Spring, 2006 ESE 601

Hybrid Systems

Homework 1

Hand-out : 6 Feb 2006, Hand-in : 20 Feb 2006

Problem 1 (20 pts)

Consider a linear autonomous system as: $\dot{x} = Ax$ $x \in \Re^n$ Let *V* be subspace of \Re^n . The following suggests a recursive algorithm for finding the largest subspace $U \subseteq V$ such that $AU \subseteq U$

- $U_0 = V$
- $U_{i+1} = U_i \cap A^{-1}U_i$ where $A^{-1}U = \{x \mid Ax \in U\}$

Prove that:

- 1. The iteration terminates after finite step means that there exist N such that for all $i \ge N$ $U_{i+1} = U_i$. Hint: Prove that $U_i, i \ge 1$, are linear spaces and consider their dimension.
- 2. The fix point of the iteration is invariant under A means that $AU_N \subseteq U_N$
- 3. U_N is the largest invariant subspace i.e for all subspaces $W \subseteq V$, if $AW \subseteq W$ then we have $W \subseteq U_N$

Problem 2 (15 pts)

Consider three languages L_1 , L_2 and L_3 and assume that L_1 does not contain the empty string. Show that if $L_2 = L_1 L_2 \bigcup L_3$ then $L_2 = L_1^* L_3$

Problem 3 (20 pts)

Let $D = (Q, A, \rightarrow, Q_0, Q_m)$ be a deterministic finite state automaton where $Q_0 = \{q_0\}$. Given $a = a_0a_1...a_{n-1} \in L(D)$ and execution of D as $q_0a_0q_1a_1...q_n$ we define $\delta(q_0, a) = q_n$. We call a state $p \in Q$ is reachable iff there is some string $w \in L(D)$, such that $\delta(q_0, w) = p$, i.e., there is some path from q_0 to p in D. Consider the following method for computing the set Q_r of reachable states (of D): define the sequence of sets $Q_r^i \subseteq Q$, where

$$egin{aligned} & \mathcal{Q}_r^0 = \{q_0\}, \ & \mathcal{Q}_r^{i+1} = \{q \in \mathcal{Q} \mid \exists p \in \mathcal{Q}_r^i, \exists a \in \Sigma, \; q = oldsymbol{\delta}(p,a)\} \end{aligned}$$

(i) Prove by induction on *i* that Q_r^i is the set of all states reachable from q_0 using paths of length *i* (where *i* counts the number of transitions).

Show that it is generally false that there is an index i_0 , such that $Q_r^{i_0+1} = Q_r^{i_0}$, by giving a counter-example.

(ii) Show that $Q_r^{i_0} = Q_r$ for some i_0 is generally false, by giving a counter-example.

(iii) Change the inductive definition of Q_r^i as follows:

$$Q_r^{i+1} = Q_r^i \cup \{q \in Q \mid \exists p \in Q_r^i, \exists a \in \Sigma, q = \delta(p, a)\}.$$

Prove that there is a smallest integer i_0 such that

$$Q_r^{i_0+1} = Q_r^{i_0} = Q_r.$$

Problem 4(20 pts)

Consider the discontinuous differential equation

$$\dot{x_1} = -sgn(x_1) + 2sgn(x_2)$$
$$\dot{x_2} = -2sgn(x_1) - sgn(x_2)$$

where $x(0) \neq (0, 0)$, and

$$sgn(z) = \begin{cases} 1 & if \ z > 0 \\ -1 & if \ z < 0 \\ undefined & otherwise \end{cases}$$

This system defines a hybrid automaton with four discrete modes having invariants corresponding to the four quadrants.

(a) Specify a deterministic hybrid automaton modeling the system.

(b) Prove that H has Zeno execution for every initial state, and compute the Zeno time as a function of the initial condition $(x_{1,0}, x_{2,0})$.

Problem 5(25 pts)

Consider the discontinuous differential equation

$$\dot{x_1} = -sgn(x_1)$$
$$\dot{x_2} = -x_2$$

(a) Show that this system has a livelock.

(b) Fix an initial condition $(x_{1,0}, x_{2,0}) = (1,1)$. Simulate the execution of the system with forward Euler method (see 1.2.7 in (R1)), for time $0 \le t \le 5$ with time steps h = 0.1, 0.05, 0.01. Provide a plot showing the results of all three simulations.

(c) We introduce a sliding mode in the system by redefining

$$sgn(z) = \begin{cases} 1 & if \ z > 0 \\ -1 & if \ z < 0 \\ 0 & if \ z = 0 \end{cases}$$

Compute the execution of the system by hand for the given initial condition. Give a comment on the relation between this solution, and the results of the simulations in (b). **TOTAL: 100 points.**