Homework 1
 ESE 601, Spring 2006

Truong Xuan Nghiem
nghiem@seas.upenn.edu

Problem 1

1. We have:

- $U_{0}=V$ which is a subspace of \mathbb{R}^{n}. Thus, U_{0} is a vector space
- Assume that U_{i} is a vector space, for $i \geq 0$. We will show that $U_{i+1}=U_{i} \cap A^{-1} U_{i}$ is also a vector space. From the definition of U_{i+1}, it is clear that $U_{i+1} \subseteq U_{i}$. We also have:
- For any $x, y \in U_{i+1}: x, y \in U_{i} \cap A^{-1} U_{i}$, thus $x \in U_{i}$ and $x \in A^{-1} U_{i} \Rightarrow A x \in U_{i}$. Similarly, $y \in U_{i}$ and $A y \in U_{i}$. Since U_{i} is a vector space, it follows that $x+y \in U_{i}$ and $A x+A y=$ $A(x+y) \in U_{i}$. Therefore, $x+y \in U_{i} \cap A^{-1} U_{i}=U_{i+1}$.
- For any number $a \in \mathbb{R}$ and $x \in U_{i+1}$: because $x \in U_{i}, A x \in U_{i}$, and U_{i} is a vector space, we have $a x \in U_{i}$ and $a A x=A(a x) \in U_{i}$, which means $a x \in U_{i} \cap A^{-1} U_{i}=U_{i+1}$

Thus, $U_{i+1} \subseteq U_{i}$ is a vector space.

By induction on i, it follows that U_{i}, where $i \geq 0$, are vector spaces.
Since, for any $i \geq 0, U_{i+1} \subseteq U_{i}$, and U_{i+1} and U_{i} are vector spaces, $\operatorname{dim}\left(U_{i+1}\right) \leq \operatorname{dim}\left(U_{i}\right)$, i.e. the dimensions of the sequence of spaces U_{i} are non-increasing. There are only two cases:

- If U_{i+1} is a proper subset of U_{i}, then $\operatorname{dim}\left(U_{i+1}\right)<\operatorname{dim}\left(U_{i}\right)$. This can be proved by contradiction. Assume $\operatorname{dim}\left(U_{i+1}\right)=\operatorname{dim}\left(U_{i}\right)=k$, then there exists a basis $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ of U_{i+1} such that $U_{i+1}=\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Since $\operatorname{dim}\left(U_{i}\right)=k$ and $u_{1}, u_{2}, \ldots, u_{k} \in U_{i},\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ is also a basis of U_{i}. Thus $U_{i}=\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}=U_{i+1}$, which contradicts the hypothesis that $U_{i+1} \subset U_{i}$.
- If $U_{i+1}=U_{i}$, then it must be that $U_{i+2}=U_{i+1}, U_{i+3}=U_{i+2}$, and so on. In other words, for all $j \geq i, U_{j+1}=U_{j}=U_{i}$

Since $\operatorname{dim}(V)$ is finite, it follows that the sequence $\operatorname{dim}\left(U_{i}\right)$, for $i \geq 0$, is decreasing until the first finite index N such that $U_{N+1}=U_{N}$, after which we have $U_{j+1}=U_{j}, \forall j \geq N$, and the iteration terminates. In other words, the iteration of the algorithm terminates after a finite number of steps.
2. The fix point of the iteration is the index N, corresponding to the vector space U_{N}.

Since $U_{N+1}=U_{N} \cap A^{-1} U_{N}=U_{N}$, we have $U_{N} \subseteq A^{-1} U_{N}$. Thus, for any $x \in U_{N}, x \in A^{-1} U_{N}$, which means $A x \in U_{N}$. Therefore $A U_{N} \subseteq U_{N}$, or equivalently, U_{N} is invariant under A.
3. We will prove that U_{N} is the largest invariant subspace in V by contradiction.

Assume that U_{N} is not the largest invariant subspace in V, i.e. there exists a subspace $W \subseteq V$ such that

- W is A-invariant: $A W \subseteq W$
- $W \nsubseteq U_{N}$

The vector space W may be a superset of U_{N} or not. However, we only need to consider the case when $W \supset U_{N}$ since for the case $W \not \supset U_{N}$, we can always define $W^{\prime}=U_{N} \cup W$ which is a superset of U_{N} and is invariant under A in V (because for all $x \in W^{\prime}, x \in U_{N}$ or $x \in W$, thus $A x$ must be in U_{N} or W, which means $A x \in W^{\prime}$ or $A W^{\prime} \subseteq W^{\prime}$).

We've shown in part 1 that $\operatorname{dim}\left(U_{i}\right)$, where $i \geq 0$, is decreasing until $i=N$. Also $\operatorname{dim}(W)>\operatorname{dim}\left(U_{N}\right)$ since U_{N} is a proper subset of W. Thus, there are only two cases that may happen

- There exists $M<N$ such that $U_{M}=W$, i.e. W is in the sequence U_{i} produced by the iteration. However, as shown in part 1, the iteration must stop at $i=M$ and $U_{i}=U_{M}=W$ for all $i>M$, which contradicts the existence of U_{N}; or
- The vector space W is not in the sequence U_{i} produced by the iteration. In this case, because $W \subset V$ (W cannot equal V, otherwise $W=U_{0}$ which is in the sequence) and $\operatorname{dim}\left(U_{i}\right)$ is decreasing, there must exist $M \geq 0$ such that $M<N$ and $U_{M} \supset W$, but $U_{M+1} \subset W$. For every x in W, we have $x \in U_{M}$ and $A x \in W \Rightarrow A x \in U_{M}$ which means $x \in A^{-1} U_{M}$. Thus, $x \in U_{M} \cap A^{-1} U_{M}=$ U_{M+1}. Therefore, $W \subseteq U_{M+1}$ which contradicts the fact that U_{M+1} is a proper subset of W.

By proof by contradiction, it follows that U_{N} is the largest A-invariant subspace of V.

Problem 2 To prove $L_{2}=L_{1}^{*} L_{3}$, we will show that $L_{2} \subseteq L_{1}^{*} L_{3}$ and $L_{2} \supseteq L_{1}^{*} L_{3}$.

Prove $L_{2} \subseteq L_{1}^{*} L_{3}: \quad$ Given any string w in L_{2}. Since $L_{2}=L_{1} L_{2} \cup L_{3}, w$ must be in L_{3} or in $L_{1} L_{2}$. If $w \in L_{3}$ then it is in $L_{1}^{*} L_{3}$.

Otherwise, w is in $L_{1} L_{2}$ and it can be decomposed into two strings, $w_{1} \in L_{1}$ and $w_{1}^{b} \in L_{2}$, such that $w=w_{1} w_{1}^{\mathrm{b}}$. String w_{1} must be non-empty since $\epsilon \notin L_{1}$, however w_{1}^{b} may be empty. Because $w_{1} \neq \epsilon$, $\left|w_{1}^{b}\right|<|w|$ (where $|\cdot|$ denotes the length of a string). Perform the following algorithm: for $k=1,2, \ldots$ and $w_{k}^{b} \in L_{2}$

- If $w_{k}^{b}=\epsilon$ or $w_{k}^{b} \in L_{3}$ then the iteration stops.
- Otherwise, w_{k}^{b} must be in $L_{1} L_{2}$ and it can be decomposed into two strings, $w_{k+1} \in L_{1}$ and $w_{k+1}^{b} \in$ L_{2}, such that $w_{k}^{b}=w_{k+1} w_{k+1}^{b}$. String w_{k+1} is non-empty (because $\epsilon \notin L_{1}$), thus $\left|w_{k+1}^{b}\right|<\left|w_{k}^{b}\right|$. Repeat the iteration for w_{k+1}^{b}.

Because $\left|w_{k}^{b}\right|$ is strictly monotonically decreasing, and $\left|w_{k}^{b}\right|<|w|$, and $|w|$ is finite, the algorithm must terminate after a finite number of steps, resulting in $w=w_{1} w_{2} \ldots w_{m-1} w_{m}^{b}$ where $w_{1}, w_{2}, \ldots, w_{m-1}$ are in L_{1} and w_{m}^{b} is either in L_{3} or empty. If $w_{m}^{b}=\epsilon$ then L_{3} must contain ϵ, i.e. $w_{m}^{b} \in L_{3}$, because otherwise, $\epsilon=w_{m}^{b} \in L_{2}=L_{1} L_{2} \cup L_{3} \Rightarrow \epsilon \in L_{1} L_{2} \Rightarrow L_{1} \ni \epsilon$ which contradicts the assumption that L_{1} does not contain the empty string. Therefore, $w \in L_{1}^{m-1} L_{3} \Rightarrow w \in L_{1}^{*} L_{3}$.

It follows that $w \in L_{1}^{*} L_{3}$ for all $w \in L_{2}$. In other words, $L_{2} \subseteq L_{1}^{*} L_{3}$.

Prove $L_{2} \supseteq L_{1}^{*} L_{3}$: we have $L_{1}^{*} L_{3}=\bigcup_{k>0} L_{1}^{k} L_{3}$, thus we only need to show that $L_{1}^{k} L_{3} \subseteq L_{2}$ for all $k \geq 0$. We will prove this by induction on k.

- BASIS: When $k=0$, we have $L_{1}^{k} L_{3}=L_{3} \subseteq L_{2}$ since $L_{2}=L_{1} L_{2} \cup L_{3}$.
- Induction: Assume that $L_{1}^{k} L_{3} \subseteq L_{2}$, where $k \geq 0$, we need to prove that $L_{1}^{k+1} L_{3} \subseteq L_{2}$. For any string $w \in L_{1}^{k+1} L_{3}, w$ can be written as $w=w_{1} w_{2}$ where $w_{1} \in L_{1}$ and $w_{2} \in L_{1}^{k} L_{3}$. It follows that $w_{2} \in L_{2}$ and $w \in L_{1} L_{2}$. Because $L_{1} L_{2} \subseteq L_{2}, w$ must be in L_{2}. Thus, $L_{1}^{k+1} L_{3} \subseteq L_{2}$.

Therefore, $L_{1}^{k} L_{3} \subseteq L_{2}, \forall k \geq 0$, which means $L_{1}^{*} L_{3} \subseteq L_{2}$.
We have shown that $L_{2} \subseteq L_{1}^{*} L_{3}$ and $L_{2} \supseteq L_{1}^{*} L_{3}$. Thus, $L_{2}=L_{1}^{*} L_{3}$.

Problem 3

1. We will prove by induction on i that Q_{r}^{i} is the set of all states reachable from q_{0} by strings of length i.

- BASIS: when $i=0, Q_{r}^{0}=\left\{q_{0}\right\}$ which is clearly the set of all states reachable from q_{0} by the empty string ϵ whose length is 0 . Because D is a DFA (deterministic finite automaton), any state of D that is different from q_{0} cannot be reached from q_{0} by the empty string.
- Induction: assume that Q_{r}^{i}, where $i \geq 0$, is the set of all states reachable from q_{0} by strings of length i. We need to prove that Q_{r}^{i+1} is the set of all states reachable from q_{0} by strings of length $i+1$.
- For any state $q \in Q_{r}^{i+1}$, from the definition of Q_{r}^{i+1}, it follows that there exist a state $p \in Q_{r}^{i}$ and a symbol $a \in A$ such that $\delta(p, a)=q$. Because $p \in Q_{r}^{i}$, we have $\delta\left(q_{0}, w\right)=p$ for some string w of length i. Thus, $\delta\left(q_{0}, w a\right)=q$ in which string $w a$ is of length $i+1$. Therefore, all states in Q_{r}^{i+1} are reachable from q_{0} by some string of length $i+1$. However, this does not prove that all states reachable from q_{0} by strings of length $i+1$ are in Q_{r}^{i+1}.
- If q^{\prime} is a state reachable from q_{0} by a string w^{\prime} such that $\left|w^{\prime}\right|=i+1$, then it must be that $w^{\prime}=\hat{w} a$ for some symbol $a \in A$ and some string \hat{w} of length i. Let $\hat{q}=\delta\left(q_{0}, \hat{w}\right)$, then $\delta(\hat{q}, a)=q^{\prime}$. Since \hat{q} is reachable from q_{0} by string \hat{w} of length i, \hat{q} must be in Q_{r}^{i}. From the definition of Q_{r}^{i+1}, it follows that $q^{\prime} \in Q_{r}^{i+1}$. Thus, all states reachable from q_{0} by strings of length $i+1$ are in Q_{r}^{i+1}.
Therefore, Q_{r}^{i+1} is the set of all states reachable from q_{0} by strings of length $i+1$.
However, it is generally false that there is an index i_{0} such that $Q_{r}^{i_{0}+1}=Q_{r}^{i_{0}}$. This is shown in the following counter-example. Consider the simple DFA in figure 1 , with $Q=\left\{q_{0}, q_{1}\right\}, A=a, Q_{0}=\left\{q_{0}\right\}$, and $Q_{m}=\emptyset$. Applying the algorithm to this DFA, we have $Q_{r}^{0}=\left\{q_{0}\right\}, Q_{r}^{1}=\left\{q_{1}\right\}, Q_{r}^{2}=\left\{q_{0}\right\}$,

Figure 1: Counter-example of problem 3
$Q_{r}^{3}=\left\{q_{1}\right\}, \ldots$. In other words, $Q_{r}^{i}=\left\{q_{0}\right\}$ whenever i is even, and $Q_{r}^{i}=\left\{q_{1}\right\}$ whenever i is odd. Therefore, there is no index i_{0} such that $Q_{r}^{i_{0}+1}=Q_{r}^{i_{0}}$.
2. Using the given algorithm, it is generally false that $Q_{r}^{i_{0}}=Q_{r}$ for some index i_{0}. In the example given in part 1 (figure 1), it is easy to see that $Q_{r}=Q=\left\{q_{0}, q_{1}\right\}$, however Q_{r}^{i} is either $\left\{q_{0}\right\}$ or $\left\{q_{1}\right\}$ depending on the value of i. Thus, there never exists an index i_{0} such that $Q_{r}^{i_{0}}=Q_{r}$ for this DFA. Therefore, the statement is generally false.
3. First, we will prove by induction on i that Q_{r}^{i} is the set of all states reachable from q_{0} by strings w such that $|w| \leq i$.

- BASIS: when $i=0, Q_{r}^{0}=\left\{q_{0}\right\}$ which is the set of all states reachable from q_{0} by the empty string ϵ whose length is $0 \leq i$.
- Induction: assume that Q_{r}^{i}, where $i \geq 0$, is the set of all states reachable from q_{0} by strings of length less than or equal to i. For any state $q \in Q_{r}^{i+1}$, since

$$
Q_{r}^{i+1}=Q_{r}^{i} \cup\left\{q \in Q \mid \exists p \in Q_{r}^{i}, \exists a \in \Sigma: q=\delta(p, a)\right\}
$$

there must exist a string w such that $|w| \leq i$ and either $\delta\left(q_{0}, w\right)=q$ or $\delta\left(q_{0}, w a\right)=q$ for some $a \in \Sigma$. Thus, all states in Q_{r}^{i+1} are reachable from q_{0} by strings w such that $|w| \leq i+1$. On the other hand, for any state q^{\prime} reachable from q_{0} by a string w^{\prime} such that $\left|w^{\prime}\right| \leq i+1$, it must be that either $\left|w^{\prime}\right| \leq i$ or, if $\left|w^{\prime}\right|=i+1, w^{\prime}=\hat{w} a$ for some symbol $a \in \Sigma$ and some string \hat{w} of length i. In the latter case, let $\hat{q}=\delta\left(q_{0}, \hat{w}\right)$, then $\delta(\hat{q}, a)=q^{\prime}$ and $\hat{q} \in Q_{r}^{i}$. Thus, $q^{\prime} \in Q_{r}^{i+1}$, which means that all states reachable from q_{0} by strings of length $i+1$ or less are in Q_{r}^{i+1}. Therefore, Q_{r}^{i+1} is the set of all states reachable from q_{0} by strings w with $|w| \leq i+1$.

The number of states of D is finite. For any state $q \in Q_{r}$, since it is reachable from q_{0}, there must exist a smallest integer N_{q} which is finite such that $\delta\left(q_{0}, w\right)=q$ for some string w of length N_{q}. Because Q_{r} is finite and N_{q} is finite for each $q \in Q_{r}, \max _{q \in Q_{r}} N_{q}$ exists and is finite. Let i_{0} be this maximum value. It follows that every state q in Q_{r} is reachable from q_{0} by a string of length i_{0} or less. Thus, $Q_{r}^{i_{0}}=Q_{r}$ (by the above result). We also have $Q_{r}^{i_{0}} \subseteq Q_{r}^{i_{0}+1}$ (by the definition of $Q_{r}^{i_{0}+1}$) as well as $Q_{r}^{i_{0}+1} \subseteq Q_{r}=Q_{r}^{i_{0}}$. Hence, $Q_{r}^{i_{0}}=Q_{r}^{i_{0}+1}$.

To prove that i_{0} is smallest, we assume that it is not true, i.e. there exists $j<i_{0}$ such that $Q_{r}^{j}=Q_{r}$. Then all states $q \in Q_{r}$ are reachable from q_{0} by strings w such that $|w| \leq j<i_{0}$. Thus $N_{q}<i_{0}$ for all $q \in Q_{r}$. It follows that $\max _{q \in Q_{r}} N_{q}<i_{0}$ which contradicts the fact that $i_{0}=\max _{q \in Q_{r}} N_{q}$. Therefore, i_{0} must be smallest.

To conclude, there exists a smallest integer i_{0} such that $Q_{r}^{i_{0}+1}=Q_{r}^{i_{0}}=Q_{r}$.

Problem 4

1. The deterministic hybrid automaton modeling the system is given in figure 2. The hybrid automaton has four discrete modes, corresponding to the four locations q_{1}, q_{2}, q_{3}, and q_{4}, which have invariants corresponding to the four quadrants. The specification, according to the definition given in reference [R1], is as follows:

- Set of locations $L=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- Continuous state space $X=\mathbb{R}^{2}$
- Continuous external variables space $W=\emptyset$

Figure 2: Hybrid Automaton modeling the system in Problem 4

- Location invariants:
$-\operatorname{Inv}\left(q_{1}\right)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geq 0, x_{2}>0\right\}$
$-\operatorname{Inv}\left(q_{2}\right)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}>0, x_{2} \leq 0\right\}$
$-\operatorname{Inv}\left(q_{3}\right)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \leq 0, x_{2}<0\right\}$
$-\operatorname{Inv}\left(q_{4}\right)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}<0, x_{2} \geq 0\right\}$
- Location dynamics (activities) Act:
$-\operatorname{Act}\left(q_{1}\right)=\left\{\begin{array}{l}\dot{x}_{1}=1 \\ \dot{x}_{2}=-3\end{array}\right.$
$-\operatorname{Act}\left(q_{2}\right)=\left\{\begin{array}{l}\dot{x}_{1}=-3 \\ \dot{x}_{2}=-1\end{array}\right.$
$-\operatorname{Act}\left(q_{3}\right)=\left\{\begin{array}{l}\dot{x}_{1}=-1 \\ \dot{x}_{2}=3\end{array}\right.$
$-\operatorname{Act}\left(q_{4}\right)=\left\{\begin{array}{l}\dot{x}_{1}=3 \\ \dot{x}_{2}=1\end{array}\right.$
- Set of transitions:
- Transition from q_{1} to q_{2} with Guard $_{q_{1}, q_{2}}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}=0\right\}$ and $J u m p_{q_{1}, q_{2}}=$ $\left\{\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \in \mathbb{R}^{4} \mid x_{1}^{\prime}=x_{1}, x_{2}^{\prime}=x_{2}\right\}$
- Transition from q_{2} to q_{3} with Guard $q_{q_{2}, q_{3}}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}=0\right\}$ and $J u m p_{q_{2}, q_{3}}=$ $\left\{\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \in \mathbb{R}^{4} \mid x_{1}^{\prime}=x_{1}, x_{2}^{\prime}=x_{2}\right\}$
- Transition, from q_{3} to q_{4} with Guard $q_{q_{3}, q_{4}}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}=0\right\}$ and $J u m p_{q_{3}, q_{4}}=$ $\left\{\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \in \mathbb{R}^{4} \mid x_{1}^{\prime}=x_{1}, x_{2}^{\prime}=x_{2}\right\}$
- Transition from q_{4} to q_{1} with Guard $_{q_{4}, q_{1}}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}=0\right\}$ and $J u m p_{q_{4}, q_{1}}=$ $\left\{\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \in \mathbb{R}^{4} \mid x_{1}^{\prime}=x_{1}, x_{2}^{\prime}=x_{2}\right\}$

2. For any non-zero initial continuous state $x(0) \neq 0$, the hybrid automaton starts in one of the four locations q_{1}, q_{2}, q_{3}, and q_{4}, according to the quadrant that $\left(x_{1,0}, x_{2,0}\right)$ is in.

- If the hybrid automation is in location q_{1}, i.e. $x_{1} \geq 0$ and $x_{2}>0, x_{1}$ keeps increasing (since $\dot{x}_{1}=1$) while x_{2} keeps decreasing faster (since $\dot{x}_{2}=-3$) until $x_{2}=0$. When $x_{2}=0$, the invariant is violated and the guard of the sole transition to q_{2} is satisfied, thus the hybrid automaton changes to location q_{2}.
- If the hybrid automation is in location q_{2}, i.e. $x_{1}>0$ and $x_{2} \leq 0, x_{2}$ keeps decreasing (since $\dot{x}_{2}=-1$) while x_{1} decreases faster (since $\dot{x}_{1}=-3$) until $x_{1}=0$. When $x_{1}=0$, the invariant is violated and the guard of the sole transition to q_{3} is satisfied, thus the hybrid automaton changes to location q_{3}.
- If the hybrid automation is in location q_{3}, i.e. $x_{1} \leq 0$ and $x_{2}<0, x_{1}$ keeps decreasing (since $\dot{x}_{1}=-1$) while x_{2} increases faster (since $\dot{x}_{2}=3$) until $x_{2}=0$. When $x_{2}=0$, the invariant is violated and the guard of the sole transition to q_{4} is satisfied, thus the hybrid automaton changes to location q_{4}.
- If the hybrid automation is in location q_{4}, i.e. $x_{1}<0$ and $x_{2} \geq 0, x_{2}$ keeps increasing (since $\dot{x}_{2}=1$) while x_{1} increases faster (since $\dot{x}_{1}=3$) until $x_{1}=0$. When $x_{1}=0$, the invariant is violated and the guard of the sole transition to q_{1} is satisfied, thus the hybrid automaton changes to location q_{1}.

From above, we can see that the hybrid automaton keeps switching repeatedly between the four locations, without making $\left(x_{1}, x_{2}\right)$ reach the origin.

On the other hand, it is easy to see that in each location we have $\frac{\mathrm{d}}{\mathrm{d} t}\left(\left|x_{1}(t)\right|+\left|x_{2}(t)\right|\right)=-2$. Therefore, the sum $\left|x_{1}(t)\right|+\left|x_{2}(t)\right|$ decreases with time (in other words, $\left(x_{1}, x_{2}\right)$ goes to (0,0)) and $\left(x_{1}, x_{2}\right)$ reaches the origin after $\frac{1}{2}\left(\left|x_{1,0}\right|+\left|x_{2,0}\right|\right)$ units of time. However, the continuous state cannot arrive at the origin without going through an infinite number of transitions between the four locations q_{1}, q_{2}, q_{3}, and q_{4} (shown above).

It follows that the system has Zeno execution for every non-zero initial state. The Zeno time is $\frac{1}{2}\left(\left|x_{1,0}\right|+\left|x_{2,0}\right|\right)$.

Problem 5

1. This system has a livelock whenever x_{1} reaches 0 . It is because when $x_{1}=0, \operatorname{sgn}\left(x_{1}\right)$ is undefined, thus x_{1} may become either positive $\left(x_{1}>0\right)$ or negative $\left(x_{1}<0\right)$. However, since $\dot{x}_{1}=$ $-\operatorname{sgn}\left(x_{1}\right)$, variable x_{1} will return to 0 immediately. This is repeated again and again, and the system switches infinitely between the two modes: the mode when $x>0$ and the mode when $x<0$. Thus, the system has a livelock.
2. Using the forward Euler method to approximate the derivatives of x_{1} and x_{2} with respect to time, we have

$$
\begin{aligned}
& \frac{x_{1, k+1}-x_{1, k}}{h}=-\operatorname{sgn}\left(x_{1, k}\right) \\
& \frac{x_{2, k+1}-x_{2, k}}{h}=-x_{2, k}
\end{aligned}
$$

which leads to

$$
\begin{aligned}
& x_{1, k+1}=x_{1, k}-h \operatorname{sgn}\left(x_{1, k}\right) \\
& x_{2, k+1}=x_{2, k}-h x_{2, k}
\end{aligned}
$$

With initial condition $\left(x_{1,0}, x_{2,0}\right)=(1,1)$, we can simulate the execution of the system using the formulae above with $k=1,2,3, \ldots$, for time $0 \leq t=k . h \leq 5$. For three different values of time step $h=0.1,0.05,0.01$, we have three simulations. Their results are given in figure 3 . The upper plot shows the values of $x_{1}(t)$ and $x_{2}(t)$ of all three simulations. The lower plot shows the graph of $\left(x_{1}, x_{2}\right)$ in the state space plane. In the graphs, we can see the repeated switches of the system between the two modes: $x>0$ and $x<0$, which illustrate the livelock of the system.

Figure 3: Simulation results with $h=0.1$ (dotted line), $h=0.05$ (dashed line), and $h=0.01$ (solid line)
3. With the new definition of $\operatorname{sgn}(\cdot)$ we have

- The differential equation $\dot{x}_{2}=-x_{2}$ gives the solution $x_{2}(t)=x_{2,0} e^{-t}$. With $x_{2,0}=1$, we have $x_{2}(t)=e^{-t}, t \geq 0$
- With $x_{1,0}=1>0$, we have the differential equation $\dot{x}_{1}=-\operatorname{sgn}\left(x_{1}\right)=-1$, which gives the solution $x_{1}(t)=1-t$ for $t \geq 0$ and while $x_{1}>0$. At time $t=1, x_{1}$ is 0 and, $\operatorname{since} \operatorname{sgn}(0)=0$, the differential equation for x_{1} becomes $\dot{x}_{1}=0$. Thus, after time instant $t=1$, the value of x_{1} does not change and is 0 . Mathematically, we have:

$$
x_{1}(t)= \begin{cases}1-t & \text { if } 0 \leq t<1 \\ 0 & \text { if } t \geq 1\end{cases}
$$

In this solution, we do not see the repeated switches of the system between the two modes, $x_{1}>0$ and $x_{1}<0$, as in the results of the previous part. It is because we introduced a new mode (the sliding mode) to the system, corresponding to $x_{1}=0$, by defining the value of $\operatorname{sgn}(0)$ to be 0 . Therefore, the new system does not have a livelock as does the original system. If we plot the graph of $\left(x_{1}, x_{2}\right)$ of the new system, we will have the result as in figure 4 . As we can see, the main difference between the plots in the previous part and this plot is that there are no repeated switches between $x<0$ and $x>0$ in this plot. The vertical line represents the sliding mode of the system.

Figure 4: Graph of $\left(x_{1}, x_{2}\right)$ of the new system with the sliding mode

