Spring, 2006 ESE 601

Hybrid Systems

Homework 1
Hand-out : 6 Feb 2006, Hand-in : 20 Feb 2006

Problem 1 (20 pts)

Consider a linear autonomous system as: $\dot{x}=A x \quad x \in \mathfrak{R}^{n}$ Let V be subspace of \mathfrak{R}^{n}. The following suggests a recursive algorithm for finding the largest subspace $U \subseteq V$ such that $A U \subseteq U$

- $U_{0}=V$
- $U_{i+1}=U_{i} \cap A^{-1} U_{i}$ where $A^{-1} U=\{x \mid A x \in U\}$

Prove that:

1. The iteration terminates after finite step means that there exist N such that for all $i \geq N$ $U_{i+1}=U_{i}$. Hint: Prove that $U_{i}, i \geq 1$, are linear spaces and consider their dimension.
2. The fix point of the iteration is invariant under A means that $A U_{N} \subseteq U_{N}$
3. U_{N} is the largest invariant subspace i.e for all subspaces $W \subseteq V$, if $A W \subseteq W$ then we have $W \subseteq U_{N}$

Problem 2 (15 pts)

Consider three languages L_{1}, L_{2} and L_{3} and assume that L_{1} does not contain the empty string. Show that if $L_{2}=L_{1} L_{2} \cup L_{3}$ then $L_{2}=L_{1}^{*} L_{3}$
Problem 3 (20 pts)
Let $D=\left(Q, A, \rightarrow, Q_{0}, Q_{m}\right)$ be a deterministic finite state automaton where $Q_{0}=\left\{q_{0}\right\}$. Given $a=a_{0} a_{1} \ldots a_{n-1} \in L(D)$ and execution of D as $q_{0} a_{0} q_{1} a_{1} \ldots q_{n}$ we define $\delta\left(q_{0}, a\right)=q_{n}$. We call a state $p \in Q$ is reachable iff there is some string $w \in L(D)$, such that $\delta\left(q_{0}, w\right)=p$, i.e., there is some path from q_{0} to p in D. Consider the following method for computing the set Q_{r} of reachable states (of D): define the sequence of sets $Q_{r}^{i} \subseteq Q$, where

$$
\begin{aligned}
& Q_{r}^{0}=\left\{q_{0}\right\} \\
& Q_{r}^{i+1}=\left\{q \in Q \mid \exists p \in Q_{r}^{i}, \exists a \in \Sigma, q=\delta(p, a)\right\}
\end{aligned}
$$

(i) Prove by induction on i that Q_{r}^{i} is the set of all states reachable from q_{0} using paths of length i (where i counts the number of transitions).

Show that it is generally false that there is an index i_{0}, such that $Q_{r}^{i_{0}+1}=Q_{r}^{i_{0}}$, by giving a counter-example.
(ii) Show that $Q_{r}^{i_{0}}=Q_{r}$ for some i_{0} is generally false, by giving a counter-example.
(iii) Change the inductive definition of Q_{r}^{i} as follows:

$$
Q_{r}^{i+1}=Q_{r}^{i} \cup\left\{q \in Q \mid \exists p \in Q_{r}^{i}, \exists a \in \Sigma, q=\delta(p, a)\right\}
$$

Prove that there is a smallest integer i_{0} such that

$$
Q_{r}^{i_{0}+1}=Q_{r}^{i_{0}}=Q_{r} .
$$

Problem 4(20 pts)

Consider the discontinuous differential equation

$$
\begin{aligned}
& \dot{x_{1}}=-\operatorname{sgn}\left(x_{1}\right)+2 \operatorname{sgn}\left(x_{2}\right) \\
& \dot{x_{2}}=-2 \operatorname{sgn}\left(x_{1}\right)-\operatorname{sgn}\left(x_{2}\right)
\end{aligned}
$$

where $x(0) \neq(0,0)$, and

$$
\operatorname{sgn}(z)=\left\{\begin{array}{c}
1 \text { if } z>0 \\
-1 \text { if } z<0 \\
\text { undefined otherwise }
\end{array}\right.
$$

This system defines a hybrid automaton with four discrete modes having invariants corresponding to the four quadrants.
(a) Specify a deterministic hybrid automaton modeling the system.
(b) Prove that H has Zeno execution for every initial state, and compute the Zeno time as a function of the initial condition $\left(x_{1,0}, x_{2,0}\right)$.

Problem 5(25 pts)
Consider the discontinuous differential equation

$$
\begin{gathered}
\dot{x_{1}}=-\operatorname{sgn}\left(x_{1}\right) \\
\dot{x_{2}}=-x_{2}
\end{gathered}
$$

(a) Show that this system has a livelock.
(b) Fix an initial condition $\left(x_{1,0}, x_{2,0}\right)=(1,1)$. Simulate the execution of the system with forward Euler method (see 1.2.7 in (R1)), for time $0 \leq t \leq 5$ with time steps $h=0.1,0.05,0.01$. Provide a plot showing the results of all three simulations.
(c) We introduce a sliding mode in the system by redefining

$$
\operatorname{sgn}(z)=\left\{\begin{array}{c}
1 \text { if } z>0 \\
-1 \text { if } z<0 \\
0 \text { if } z=0
\end{array}\right.
$$

Compute the execution of the system by hand for the given initial condition. Give a comment on the relation between this solution, and the results of the simulations in (b).
TOTAL: 100 points.

