ESE601: Hybrid Systems

Bisimulation of hybrid and continuous systems

Spring 2006

Hybrid to discrete abstraction

Goal : Finite quotients of hybrid systems

Hybrid System Model

A hybrid system $H=\left(V, \Re^{n}, X_{0}, F, I n v, R\right)$ consists of

- V
- \Re^{n}
- $X=V \times \Re^{n}$
- $X_{0} \subseteq X$
- $F(l, x) \subseteq \Re^{n}$
- $\operatorname{Inv}(l) \subseteq \Re^{n}$
- $R \subseteq X \times X$
is a finite set of states
is the continuous state space
is the state space of the hybrid system is the set of initial states
maps a diff. inclusion to each discrete state maps invariant sets to each discrete state is a relation capturing discontinuous changes

Define $E=\left\{\left(l, l^{\prime}\right) \mid \exists x \in \operatorname{Inv}(l), x^{\prime} \in \operatorname{Inv}\left(l^{\prime}\right)\left((l, x),\left(l^{\prime}, x^{\prime}\right)\right) \in R\right\}$

$$
\operatorname{Init}(l)=\left\{x \in \operatorname{Inv}(l) \mid(l, x) \in X_{0}\right\}
$$

$$
\operatorname{Guard}(e)=\left\{x \in \operatorname{Inv}(l) \mid \exists x^{\prime} \in \operatorname{Inv}\left(l^{\prime}\right)\left((l, x),\left(l^{\prime}, x^{\prime}\right)\right) \in R\right\}
$$

$$
\operatorname{Reset}(e, x)=\left\{x^{\prime} \in \operatorname{Inv}\left(l^{\prime}\right) \mid\left((l, x),\left(l^{\prime}, x^{\prime}\right)\right) \in R\right\}
$$

An example

Transitions of Hybrid Systems

Hybrid systems can be embedded into transition systems $H=\left(V, \Re^{n}, X_{0}, F, I n v, R\right) \longrightarrow T_{H}=\left(Q, Q_{0}, \Sigma, \rightarrow, O,<\cdot>\right)$
$Q=V \times \Re^{n}$
$Q_{0}=X_{0}$
$\Sigma=E \cup\{\tau\}$
$\rightarrow \subseteq Q \times \Sigma \times Q$

Observation set and map depend on desired properties

Discrete transitions

$$
\left(l_{1}, x_{1}\right) \xrightarrow{e}\left(l_{2}, x_{2}\right) \text { iff } x_{1} \in \operatorname{Guard}(e), x_{2} \in \operatorname{Reset}\left(e, x_{1}\right)
$$

Continuous (time-abstract) transitions

$$
\left(l_{1}, x_{1}\right) \xrightarrow{\tau}\left(l_{2}, x_{2}\right) \text { iff } l_{1}=l_{2} \text { and } \exists \delta \geq 0 \quad x(\cdot):[0, \delta] \rightarrow \Re^{n}
$$

$$
x(0)=x_{1}, x(\delta)=x_{2}, \quad \text { and } \forall t \in[0, \delta]
$$

$$
\dot{x} \in F\left(l_{1}, x(t)\right) \text { and } x(t) \in \operatorname{Inv}\left(l_{1}\right)
$$

Rectangular hybrid automata

Rectangular sets : $\bigwedge_{i} x_{i} \sim c_{i} \quad \sim \in\{<, \leq,=, \geq,>\}, c_{i} \in Q$

Rectangular hybrid automata are hybrid systems where

$$
\operatorname{Init}(l), \operatorname{Inv}(l), F(l, x), \operatorname{Guard}(e), \operatorname{Reset}(e, x)_{i}
$$

are rectangular sets

Multi-rate automata

Multi-rate automata are rectangular hybrid automata where

$$
\operatorname{Init}(l), F(l, x), \operatorname{Reset}(e, x)_{i}
$$

are singleton sets

简 Penn

Timed automata

Timed automata are multi-rate automata where

$$
F\left(l, x_{i}\right)=1
$$

for all locations I and all variables.

Penn

Initialized automata

Rectangular hybrid automata are initialized if the following holds:
After a discrete transition, if the differential inclusion (equation) for a variable changes, then the variable must be reset to a fixed interval.

Timed automata are always initialized.

Timed automata

All timed automata admit a finite bisimulation

Hence CTL* model checking is decidable for timed automata四Penn

Timed automata

Approach : Discretize the clock dynamics using region equivalence

Penn

Region equivalence

Equivalence classes : 6 corner points 14 open line segments 8 open regions

Multi-rate automata

All initialized multi-rate automata admit a finite bisimulation

Rectangular automata

All initialized rectangular automata admit a finite bisimulation

Rectangular automata

$$
x=-100 \rightarrow x^{\prime}=2000
$$

All initialized rectangular autemata admit a finite bisimulation

No finite bisimulation

Bisimulation algorithm never terminates

but...

All initialized rectangular automata admit a finite language equivalence quotient which can be constructed effectively.

LTL model checking of rectangular automata is decidable.

哃Penn

Bad news

Undecidability barriers

Consider the class of uninitialized multi-rate automata with n-1 clock variables, and one two slope variable (with two different rates).

The reachability problem is undecidable for this class.

No algorithmic procedure exists.
Model checking temporal logic formulas is also undecidable
Initalization is necessary for decidability

風Penn

More complicated dynamics?

Bisimulation algorithm never terminates !!

Sets

$$
\begin{aligned}
& P_{1}=\{(x, 0) \mid 0 \leq x \leq 4\} \\
& P_{2}=\{(x, 0) \mid-4 \leq x<0\} \\
& P_{3}=R^{2} \backslash\left(P_{1} \cup P_{2}\right)
\end{aligned}
$$

Dynamics

$$
\begin{aligned}
& \dot{x}_{1}=0.2 x_{1}+x_{2} \\
& \dot{x}_{2}=-x_{1}+0.2 x_{2}
\end{aligned}
$$

Basic problems

Finite bisimulations of continuous dynamical systems
Given a vector field $F(x)$ and a finite partition of R^{n}

1. Does there exist a finite bisimulation?
2. Can we compute it?

Reminder

Representation issues

Symbolic representation for infinite sets Rectangular sets? Semi-linear? Semi-algebraic?

Operations on sets
Boolean (logical) operations
Can we compute Pre and Post?
Is our representation closed under Pre and Post?
Algorithmic termination (decidability)
No guarantee for infinite transition systems
We need "nice" alignment of sets and flows
Globally finite properties

First-order logic

Every theory of the reals has an associated language

Variables: $x_{1}, x_{2}, x_{3}, \ldots$

TERMS :

ATOMIC FORMULAS :

Variables, constants, or functions of them

$$
x_{1}-x_{2}+1,1+1,-x_{3}
$$

Apply the relation and equality to the terms

$$
x_{1}+x_{2}<-1,2 x_{1}=1, x_{1}=x_{3}
$$

(FIRST ORDER) FORMULAS : Atomic formulas are formulas

First-order logic

Useful languages

$$
\begin{array}{ll}
(\Re,<,+,-, 0,1) & \forall x \forall y(x+2 y \geq 0) \\
(\Re,<,+,-, \times, 0,1) & \exists x \cdot a x^{2}+b x+c=0 \\
\left(\Re,<,+,-, \times, e^{x}, 0,1\right) & \exists t \cdot(t \geq 0) \wedge\left(y=e^{t} x\right)
\end{array}
$$

A theory of the reals is decidable if there is an algorithm which in a finite number of steps will decide whether a formula is true or not

A theory of the reals admits quantifier elimination if there is an algorithm which will eliminate all quantified variables.

$$
\exists x \cdot a x^{2}+b x+c=0 \equiv b^{2}-4 a c \geq 0
$$

First-order logic

Theory	Decidable ?	Quant. Elim. ?
$(\Re,<,+,-, 0,1)$	YES	YES
$(\Re,<,+,-, \times, 0,1)$	YES	YES
$\left(\Re,<,+,-, \times, e^{x}, 0,1\right)$	$?$	NO

Tarski's result : Every formula in $(\Re,<,+,-, \times, 0,1)$ can be decided 1. Eliminate quantified variables 2. Quantifier free formulas can be decided

答Penn

O-Minimal Theories

A definable set is $Y=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Re^{n} \mid \varphi\left(x_{1}, \ldots, x_{n}\right)\right\}$
A theory of the reals is called o-minimal if every definable subset of the reals is a finite union of points and intervals

Example: $Y=\{(x) \in \Re \mid p(x) \geq 0\}$ for polynomial $\mathrm{p}(\mathrm{x})$ Recent o-minimal theories

$$
\begin{aligned}
& (\Re,<,+,-, 0,1) \\
& (\Re,<,+,-, \times, 0,1) \\
& \left(\Re,<,+,-, \times, e^{x}, 0,1\right)
\end{aligned}
$$

Penn

Basic answers

Finite bisimulations of continuous dynamical systems
Consider a vector field X and a finite partition of R^{n} where

1. The flow of the vector field is definable in an o-minimal theory 2. The finite partition is definable in the same o-minimal theory

Then a finite bisimulation always exists.

Corollaries

$(\Re,<,+,-, 0,1)$ Consider continuous systems where

- Finite partition is polyhedral
- Vector fields have linear flows (timed, multi-rate)

Then a finite bisimulation exists.
$(\Re,<,+,-, \times, 0,1) \quad$ Consider continuous systems where

- Finite partition is semialgebraic
- Vector fields have polynomial flows

Then a finite bisimulation exists.

䇥Penn

Corollaries

$\left(\Re,<,+,-, \times, e^{x}, 0,1\right)$ Consider continuous systems where

- Finite partition is semi-algebraic
- Vector fields are linear with real eigenvalues

Then a finite bisimulation exists.
$(\Re,<,+,-, \times, \hat{f}, 0,1) \quad$ Consider continuous systems where

- Finite partition is sub-analytic
- Vector fields are linear with purely imaginary eigenvalues Then a finite bisimulation exists.

Corollaries

$\left(\Re,<,+,-, \times, \hat{f}, e^{x}, 0,1\right)$ Consider continuous systems where

- Finite partition is semi-algebraic
- Vector fields are linear with real or imaginary eigenvalues

Then a finite bisimulation exists.

Bisimulation of linear systems

Linear system to transition system Keep continuous time....

Transition System $T_{R_{+}}^{\Delta}$
State set $Q=X=R^{n}$
Label set $\Sigma=R_{+}$
Observation set $O=Y=R^{p}$
Linear Observation Map $\langle x\rangle=C x$
Transition Relation $\rightarrow \subseteq X \times R_{+} \times X$
$\quad \exists u_{[0,+]}$ with
$x_{1} \xrightarrow{\dagger} x_{2} \Leftrightarrow \quad x_{2}=e^{A+} x_{1}+\int_{0}^{+} e^{A(t-s)} B u(s) d s$

简Penn

Linear system to transition system Time abstract

Transition System T_{T}^{Δ}
State set $Q=X=R^{n}$
Label set $\Sigma=\{T\}$
Observation set $O=Y=R^{p}$
Linear Observation Map $\langle x\rangle=C x$
Transition Relation $\rightarrow \subseteq X \times\{T\} \times X$
$\quad \exists t$ and $\exists u_{[0, t]}^{+}$with
$x_{1} \xrightarrow{\top} \rightarrow x_{2} \Leftrightarrow \quad x_{2}=e^{A t} x_{1}+\int_{0}^{\dagger} e^{A(t-s)} B u(s) d s$

答Penn

H based partitioning

Two states are equivalent iff

$$
x_{1} \approx x_{2} \Leftrightarrow H x_{1}=H x_{2} \Leftrightarrow x_{1}-x_{2} \in \operatorname{Ker}(H)
$$

for some surjective map $z=H x$. Simulation $S=(x, H x)$
Partition is observation preserving iff
Linear observations:

$$
\operatorname{Ker}(H) \subseteq \operatorname{Ker}(C)
$$

Timed, continuous transitions

Consider the time-abstract transition system $T_{R_{+}}^{\Delta}$

Proposition*: Partition respects the transitions iff
$A \operatorname{Ker}(H) \subseteq \operatorname{Ker}(H)+R(A, B)$
$R(A, B)=\operatorname{im}\left[B A B \cdots A^{n-1} B\right]$

Untimed, continuous transitions

Consider the time-abstract transition system T_{T}^{Δ}

$$
\begin{gathered}
x_{1} \xrightarrow{T} x_{1}{ }^{\prime} \\
\approx \\
\approx \\
x_{2} \longrightarrow T
\end{gathered}
$$

Proposition*: Partition respects the transitions iff

$$
\begin{aligned}
& A \operatorname{Ker}(H) \subseteq \operatorname{Ker}(H)+R(A, B) \\
& R(A, B)=\operatorname{im}\left[B A B \cdots A^{n-1} B\right]
\end{aligned}
$$

Coarsest Bisimulation

Find map $\mathrm{z}=\mathrm{H} x$ which abstracts as much as possible. Thus $\operatorname{Ker}(\mathrm{H})$ must be maximal but also...

Preserves observations

$$
\operatorname{Ker}(H) \subseteq \operatorname{Ker}(C)
$$

Preserves transitions of T_{T}^{Δ}

$$
A \operatorname{Ker}(H) \subseteq \operatorname{Ker}(H)+R(A, B)
$$

Other variations for other embeddings...

Penn

Coarsest Bisimulation Algorithm

Maximal controlled invariant subspace computation

$$
\begin{aligned}
V_{0} & =\operatorname{Ker}(C) \\
V_{k+1} & =V_{k-1} \cap A^{-1}\left(V_{k-1}+R(A, B)\right)
\end{aligned}
$$

Then $V^{*}=V_{n}$ is the maximal desired subspace

Once V^{\star} is computed, then pick map $z=H \times$ such that

$$
\operatorname{Ker}(H)=V^{*}
$$

