the cell will fail to follow the reference track rapidly. So the selection of the threshold value is a trade-off. In Case I, as is shown in Figure 5, the cell’s angular change satisfies the following condition:

$$|\sin(\Delta)| \approx \frac{d}{v} \approx 0.2 < 0.5646 \approx \sin(0.6) \leq \sin(a_1), \quad (7)$$

where Δ is the angular difference between two step cell positions. From the experimental result, a_1 is larger than

0.6 for a well magnetized cell. In Case II, as is shown in

Figure 5, the cell’s angular change satisfies the following condition:

$$\sin(\Delta) \approx \frac{d}{v + 2d}. \quad (8)$$

4.2. MPC Controller

The main goal of the MPC controller is to minimize the cost function in equation (9), which measures the errors between predicted outputs and set-points. As shown by Figure 6, the cost function is formulated as follows:

$$J = J_{\text{MPC}}(\theta_m(k), \theta_m(k+1))$$

$$= (x_p(k+1) - x_r(k+1))^2 + (y_p(k+1) - y_r(k+1))^2$$

$$+ (x_p(k+2) - x_r(k+2))^2 + (y_p(k+2) - y_r(k+2))^2,$$
where \(k \) is the time-step; \((x_r(k + 1), y_r(k + 1))\) and \((x_r(k + 2), y_r(k + 2))\) are the set-points derived from the path-generation method based on the measurement of the \(k \)th step cell position \((x(k), y(k))\); \(\theta_m(k) \) and \(\theta_n(k + 1) \) are the magnetic field angles; \((x_p(k + 1|k), y_p(k + 1|k))\) and \((x_p(k + 2|k), y_p(k + 2|k))\) are the predicted positions derived from equations (2)–(4) based on the measurement of the \(k \)th step cell position \((x(k), y(k))\).

Because the cost function \(J_{\text{MPC}(\theta_m(k), \theta_n(k + 1))} \) is a non-convex function, we look for a small enough local minimum that substitutes for the global minimum. Equation (2) shows that the cost function is a \(2\pi \times 2\pi \) periodic function with respect to \(\theta_m(k) \) and \(\theta_n(k + 1) \), which indicates that the global minimum should appear in the domain \(-\pi \leq \theta_m(k) \leq \pi\) and \(-\pi \leq \theta_n(k + 1) \leq \pi\). We create an 8 × 8 grid in this domain and execute a Newton iteration search algorithm to find local minima starting from each of the 49 intersections:

\[
\Theta_{n+1} = \Theta_n - \left(\frac{\partial^2 J_{\text{MPC}}(\Theta_n)}{\partial \Theta_n^2} \right)^{-1} \frac{\partial J_{\text{MPC}}(\Theta_n)}{\partial \Theta_n}, \tag{10}
\]

where \(\Theta_n = [\theta_m(k), \theta_n(k + 1)]^T; \) \(n \) is the Newton iteration step; \(k \) is the time-step; \(\theta_m(k) \) and \(\theta_n(k + 1) \) are the magnetic field angles. To approximate the global minimum more precisely, a finer partition can be used. However, it will increase the calculation time. From both the simulation and experimental results, the 8 × 8 grid separation method has been shown to strike a balance between control performance and time cost.

4.3. Time delay

In the control loop, as shown in Figure 2, the image-processing block and MPC controller block use significant calculation time. In total, there is a nearly 110 ms time delay, which is about one step-sampling time. If we ignore the time delay, the cell will follow the reference track with a large oscillation (Ou et al. 2012), which is shown in Figure 9(a). To deal with the time delay, we use a predictor-like scheme, which is shown in Figure 7. Suppose the iteration is in the \(k \)th step, without using this predictor-like scheme, the \(k \)th step control input will be obtained and executed at node 3 of this step because of the time delay to get the feedback information and MPC calculation. The predictor-like scheme executes the \(k \)th step control input at node 1 of this step without the current step feedback information. The calculation of the \(k \)th step control input, completed at node 3 of the \((k - 1)\)th step, predicts one step cell information ahead. Also, the \((k + 1)\)th step control input is executed at node 1 of the \((k + 1)\)th step and obtained at node 3 of the \(k \)th step. Regarding the predictor-like scheme, we rewrite equation (9) to obtain:

\[
J = J_{\text{MPC}(\theta_m(k + 1), \theta_n(k + 2))} = (x_p(k + 2|k) - x_r(k + 2))^2 + (y_p(k + 2|k) - y_r(k + 2))^2
+ (x_p(k + 3|k) - x_r(k + 3))^2 + (y_p(k + 3|k) - y_r(k + 3))^2,
\]

where \(k \) is the time-step; \((x_r(k + 2), y_r(k + 2))\) and \((x_p(k + 3|k), y_p(k + 3|k))\) are the predicted positions derived from equations (2)–(4) based on the measurement of the \(k \)th step cell position \((x(k), y(k))\); \((x_r(k + 2), y_r(k + 2))\) and \((x_p(k + 3|k), y_p(k + 3|k))\) are the magnetic field directions.

4.4. Algorithm

The MPC controller that takes the time delay into account is presented in Algorithm 1.

5. Results

5.1. Manual control

We conducted our experiments in a polydimethylsiloxane (PDMS) channel. The PDMS channel was fabricated with a depth of 80 \(\mu \)m to give the cells sufficient space to swim.
we obtained the optimal parameter and the experimental result. From this experimental data, we chose a nonperiodic rectangular wave as an input. The input signal should contain enough frequencies. In this case, T. pyriformis. In the experiment, a single cell was used.

5.2. Automatic control

5.2.1. Comparison I: MPC without considering the delay vs. MPC with consideration of the delay In Figure 9(a), by using the MPC without considering the delay, the cell follows the reference track with a large error and oscillation. However in Figure 9(b), when the delay is taken into account and the predictor-like scheme is used, the cell follows the reference track much more accurately. Figure 9(c) and (d) show the distribution of distances between the cell positions and the reference track. For the MPC with this predictor-like scheme, the mean value of the distance is 26.2727 µm and the standard deviation is 48.7748 µm, which means that the average position of the cell is inside the track with a small error and the standard deviation is relatively small.

5.2.2. Comparison II: Weak magnetic field vs. strong magnetic field If the magnetic field strength increases, the cell will have a larger angular changing rate. Therefore, we are able to make the cell turn faster. Here, a narrower track has been chosen as the reference track. During the experiment, the magnetic field strengths are kept constant in both the weak magnetic field case and the strong magnetic field case. In Figure 10(a), the cell follows the reference track in a weak magnetic field with a large error in the sharp turn. This is because the angular changing rate of the cell is too small (||B|| = 1 mT and a1 = 0.4885). In Figure 10(b), the cell follows the reference track more accurately in the strong magnetic field case (||B|| = 3 mT and a1 = 0.6663). Figure 10(c) and (d) show the distribution of distances between cell positions and the reference track. For the weak magnetic field case, the mean value of the distance is 44.4572 µm and the standard deviation is 58.4643 µm, which means that the average position of the cell is outside the track and the standard deviation is relatively large. For the strong magnetic field case, the mean value is −17.3684 µm and the standard deviation is 17.0951 µm, which means that the average...

Algorithm 1 The MPC strategy

1: Compute \(a_1 \) based on the captured manual control data.
2: \textbf{for} \(k = 1, 2, 3, \ldots \) \textbf{do}
3: \textbf{execute} \(\theta_m(k) \) before image processing.
4: \text{Get} \((x(k), y(k))\) from image processing.
5: \textbf{Calculate} \(v(k) \) by averaging the previous 10 steps’ cell speed.
6: \textbf{Compute} \(\theta_i(k) \) using equations (3)–(4) which satisfy \(\theta_i(k) \in [\theta_i(k-1) – \pi, \theta_i(k-1) + \pi] \).
7: \textbf{Predict} three future steps cell positions, \((x_p(k+1), y_p(k+1))\), \((x_p(k+2), y_p(k+2))\) and \((x_p(k+3), y_p(k+3))\), based on \((x(k), y(k))\) and the plant model.
8: \textbf{Generate} the \(k + 2 \) and \(k + 3 \) step set-points, \((x_s(k+2), y_s(k+2))\) and \((x_s(k+3), y_s(k+3))\) based on \((x_p(k+1), y_p(k+1))\) and the path-generation method.
9: \textbf{Build} cost function \(J_{MPC}(\theta_m(k+1), \theta_m(k+2)) \) to measure the error between the predicted positions and the set-points in \(k + 2 \) and \(k + 3 \) steps.
10: \textbf{Use} the Newton iteration method from different initial values in the domain to find a small enough local minimum \((\theta_m(k+1), \theta_m(k+2))\), which substitutes for the global minimum of the cost function.
11: \textbf{Hold} \(\theta_m(k+1) \) until the beginning of the \((k+1)\)th step.
12: \textbf{end for}

freely. The magnetic field angle was manually changed in both positive and negative directions on either the x- or the y-axis using four arrow keys on a standard PC keyboard. Based on Persistent Excitation (PE) condition (Ioannou and Sun 1995) to ensure the convergence of \(a_1 \), the input signal should contain enough frequencies. In this case, we chose a nonperiodic rectangular wave as an input. Figure 8 shows a good match between the estimated result and the experimental result. From this experimental data, we obtained the optimal parameter \(a_1 = 0.6665 \).

Fig. 8. Data regression of equation (2). In this picture, the blue dots are the experimental data, while the red squares represent the regression line with slope 0.6665 rad.
Fig. 9. Comparison I. (a) and (b) Trajectory tracing. The red stars represent the reference track; the white square line is the cell motion trajectory. (c) and (d) The distribution of the distance between the cell positions and the reference track. Negative distance means the cell is inside the track; positive distance means the cell is outside the track. In (c), the mean value is 26.2727 µm and the standard deviation is 48.7748 µm; while in (d), the mean value is −5.9778 µm and the standard deviation is 16.1632 µm.

Fig. 10. Comparison II. (a) and (b) Trajectory tracing. The red stars represent the reference track; the white square line is the cell motion trajectory. (c) and (d) The distribution of the distance between the cell positions and the reference track. Negative distance means the cell is inside the track; positive distance means the cell is outside the track. In (c), the mean value is 44.4572 µm and the standard deviation is 58.4643 µm; while in (d), the mean value is −17.3684 µm and the standard deviation is 17.0951 µm.
position of the cell is inside the track with a small error and the standard deviation is also relatively small.

5.2.3. Comparison III: One input control vs. two input controls

As mentioned above, the cell speed is practically constant during the experiments. In the case that the cell moves along a straight line, using the strong magnetic field for the experiment is not a power-saving practice. Therefore, we can use the high magnetic field strength in the sharp turn while using the low magnetic field strength in the straight line. In this case, the magnetic field strength is another input to control the cell. By using the two input controls, magnetic field strength and magnetic field angle, the cell can be controlled to follow the reference track with low energy consumption. From equation (2), for the same cell, \(a_1 \) depends mainly on the magnetic field strength, \(||B|| \), because \(||m|| \) and \(\gamma \) are kept constant. In this case, we need to calculate a different \(a_1 \) for each magnetic field strength. We use the batch least-squares method to identify the \(a_1 \).

In the experiment shown in Figure 11, \(a_1 = 0.6777 \) in a 1 mT magnetic field; \(a_1 = 0.8676 \) in a 2 mT magnetic field; \(a_1 = 1.0726 \) in a 3 mT magnetic field. In general, \(a_1 \) monotonically increases with respect to the magnetic field strength. In equation (2), if \(a_1 \) is larger, the cell can make a larger turn. In each automatic control time-step, we choose \(a_1 \) in a 3 mT magnetic field as the constraint of the cell’s angular change in equation (6) to generate the set-points.

Then, a simplified MPC algorithm is used to obtain the control inputs \(\theta_m \) and \(T_m \). We define the optimization strategy \(E(T_m) \) as:

\[
E(T_m) = \min_{\theta_{m(i+1)}} \left(\theta_p(k+2) - \theta_r(k+2) \right)^2,
\]

where \(\theta_p(i+1) = \theta_p(i) + a_1(T_m(i)) \sin(\theta_m(i) - \theta_p(i)), i = k, k+1; \theta_m \) is the magnetic field angle while \(T_m \) is the magnetic field strength. Then \(T_m \) is chosen by \(\min_{T_m} \{ E(T_m) = 0 \} \). Based on this method, the high magnetic field strength is chosen to make the cell follow the sharp turn part of the reference track while the low magnetic field strength is chosen to make the cell follow the straight line part. In Figure 11(a) and (b), the trajectories of the cells are quite similar between the one-input MPC and the two-input MPC. Figure 11(c) and (d) show the distribution of distances between cell positions and the reference track. For the one-input MPC, the mean value of the distance is 9.0702 \(\mu m \) and the standard deviation is 23.4367 \(\mu m \); while for the two-input MPC, the mean value is \(-0.7442 \) \(\mu m \) and the standard deviation is 13.1386 \(\mu m \). Figure 11(e) and (f) show the magnetic field strength of the one-input MPC and the two-input MPC. For the one-input MPC, the average magnetic field strength is 3 mT; while for the two-input MPC, the average magnetic field strength is 1.1728 mT.

