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Hybrid to discrete abstraction

Abstraction

Goal : Finite quotients of hybrid systems

Hybrid

Discrete



Hybrid System Model
A hybrid system                                        consists of

is a finite set of states
is the continuous state space
is the state space of the hybrid system
is the set of initial states
maps a diff. inclusion to each discrete state  
maps invariant sets to each discrete state 
is a relation capturing discontinuous changes

Define

H = (V,<n,X0, F, Inv,R)

<n

X = Vâ<n

X0 òX
F(l, x) ò<n

V

Inv(l) ò<n

R òXâX

E = {(l, l0)| ∃x ∈ Inv(l), x0 ∈ Inv(l0) ((l, x), (l0, x0)) ∈ R}
Init(l) = {x ∈ Inv(l) | (l, x) ∈ X0}
Guard(e) = {x ∈ Inv(l)| ∃x0 ∈ Inv(l0) ((l, x), (l0, x0)) ∈ R}
Reset(e, x) = {x0 ∈ Inv(l0)| ((l, x), (l0, x0)) ∈ R}
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Transitions of Hybrid Systems
Hybrid systems can be embedded into transition systems
H = (V,<n,X0, F, Inv,R) TH = (Q,Q0,Σ,→,O,< á>)
Q = Vâ<n

Q0 =X0

Σ =E∪ {ü}
→òQâΣâ Q

(l1, x1)à→(l2, x2) iff x1 ∈ Guard(e), x2 ∈ Reset(e, x1)

(l1, x1)à→(l2, x2) iff l1 = l2 and ∃î õ 0 x(á ) : [0, î]→ <n

x(0) = x1, x(î) = x2, and ∀t ∈ [0, î]

xç ∈ F(l1, x(t)) and x(t) ∈ Inv(l1)

Discrete transitions

Continuous (time-abstract) transitions

Observation set and map 
depend on desired properties

e

ü



Rectangular hybrid automata
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Rectangular sets :  
V

ixi ø ci ø∈ {<,ô,=,õ,>}, ci ∈ Q

Rectangular hybrid automata are hybrid systems where 

are rectangular sets  

Init(l), Inv(l), F(l, x),Guard(e),Reset(e, x)i



Multi-rate automata
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Multi-rate automata are rectangular hybrid automata where 

are singleton sets  

Init(l), F(l, x),Reset(e, x)i
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Timed automata
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Timed automata are multi-rate automata where 

for all locations l and all variables. 

F(l, xi) = 1

2l

1y
.
=

1x
.
=

1y
.
=

1x
.
=

1y
.
=



Initialized automata

Rectangular hybrid automata are initializedinitialized if the following holds:

After a discrete transition, if the differential inclusion (equation) for
a variable changes, then the variable must be reset to a fixed interval.

Timed automata are always initialized. 
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Timed automata
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All timed automata admit a finite All timed automata admit a finite bisimulationbisimulation
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Hence CTL* model checking is decidable for timed automata 



Timed automata
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Approach : Discretize the clock dynamics using region equivalence



Region equivalence

3l

 x
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Equivalence classes : 6 corner points 
14 open line segments
8 open regions



Multi-rate automata
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All initialized multiAll initialized multi--rate automata admit a finite rate automata admit a finite bisimulationbisimulation



Rectangular automata
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All initialized rectangular automata admit a finite All initialized rectangular automata admit a finite bisimulationbisimulation



Rectangular automata
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No finite bisimulation

Bisimulation algorithm never terminates 
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but…

All initialized rectangular automata admit a finite language All initialized rectangular automata admit a finite language 
equivalence quotient which can be constructed effectively. equivalence quotient which can be constructed effectively. 
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LTL model checking of rectangular automata is decidable. LTL model checking of rectangular automata is decidable. 



Bad news

UndecidabilityUndecidability barriers barriers 
Consider the class of uninitialized multi-rate automata with n-1 clock
variables, and one two slope variable (with two different rates).

The reachability problem is undecidable for this class.

No algorithmic procedure exists.

Model checking temporal logic formulas is also undecidable

Initalization is necessary for decidability  



More complicated dynamics?

Bisimulation algorithm 
never terminates    !!
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Basic problems

Finite Finite bisimulationsbisimulations of continuous dynamical systems of continuous dynamical systems 
Given a vector field F(x) and a finite partition of       

1. Does there exist a finite bisimulation ?
2. Can we compute it ?

nR



Representation issues
Symbolic representation for infinite sets
Rectangular sets ? Semi-linear ? Semi-algebraic ?

Operations on sets
Boolean (logical) operations
Can we compute Pre and Post ? 
Is our representation closed under Pre and Post ?

Algorithmic termination (decidability)
No guarantee for infinite transition systems
We need “nice” alignment of sets and flows
Globally finite properties

Reminder



First-order logic
Every theory of the reals has an associated language

(<,<,+ ,à ,0,1)

Universe Relation Functions Constants

x1, x2, x3, . . .Variables :

TERMS :  Variables, constants, or functions of them

ATOMIC FORMULAS : Apply the relation and equality to the terms

(FIRST ORDER) FORMULAS :  Atomic formulas are formulas
If          are formulas, then  ϕ1,ϕ2 ϕ1 ∨ϕ2,¬ϕ1,∀x.ϕ1,∃x.ϕ1

x1àx2 +1,1+1,àx3

x1 +x2 <à1,2x1 = 1, x1 = x3



First-order logic
Useful languages 

(<,<,+ ,à ,0,1)

(<,<,+ ,à ,â ,0,1)

(<,<,+ ,à ,â , ex,0,1)

∃x.ax2 +bx+c = 0

∃t.(t õ 0)∧ (y = etx)

∀x∀y(x+2y õ 0)

A theory of the reals is decidabledecidable if there is an algorithm which in 
a finite number of steps will decide whether a formula is true or not

A theory of the reals admits quantifier eliminationquantifier elimination if there is an 
algorithm which will eliminate all quantified variables.

∃x.ax2 +bx+c =0 ñ b2à4ac õ 0



First-order logic

(<,<,+ ,à ,0,1)

(<,<,+ ,à ,â ,0,1)

(<,<,+ ,à ,â , ex,0,1)

Decidable ? Quant. Elim. ?

YES

YES

YES

YES

NO?

Theory

Tarski’sTarski’s result : result : Every formula in                               can be decided
1. Eliminate quantified variables
2.Quantifier free formulas can be decided

(<,<,+,à,â,0,1)



A definable set is

A theory of the reals is called oo--minimalminimal if every
definable subset of the reals is a finite union of
points and intervals

Example:                                    for polynomial p(x)
Recent o-minimal theories

O-Minimal Theories

Exponential flows

Y = {(x1, x2, . . ., xn) ∈ <n | ϕ(x1, . . ., xn)}

(<,<,+,à,0,1)

(<,<,+,à,â,0,1)

(<,<,+,à,â, ex,0,1)

Y = {(x) ∈ < | p(x)õ 0}



Basic answers

Finite Finite bisimulationsbisimulations of continuous dynamical systems of continuous dynamical systems 
Consider a vector field X and a finite partition of  where  

1. The flow of the vector field is definable in an o-minimal theory
2. The finite partition is definable in the same o-minimal theory

Then a finite bisimulation always exists.

nR



Corollaries

Consider continuous systems where
Finite partition is polyhedral
Vector fields have linear flows (timed, multi-rate)

Then a finite bisimulation exists.

Consider continuous systems where
Finite partition is semialgebraic
Vector fields have polynomial flows

Then a finite bisimulation exists.

(<,<,+,à,0,1)

(<,<,+,à,â,0,1)



Corollaries

Consider continuous systems where
Finite partition is semi-algebraic
Vector fields are linear with real eigenvalues

Then a finite bisimulation exists.

Consider continuous systems where
Finite partition is sub-analytic
Vector fields are linear with purely imaginary eigenvalues

Then a finite bisimulation exists.

(<,<,+,à,â, ex,0,1)

(<,<,+ ,à ,â , fê,0,1)



Corollaries

Consider continuous systems where
Finite partition is semi-algebraic
Vector fields are linear with real or imaginary eigenvalues

Then a finite bisimulation exists.

(<,<,+,à,â, fê, ex,0,1)

xx

x

x

x x

Conditions are sufficient but tight



Bisimulation of linear systems
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Bisimilar control systems

T dt
dx = Axt+But

dt
dy = Fyt+Gvt

quotient system is a 
linear system



Linear system to transition system
Keep continuous time….
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Linear system to transition system 
Time abstract
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H based partitioning
Two states are equivalent iff

for some surjective map z=Hx.  Simulation S=(x,Hx)

Partition is observation preserving iff
Linear observations : 

)H(KerxxHx  Hx xx 212121 ∈−⇔=⇔≈
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Consider the time-abstract transition system

Proposition* : Partition respects the transitions iff

Timed, continuous transitions
∆
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Consider the time-abstract transition system

Proposition* : Partition respects the transitions iff

Untimed, continuous transitions
∆
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Coarsest Bisimulation
Find map z=Hx which abstracts as much as possible.
Thus Ker(H) must be maximal but also…

Preserves observations 

Preserves transitions of 

Other variations for other embeddings…

)C(Ker)H(Ker ⊆
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Coarsest Bisimulation Algorithm

Maximal controlled invariant subspace computation

Then                  is the maximal desired subspace

Once V* is computed, then pick map z=Hx such that 

Ker(H)=V*
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