Spring, 2006 ESE 601

Hybrid Systems

Homework 1

Problem 1 (20 pts)
Consider a linear autonomous system as: \(\dot{x} = Ax \) \(x \in \mathbb{R}^n \) Let \(V \) be subspace of \(\mathbb{R}^n \). The following suggests a recursive algorithm for finding the largest subspace \(U \subseteq V \) such that \(AU \subseteq U \)

- \(U_0 = V \)
- \(U_{i+1} = U_i \cap A^{-1}U_i \) where \(A^{-1}U = \{ x \mid Ax \in U \} \)

Prove that:

1. The iteration terminates after finite step means that there exist \(N \) such that for all \(i \geq N \) \(U_{i+1} = U_i \). Hint: Prove that \(U_i, i \geq 1 \), are linear spaces and consider their dimension.

2. The fix point of the iteration is invariant under \(A \) means that \(AU_N \subseteq U_N \)

3. \(U_N \) is the largest invariant subspace i.e for all subspaces \(W \subseteq V \), if \(AW \subseteq W \) then we have \(W \subseteq U_N \)

Problem 2 (15 pts)
Consider three languages \(L_1, L_2 \) and \(L_3 \) and assume that \(L_1 \) does not contain the empty string. Show that if \(L_2 = L_1L_2 \cup L_3 \) then \(L_2 = L_1^*L_3 \)

Problem 3 (20 pts)
Let \(D = (Q,A,\rightarrow,Q_0,Q_m) \) be a deterministic finite state automaton where \(Q_0 = \{ q_0 \} \). Given \(a = a_0a_1...a_{n-1} \in L(D) \) and execution of \(D \) as \(q_0a_0q_1a_1...q_n \) we define \(\delta(q_0,a) = q_n \). We call a state \(p \in Q \) is reachable iff there is some string \(w \in L(D) \), such that \(\delta(q_0,w) = p \), i.e., there is some path from \(q_0 \) to \(p \) in \(D \). Consider the following method for computing the set \(Q_r \) of reachable states (of \(D \)): define the sequence of sets \(Q_r^i \subseteq Q \), where

\[
Q_r^0 = \{ q_0 \},
\]

\[
Q_r^{i+1} = \{ q \in Q \mid \exists p \in Q_r^i, \exists a \in \Sigma, q = \delta(p,a) \}.
\]

(i) Prove by induction on \(i \) that \(Q_r^i \) is the set of all states reachable from \(q_0 \) using paths of length \(i \) (where \(i \) counts the number of transitions).

Show that it is generally false that there is an index \(i_0 \), such that \(Q_r^{i_0+1} = Q_r^{i_0} \), by giving a counter-example.
(ii) Show that $Q_{i_0}^0 = Q_r$ for some i_0 is generally false, by giving a counter-example.

(iii) Change the inductive definition of Q_i^r as follows:

$$Q_{i+1}^{r+i} = Q_i^r \cup \{ q \in Q \mid \exists p \in Q^i_r, \exists a \in \Sigma, q = \delta(p, a) \}.$$

Prove that there is a smallest integer i_0 such that

$$Q_{i_0}^1 = Q_{i_0}^0 = Q_r.$$

Problem 4 (20 pts)

Consider the discontinuous differential equation

$$\dot{x}_1 = -\text{sgn}(x_1) + 2\text{sgn}(x_2)$$

$$\dot{x}_2 = -2\text{sgn}(x_1) - \text{sgn}(x_2)$$

where $x(0) \neq (0,0)$, and

$$\text{sgn}(z) = \begin{cases}
1 & \text{if } z > 0 \\
-1 & \text{if } z < 0 \\
\text{undefined} & \text{otherwise}
\end{cases}$$

This system defines a hybrid automaton with four discrete modes having invariants corresponding to the four quadrants.

(a) Specify a deterministic hybrid automaton modeling the system.

(b) Prove that H has Zeno execution for every initial state, and compute the Zeno time as a function of the initial condition $(x_{1,0}, x_{2,0})$.

Problem 5 (25 pts)

Consider the discontinuous differential equation

$$\dot{x}_1 = -\text{sgn}(x_1)$$

$$\dot{x}_2 = -x_2$$

(a) Show that this system has a livelock.

(b) Fix an initial condition $(x_{1,0}, x_{2,0}) = (1,1)$. Simulate the execution of the system with forward Euler method (see 1.2.7 in (R1)), for time $0 \leq t \leq 5$ with time steps $h = 0.1$, 0.05, 0.01. Provide a plot showing the results of all three simulations.

(c) We introduce a sliding mode in the system by redefining

$$\text{sgn}(z) = \begin{cases}
1 & \text{if } z > 0 \\
-1 & \text{if } z < 0 \\
0 & \text{if } z = 0
\end{cases}$$

Compute the execution of the system by hand for the given initial condition. Give a comment on the relation between this solution, and the results of the simulations in (b).

TOTAL: 100 points.