Consider the state-space representation:
\[x' = Ax + Bu, \quad x \in \mathbb{R}^n, \quad u \in \mathbb{R}^m \]
\[y = Cx, \quad y \in \mathbb{R}^l \]

A subspace \(V \subset \mathbb{R}^n \) is an invariant subspace (or \(A \)-invariant subspace) if: \(\forall x \in V, \ Ax \in V \)

Short-hand notation: \(AV = V \)

Interpretation: Set the input \(u = 0 \). Any initial state in \(V \) results in a trajectory that remains in \(V \).

Example: Suppose that \(A = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \), \(n = 2 \).

The space \(V = \text{im} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) is invariant. This is because for any vector \(x \in V \),
\[x = \begin{bmatrix} \lambda \\ 0 \end{bmatrix}, \quad Ax = \begin{bmatrix} -\lambda \\ 0 \end{bmatrix} \in V. \]

Note: You can check invariance by checking the product of \(A \) and a set of basis vectors of \(V \) (from linearity).

Note: Any eigenvector of \(A \) spans a 1-dimensional invariant space of \(A \).

A subspace \(V \subset \mathbb{R}^n \) is a controlled-invariant subspace (or \((A,B) \)-invariant subspace) if: \(\forall x \in V \), there exists a control vector \(w \in \mathbb{R}^m \) such that \(Ax + Bu \in V \) (\(w \) generally depends on \(x \)).

\[V + W = \{ z \mid \exists x \in V, \ y \in W, \ z = x + y \} \]
Short-hand notation:
\[AV \subseteq V + \text{im } B \]

Read: Any element of \(AV \) can be written as a sum of an element of \(V \) and an element of \(\text{im } B \). Thus:

For any \(x \in V \), there exist \(q \in V \) and \(\hat{w} \in \mathbb{R}^m \) such that
\[Ax = q + \hat{w} \]
\[Ax - B\hat{w} = q, \text{ on} \]
\[Ax + B\hat{w} = q', \text{ by renaming } \hat{w} = -\hat{w}. \]

Interpretation: we can always find an input that makes the space \(V \) invariant.

Example: \[A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad (n=2, m=1) \]

The space \(V = \text{im} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) is controlled invariant. To see this, take any \(x \in V \), \(x = \begin{bmatrix} k \\ k \end{bmatrix} \) \(\rightarrow \) \(Ax = \begin{bmatrix} -k \\ k \end{bmatrix} \), take \(w = -2k \), then
\[Ax + Bw = \begin{bmatrix} -k \\ k \end{bmatrix} + \begin{bmatrix} b \\ -2k \end{bmatrix} = \begin{bmatrix} -k \\ -k \end{bmatrix} \in V \]

Note: Again, you can check by taking a set of basis vectors in \(V \).

In fact, this will reveal an interesting relation:

Suppose that \(V \) is a \(p \)-dimensional subspace and \((x_1, x_2, \ldots, x_p) \) is a set of basis vectors of \(V \).

Suppose that for \(i = 1 \ldots p \), there exist \(w_i \in \mathbb{R}^m \) such that
\[Ax_i + Bw_i = q_i \in V, \quad i = 1 \ldots p. \]

Any other vector \(x \in V \) can be written as:
\[x = a_1x_1 + a_2x_2 + \ldots + a_px_p, \quad a_1 \ldots p \in \mathbb{R} \]

Define \(w = a_1w_1 + a_2w_2 + \ldots + a_pw_p \in \mathbb{R}^m \), then
\[Ax + Bw = A \sum_{i=1}^{p} x_i \sum_{i=1}^{p} w_i + B \sum_{i=1}^{p} x_i w_i \]

\[= \sum_{i=1}^{p} x_i w_i \in V \]

Notice that \(W \) can be computed as a linear feedback:

\[W = [w_1 : w_2 : \ldots : w_p] [x_1 : x_2 : \ldots : x_p]^T \]

\[x = [x_1 : x_2 : \ldots : x_p] [x_1 : x_2 : \ldots : x_p]^T, \text{ thus} \]

\[W = [w_1 : w_2 : \ldots : w_p] [x_1 : x_2 : \ldots : x_p]^T x \]

\[W = Fx \]

\[[x_1 : x_2 : \ldots : x_p]^T \text{ is the left pseudo inverse of } [x_1 : x_2 : \ldots : x_p] \]

\[X^T = (X^T X)^{-1} X^T \]

This also means that \(V \) is an invariant space of the closed-loop system \(x = (A + BF)x \)

In the previous example:

\[W = -2k \begin{bmatrix} K \end{bmatrix} [K]^{-1} [K \ k] x \]

\[= -2k \begin{bmatrix} K & K \end{bmatrix} x = -[1 \ 1] x \]

Lemma: If \(V \) and \(W \) are both \((A, B)\) invariant subspaces, then \(V + W \) is also \((A, B)\) invariant.

Proof: For any \(x \in V + W \), there exist \(x_1 \in V \) and \(x_2 \in W \) such that \(x = x_1 + x_2 \). However, since \(V \) and \(W \) are both \((A, B)\) invariant, we have \(w_1, w_2 \in R^m \) such that

\[Ax_1 + Bw_1 \in V; \ Ax_2 + Bw_2 \in W \]
Define \(W = W_1 + W_2 \), then
\[
A_2 x + B_2 w = A x_1 + A x_2 + B w_1 + B w_2 \in V + W
\]

Disturbance Decoupling Problem (DDP)

Consider the state space representation with disturbance:
\[
\dot{x} = Ax + Bu + Cd, \quad d \in \mathbb{R}^d
\]
\[
y = Cx
\]

Problem: we want to find a linear feedback control \(u = -Kx \) such that the disturbance \(d \) is perfectly decoupled from the system, i.e. the TF from \(d \) to \(y \) is 0.

Recall that the space \(\{ x \in \mathbb{R}^n \mid CX = 0 \} \) is called \(\ker C \), which is a space of states corresponding to zero output (not to be confused with unobservable space).

Idea: Design the linear feedback such that there is a subspace \(V \):
\[
V \subsetneq \ker C \quad \ldots \quad (\dagger)
\]
\[
(A - BK)V \subset V \quad \ldots \quad (\ast)
\]
\[
\text{im } G \subset V \quad \ldots \quad (**)\]

Theorem: There exists a unique maximal controlled invariant subspace in \(\ker C \). We denote it by \(V^* \).

Proof: There is always a CI space with dimension 0, i.e. the origin. Perform the following procedure: \(V_0 = \{0\} \)

Set \(K = 0 \);

If \(\exists W \subset \ker C \), \(W \subsetneq V_k \), then
\[
\exists V_{k+1} = V_k + W;
\]
\[
k = k + 1;
\]

The procedure above will terminate after at most \(\dim(\ker C) \) steps.
the final value is V^*

Theorem: DDP is solvable if and only if $\text{im } G \subseteq V^*$

How to calculate V^*?

Define: $A^{-1}V \triangleq \{ x | A x \in V \}$

Iteration:

$V_0 = \ker C$

$V_{i+1} = V_i \cap A^{-1}(V_i + t \text{im } B)$

This iteration will also hit a fixed point after at most $\dim(\ker C)$ steps, because

$\dim V_{i+1} \leq \dim V_i$, and

$(\dim V_{i+1} = \dim V_i) \Rightarrow (V_{i+1} = V_i)$

The fixed point V^* satisfies:

$V^* = V^* \cap A^{-1}(V^* + t \text{im } B)$

$V^* \subseteq A^{-1}(V^* + t \text{im } B)$

$AV^* \subseteq V^* + t \text{im } B$

Thus: V^* is CI, $V^* \subseteq \ker C$

How do we know that V^* is maximal?

Suppose that W is CI, and $W \subseteq V_i$ for some i, we can show that $W \subseteq V_{i+1}$: This is because

$V_{i+1} = V_i \cap A^{-1}(V_i + t \text{im } B)$, and $W \subseteq V_i$, and

$W \subseteq A^{-1}(W + t \text{im } B) \subseteq A^{-1}(V_i + t \text{im } B)$

Thus V^* contains all CI spaces in $\ker C$