Control of piecewise linear hybrid systems

A piecewise linear hybrid system consists of two parts:

- An automaton \((Q, E_{cd} \cup E_{in}, f)\), where
 \(Q\) is the set of states, \(E_{cd}\) are events that are triggered by the continuous dynamics (guard), \(E_{in}\) are input events (externally triggered), \(f\) represents the transition function.

- For each \(q \in Q\) we define an affine system
 \[
 \dot{x}_q = A_q x_q(t) + B_q u(t) + a_q
 \]
 \[
 y(t) = C_q x_q(t) + D_q u(t) + c_q
 \]
\[q^+ = f(q^-, x_k^-) \]

\[x_k^+ = A_r(q^-, x_k^-, x_k^+ + b)(q^- + x_k^-) \]

When an event \(e \in E \) in or when the continuous state reaches the guard \(G_q(e) \), a transition occurs and the state is updated according to:

\[x_k^+ = g_k(x_k^-) \]

with \(x_k \in X_k \) and \(v \in U \).
Assumptions:

- At any fixed time only a finite number of discrete transitions can occur (no livelock).
- On any finite interval only a finite number of discrete transitions can occur (non-zero)
exercise is said to be reachable.

If every state is reachable from the initial state, then the

such that by applying the input strings e_i and input signals

\[
\forall i \leq \left\lfloor \frac{t}{e} \right\rfloor + 1 \rightarrow \cup, \; i = 1, 2, \ldots, n
\]

\[
(t_i, e_i), \; i = 1, \ldots, m, \; \text{if \; even, \; } t_i < t_j, \; j > i
\]

\[
(x_0, x_{x_0}, 0) \in A \times \text{If there exist two sequences}
\]

A state $(y_0, y_{x_0}) \in A \times x \in x$ is reachable from the initial state.

Reachability:
\[\forall (r, g, b, c) \]

\[\exists x, y, z \in \mathbb{R}^+ \text{ s.t. } x^2 + y^2 + z^2 = 1 \]

A group (G, e, *)
A e e e a, g e a
\[
\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \} = \mathbb{D}
\]

An arbitrary set (or empty set) is defined to be a set of the form

\[
\mathbb{A} \subseteq \mathbb{R}^2
\]
For any \(x \in S \subseteq X \),

\[
\text{Cond}(S, X^2) = \bigcup_{x \in S} \text{Cond}(x, X^2)
\]

The set of all states \(x \in X \) from which \(x \) can be reached without leaving \(X \).

The controllability set (CCond) of \((g, x) \in A \times X \) is...
Assume that there exists a collection of different sets of the form $A = \{ A(x, n) : x \in \mathbb{Z}, n \in \mathbb{N}, 2 \leq n \}$.
\[A(\varrho, e, e^+ \leq \chi^+) \supset \bigcup_{\kappa \in \text{Eve}_{\vartheta, \chi}} A(\varrho, \kappa) \]

Assume that for every univ. set \(A(\varrho, e, e^+ \leq \chi^+) \),
The automaton is possibly non-deterministic.

\[
\text{for } (A(g, r, x, f, a), c) \in \text{context}(C_{g, r, x, f, a}) \quad \text{and}
\]

\[
\text{or } (A(g, r, x, f, a), c) \in \text{context}(C_{g, r, x, f, a})
\]

When the transition function \(f \) is defined as:

We can build an automaton \((A, E, \nu, \epsilon, f, a, 0)\),
Similar to the bisimulation algorithm, the construction of the finite set \(A \) can be done with an induction.

The second condition that can reach any set from \(A \) for any \((q, x) \in A \times x\), there exists an \((q', k) \) such that

\[
A(q', k) = \text{const}(q, x) \]

For any \((q', x) \in A \times x\), there exists an \(A(q', x) \) such that

The situation \((A, E, \text{used}, f, a, A_0)\) is reachable, only if and only if:

Reachability and: The previously discussed high level systems reach.
\[n \cdot x(t) \geq 0 \quad (\text{the curve is going out}) \]

\[x(t) \in F \quad \iff \quad t = T \]

\[x(t) \in \& \quad A \& \text{c}(0, T) \]

\[t \in T, \forall n \in [0, T] \cup \text{such that: } \]

A polygonal line through the vertex \(T \)?

How to choose the control input such that the state exists?

Problem:
at other facts. Note that vector \(u_1 \) is parallel to the exit facet, and similarly

vertices of the polyhedral. This must be USED values such that the
necessary condition: Full dimension polyhedral.atham et al.
If \(P \) is a simplex, any point in \(D_n \) can be written as a

\[\sum_{i=1}^{n} \lambda_i v_i = v, \quad \lambda_i \in [0,1], \sum_{i=1}^{n} \lambda_i = 1 \]

The convex hull is then defined as:

\[\text{conv} \{ v_1, v_2, \ldots, v_n \} = \{ \sum_{i=1}^{n} \lambda_i v_i : \lambda_i \in [0,1], \sum_{i=1}^{n} \lambda_i = 1 \} \]
To apply the method for the simplex,

\[v_2 \]

\[v_1 \]

\[v_0 \]

\[v_0 \]

E.g.: in \(\mathbb{R}^2 \), triangulation.

For abstract polytopes (not necessarily simplicial), the

\[\text{simplicial} \]

approach can be used by breaking down the polytope into simplices.
Optimal control of linear discrete-time hybrid systems
Consider the optimization problem based on the following cost

\[J(u, x) = \sum_{k=0}^{\infty} L(x(k), u(k)) \]

for the system

for all \(x \in \mathbb{R} \), \(x(0) = x_0 \).
A good approximation.

Hence, taking large enough, we can get

Informal reasoning: if the infinite sum converges, then the two

\[x(0) = x \]

\[x = 0 \]

\[\int_{n}^{n+1} = \lim_{k \to \infty} \int_{n}^{n+1} x_k(u) \, du \]

An approximation is by any finite horizon.

Because of the infinite time horizon, the solution is difficult.
Algorithm:

The idea of finite horizon is combined with accuracy horizon.

The problem is more tractable.

The optimisation must be performed, i.e., \(\text{u}(t), \text{u}(t-1), \ldots, \text{u}(0) \) on which the horizon truncated.
Apply \(u(c_0) \) to \(c \), and so on.

Compute the objective \(u(c_1), \ldots, u(c_T) \).
Finite time constrained optimal control:

Constraints: \[U_{\text{min}} \leq U(t) \leq U_{\text{max}} \]
\[x_{\text{min}} \leq x(t) \leq x_{\text{max}} \]

defines a polyhedron \(D \)

\[x(t+1) = A_i x(t) + b_i u(t) + f_i \quad \text{if} \]

\[
\begin{bmatrix}
 x(t) \\
 u(t)
\end{bmatrix} \in \tilde{X}_i, \quad \tilde{X}_i := X_i \cap D
\]
If \(p = 2 \), \(\| \Theta \|_2 \sim (\Theta^T \Theta)^{-\frac{1}{2}} \) quadratic cost.

\(x \) is the desired input function.

\(x^e \) is the desired equilibrium state.

For example: \(p \) is unmixing, problem specific norm denotation.

\[
\begin{align*}
\| p(x(t)) - x^e \|_p^p \\
\| \Theta (x(v)) - x^e \|_p^p \\
\| R(u(x)-u^e) \|_p^p
\end{align*}
\]

\[
\int_{u_{-1},x(0)}^{u_0,f(x)} \frac{1}{t-1} dt
\]

Define the cost function.
\(u(t) = F(\xi(t), x(t) + g(t)) \forall x(t) \in P(t) \)

The solution of the optimal control problem, given the form

\[
\min \quad P(0) + \int_{0}^{\infty} \left(x(t)^{T} - x_{e}^{T} \right)^{2} dt + \sum_{t=0}^{\infty} \mathbb{E} \left((x(t+1) - x_{e}^{T})^{2} + (u(t) - u_{e}^{T})^{2} \right)
\]

with a, p, 0, K > 0.
where $P(l, t) = \text{a partition of the state space},$ given by

$$\{(l_1, t_1) \leq \ldots \leq (l_i, t_i) \leq \ldots \leq (l_N, t_N)\}$$

- Transform the dynamics of the system into mixed logic

The solution is obtained:

$$\text{dynamics (MLC0)}$$
Tool: MPT toolbox for MATLAB

A Mixed Integer Quadratic Programming.
Together with the quadratic cost function, the problem becomes