ECSE 6420: Nonlinear Control Systems

Homework set 2. Due date: 27 Feb 2009

Points: Problem $1=2+2+2+2+5$ pts, Problem $2=20$ pts, Problem $3=$ $6+8+10+10$ pts, Problem $4=5+10$ pts, Problem $5=5+13$ pts

Problem 1. Determine which of the following functions are locally Lipschitz and globally Lipschitz:
(a) $f(x)=x^{2}$,
(b) $f(x)=|x|$,
(c) $f(x)=x+4 \cos x$,
(d) $f(x)=\tan (x)$,
(e) $f\binom{x_{1}}{x_{2}}=\binom{-x_{1}+\left|x_{2}\right|}{x_{2}-x_{1}}$

Problem 2. Consider a model of two mobile robots, whose position on a 2 D plane is given by $x_{1}(t)$ and $x_{2}(t)$ respectively. Thus $x_{1}(t), x_{2}(t) \in \mathbb{R}^{2}$. A kinematic model of the robots is given as follows:

$$
\begin{align*}
& \dot{x}_{1}=f\left(x_{2}-x_{1}\right)+u_{1} \tag{1}\\
& \dot{x}_{2}=f\left(x_{1}-x_{2}\right)+u_{2} \tag{2}
\end{align*}
$$

where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. The functions u_{1} and u_{2} are external inputs, which are bounded signals. Suppose that f is continuously differentiable and there exists a bound $K>0$ such that

$$
\sigma_{\max }\left(\frac{\partial f}{\partial x}\right)<K
$$

for all $x \in \mathbb{R}^{2}$, where $\sigma_{\max }$ denotes the largest singular value. Using contraction mapping theorem, show the local and global existence and uniqueness of the solution of (1-2).

Problem 3. A model of the tunnel-diode circuit that was discussed earlier in the course can be written as:

$$
\begin{aligned}
& \dot{x}=E-10 x-y \\
& \dot{y}=x-2 y^{3}+9 y^{2}-12 y
\end{aligned}
$$

where $E>0$ can be considered as a system parameter, taking its value in the interval [50.5, 51.5].
(a) Plot the nullclines $\dot{x}=0$ and $\dot{y}=0$ in the box $(0 \leq x \leq 10,0 \leq y \leq 3)$ for several values of E in the given interval.
(b) Take the origin as initial condition, simulate the trajectories of the system
in the time interval $t \in[0,10]$, for several values of E in the given interval.
(c) Compute the sensitivity of trajectories in (b) with respect to E.
(d) Discuss the different sensitivity results, and relate them to the plot in (a). Note: For points (a)-(c), make sure that you pick at least 5 different values of E spread relatively uniformly in the interval [50.5, 51.5].

Problem 4.(a) Prove that for any $x, y \in \mathbb{R}$, the following holds

$$
x^{2} y^{3} \leq x^{4}+y^{6}
$$

(b) Using the result of part (a), prove that the origin in the following system is globally asymptotically stable

$$
\begin{aligned}
\dot{x} & =-x^{3}+x y^{3} \\
\dot{y} & =-y
\end{aligned}
$$

Problem 5. Consider the system

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+x_{1} x_{2} \\
& \dot{x}_{2}=-\gamma x_{1}^{2}, \gamma>0
\end{aligned}
$$

(a) What is the set of equilibria of the system?
(b) Using the (LaSalle's) invariance principle, determine the stability of this set.

