
ESE601: Hybrid Systems

Introduction to verification

Spring 2006

Suggested reading material

Papers (R14) - (R16) on the website.
The book “Model checking” by Clarke, Grumberg and Peled.

What is verification?

We need to make sure that the engineering systems we
build are safe, functioning correctly, etc.

Systems can mean software, hardware, protocols, etc.
Thus, not restricted to hybrid systems. In fact,
verification originates in computer science, i.e. for
discrete event systems.

How is verification done? The system is represented as
transition system, the properties to be verified are
represented as temporal logic formulas, whose truth
values are to be determined/verified.

Transition Systems
A transition system

consists of
A set of states Q
A set of events
A set of observations O
The transition relation
The observation map

Initial may be incorporated
The sets Q, , and O may be infinite
Language of T is all sequences of observations

) O, , Σ, Q, (T ⋅→=

0o

2

σ

1 qq →

Σ

Σ

0q

1q 2q

3q 4q

0o0o

1o 2o

01 oq =

σσ

σσ

A painful example
The parking meter

0 1 2 3 604 5
tick tick tick tick tick tick tick

tick

5p
5p

5p

5p

States Q ={0,1,2,…,60}

Events {tick,5p}

Observations {exp,act}

A possible string of observations (exp,act,act,act,act,act,exp,…)

exp act actactact actact

Temporal logic (informal)
Temporal logic involves logical propositions whose truth

values depend on time.
“Tomorrow is Thursday”

The time is related to the execution steps of the
transition system.

The asserted property is related to the observation of
the transition system.

“At the next state, the meter expires”

The basic verification problem

Basic verification problemBasic verification problem

T |=ϕ

Given transition system T, and temporal logic formula ϕ

The transition system satisfies the formula if:
-All executions satisfy the formula (linear time)
-The initial states satisfy the formula (branching time)

Another verification problem

Another verification problemAnother verification problem

L(T) ò L(S)

Given transition system T, and specification system S

Language inclusion problems. Recall supervisory
control problem.

Linear temporal logic syntax

The LTL formulas are defined inductively as follows

Atomic propositions
All observation symbols p are formulas

Boolean operators
If and are formulas then

Temporal operators
If and are formulas then

Linear temporal logic

ϕ1 ϕ2

ϕ1 ϕ2

ϕ1 ∨ ϕ2 ¬ϕ1

ϕ1 U ϕ2 íϕ1

Linear temporal logic

LTL formulas are evaluated over (infinite) sequences of
execution, which are called words.
Ex: w=(exp,act,act,act,act,act,exp,…)

A word w satisfies a formula iff (w,0) satisfies it.

(w, 0)|=exp, (w, 1)|=act, (w, 1)|=¬exp, á á á

w|=þ :⇔ (w, 0)|=þ

w|= í þ :⇔ (w, 1)|=þ

w|= ò U þ :⇔ (w, i)|= ò, (w,N)|=þ, 0 ô i < N.

Express temporal specifications along sequences

Informally Syntax Semantics

Eventually p

Always p

If p then next q

p until q

Linear temporal logic

♦p

p ⇒ í q

p U q

ã ã ã ã ã ã ã ã p

ã ã ã ã ã ã ã pq

ppppppppppq ã ã ã

p pppppppppppppp

Syntactic boolean abbreviations

Conjunction
Implication
Equivalence

Syntactic temporal abbreviations

Eventually
Always
In 3 steps

Linear temporal logic

♦ ϕ = > U ϕ
ϕ = ¬♦ ¬ϕ

ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

í3 ϕ = íííϕ

The LTL formulas are interpreted over infinite (omega) words

w = p0 p1 p2 p3 p4. . .

(w, i) |=p iff pi = p

(w, i) |=ϕ1 ∨ ϕ2 iff (w, i) |=ϕ1

(w, i) |=ϕ1 U ϕ2

(w, i) |= íϕ1 iff (w, i +1)|=ϕ1

or (w, i) |=ϕ2

(w, i) |=¬ϕ1 iff (w, i) 6 |=ϕ1

Linear temporal logic semantics

∃j õ i (w, j) |=ϕ2 and ∀ i ô k ô j (w, k) |=ϕ2

w |=ϕ iff (w, 0) |= ϕ

T |=ϕ iff ∀w ∈ L(T) w |= ϕ

Two processors want to access a critical section. Each processor can has three
observable states

p1={inCS, outCS, reqCS}
p2={inCS, outCS, reqCS}

Mutual exclusion
Both processors are not in the critical section at the same time.

Starvation freedom
If process 1 requests entry, then it eventually enters the critical section.

LTL examples

¬(p1 = inCS ∧ p2 = inCS)

p1 = reqCS⇒ ♦p1 = inCS

LTL Model Checking

LTL model checkingLTL model checking

T |=ϕ

Given transition system and LTL formula we have

The transition system satisfies the formula if all
executions satisfy it.
LTL model checking is decidable for finite T

Complexity :

Determine if

O(n+m)2O(k)

states transitions formula
length

System verified

Counterexample

Computational tree logic (CTL)

CTL is based on branching time. Its formulas are evaluated over the
tree of trajectories generated from a given state of the transition
system.

Computation tree logic
CTL syntax

The CTL formulas are defined inductively as follows

Atomic propositions
All observation symbols p are formulas

Boolean operators
If and are formulas then

Temporal operators
If and are formulas then

ϕ1 ϕ2

ϕ1 ϕ2

ϕ1 ∨ ϕ2 ¬ϕ1

ϕ1 ∃U ϕ2 ∃íϕ1

Express specifications in computation trees (branching time)

Informally Syntax Semantics

Inevitably next p

Possibly always p

Computation tree logic (informally)

∀í p

∃ p

ppp

pq

p

q

CTL Model Checking

CTL model checkingCTL model checking

T |=ϕ

Given transition system and CTL formula we have

The transition system satisfies the formula if all initial
states satisfy it.
CTL model checking is decidable for finite T

Complexity :

Determine if

O((n+m)k)

states transitions formula
length

System verified

Counterexample

Comparing logics

LTLCTL

CTL*

Dealing with complexity

Bisimulation

Simulation

Language Inclusion

Language Equivalence
Consider two transition systems and over same and O

Languanges are equivalent L()=L()

0o 0p

3p 4p

0o

1o 2o

 1T 2T Σ

 2T0o 0q

1q 2q

3q 4q

0o0o

1o 2o

 1T
σσ σ

σ σ σσ

1p

 1T 2T

LTL equivalence
Consider two transition systems and and an LTL formula

Language equivalence and inclusion are difficult to check

 1T 2T

Language equivalenceLanguage equivalence

If L(T1) = L(T2) then T1 |=ϕ ⇔ T2 |=ϕ

Language inclusionLanguage inclusion

If L(T1) ò L(T2) then T2 |=ϕ ⇒ T1 |=ϕ

Language Equivalence CTL equivalence

0o 0p

3p 4p

0o

1o 2o

 2T0o 0q

1q 2q

3q 4q

0o0o

1o 2o

 1T
σσ σ

σ σ σσ

1p

false true

Simulation Relations
Consider two transition systems

over the same set of labels and observations. A relation
is called a simulation relation (of by) if it

1. Respects observations

2. Respects transitions

If a simulation relation exists, then

) O, , Σ, ,Q (T 1111 ⋅→=
) O, , Σ, ,Q (T 2222 ⋅→=

 21 Q Q S ×⊆

21 pq then Sp)(q, if =∈

S)p',(q' some for p'p then ,q'q and Sp)(q, if
σσ

∈→→∈

21 TT ≤

21 T T

Game theoretic semantics
Simulation is a matching game between the systems

Check that but it is not true that

0o 0p

3p 4p

0o

1o 2o

 2T0o 0q

1q 2q

3q 4q

0o0o

1o 2o

 1T
σσ σ

σ σ σσ

1p

21 TT ≤ 12 TT ≤

The parking example
The parking meter

A coarser model

0 1 2 3 604 5
tick tick tick tick tick tick tick

tick

5p
5p

5p

5p

exp act actactact actact

5p

0
tick

tick

exp
many

5p

act

tick

many)}(60,many),...,(1,{(0,0), S =

Simulation relations
Consider two transition systems and

Complexity of

Complexity of

 1T 2T

Simulation implies language inclusionSimulation implies language inclusion

If T1 ô T2 then L(T1) ò L(T2)

L(T1) ò L(T2) O((n1 +m1)2
n2)

T1 ô T2 O((n1 +m1)(n2 +m2))

Two important cases

Abstraction Refinement

21 TT ≤

1T

2T

21 TT ≤

1T

2T

Bisimulation Relations
Consider two transition systems

over the same set of labels and observations. A relation
is called a bisimulation relation if it

1. Respects observations

2. Respects transitions

If a simulation relation exists, then

) O, , Σ, ,Q (T 1111 ⋅→=
) O, , Σ, ,Q (T 2222 ⋅→=

 21 Q Q S ×⊆

21 pq then Sp)(q, if =∈

S)p',(q' some for p'p then ,q'q and Sp)(q, if
σσ

∈→→∈

21 TT ≡

S)p',(q' some for q'q then ,p'p and Sp)(q, if
σσ

∈→→∈

Bisimulation
Consider two transition systems and

Bisimulation is a symmetric simulation
Strong notion of equivalence for transition systems

 1T 2T

BisimulationBisimulation

T1 ñ T2 if T1 ô T2 ∧ T2 ô T1

CTL* (and LTL) equivalenceCTL* (and LTL) equivalence
If T1 ñ T2 then T1 |=ϕ ⇔ T2 |=ϕ

If T1 ñ T2 then L(T1) = L(T2)

≈≤ /TT

T

≈/T

Special quotients

Abstraction

When is the quotient language equivalent or bisimilar to T ?

Quotient Transition Systems
Given a transition system

and an observation preserving partition , define

naturally using
1. Observation Map

2. Transition Relation

) O, , Σ, Q, (T ⋅→=
QQ ×⊆≈

) O, , Σ, ,Q/ (T/ ≈≈ ⋅→≈=≈

o p with Pp exists there iff o P =∈=
≈

p' p with P'p'P,p exists there iff P' P
σσ
→∈∈→≈

Bisimulation Algorithm
Quotient system always simulates the original system

When does original system simulate the quotient system ?

≈/T T

T ≈/T

1o

2oσ

σ

Bisimulation Algorithm
Quotient system always simulates the original system

When does original system simulate the quotient system ?

≈/T T

T ≈/T

1o

2oσ

σ

Transition Systems
A region is a subset of states

We define the following operators

Q P ⊆

p}q Pp|Q{q(P)Pre
σ

σ →∈∃∈=

p}q Pp Σσ|Q{qPre(P)
σ
→∈∃∈∃∈=

q}p Pp|Q{q(P)Post
σ

σ →∈∃∈=

q}p Pp Σσ|Q{qPost(P)
σ
→∈∃∈∃∈=

If T is finite, then algorithm computes coarsest quotient.
If T is infinite, there is no guarantee of termination

Bisimulation algorithm

BisimulationBisimulation AlgorithmAlgorithm

initialize
while such that

end while

Q/ø = {p ø q iff < q >=< p >}
∅ 6= ò P ∩ Pre(P0)6= ò P

P1 := P ∩ Pre(P0)

∃P, P0 ∈ Q/ø

P2 := P \ Pre(P0)

Q/ø := (Q/ø \ {P})∪ {P1, P2}

Relationships

Bisimulation

Simulation

Language Inclusion

Strongest, more properties, easiest to check

Weaker, less properties, easy to check

Weakest, less properties, difficult to check

Complexity comparisons

Bisimulation

Simulation

Language Equivalence

O(m á log(n))

O(m á n)

O(m á 2n)

