Time Domain vs Frequency Domain
Typical time-domam representation of ILo systems:

* Linear differential systems: $a_{n} \frac{d^{n} y}{d t^{n}}+\cdots+a_{0} y=b_{m} \frac{d^{m} u}{d t^{m}}+\ldots+b_{0} u$

Example: Mass-spring-friction system (previous lecture) RLC circuits, linear filters, etc
n is called the order of the system. It is related to:

- the number of energy beaning variables
- the complexity of the system
* Delay systems: $y(t)=u(t-\tau), \tau>0$
* Combination of both.

I/0 LTI systems are linear transformations between function spaces. Think of signals as vectors.

Frequency Domain
There is a linear trawfor mation between time domain representation of the signals and the frequency domain:
Laplace transform: $U(s)=\mathcal{L}\{u(t)\}=\int_{0}^{\infty} u(t) e^{-s t} d t, s \in \mathbb{C}$ and its inverse: $u(t)=\mathcal{L}^{-1}\{U(s)\}=\frac{1}{2 \pi \bar{q}} \int_{-\infty}^{\infty} U(s) e^{s t} d s$

Transfer function is the equivalence of Σ infrequency domain.

$$
Y(s)=G(s) U(s) \text {, and if } u \text { is scalar: } \frac{Y(s)}{V(s)}=G(s)
$$

Some important properties of the transform:
If $u(t) \xrightarrow{\mathcal{L}} U(s)$, then: $\int_{0}^{\infty} \frac{d u}{d t} e^{-s t} d t=\frac{e^{-s t}}{0}+\int s u(t) e^{-s t} d t$
0 , sing the transform exists

$$
=S U(s)
$$

$$
\begin{aligned}
& \int_{0}^{\infty} u(t-\tau) e^{-s t} d t \Rightarrow \text { change vainable } t-\tau \triangleq r \\
& \int_{-\tau}^{\infty} u(r) e^{-s(r+\tau)} d r=e^{-s \tau} \int_{0}^{\infty} u(r) e^{-s r} d r=e^{-s \tau} U(s)
\end{aligned}
$$

Thus: $a_{n} \frac{d^{n} y}{d t^{n}}+\cdots+a_{0} y=b_{m} \frac{d^{m} u}{d t^{m}}+\ldots+b_{0} u \leftarrow$ time domain

$$
\notin \mathcal{L}
$$

$$
a_{n} s^{n} Y(s)+\ldots+a_{0} Y(s)=b_{m} s^{m} U(s)+\ldots+b_{0} U(s)
$$

$$
\frac{Y(s)}{U(s)}=\frac{b_{m} s^{m}+\cdots+b_{0}}{a_{n} s^{n}+\cdots+a_{0}}=\frac{B(s)}{A(s)} \quad \leftarrow \text { freq. domain }
$$

$m<n \rightarrow$ proper trauster function
$m>n \rightarrow$ improper transfer function
$m=n \rightarrow$ biproper transfer function
$A(s)=a_{n} s^{n}+\cdots+a_{0}$ is called the characteristic polynomial
The woos of $A(s)$ are called the poles of the transfer function
The roots of $B(s)$ are called the zeros
Alternative representation:

The poles determine the stability of the system: they must have negative real parts for the system to be stable.

Frequency Response
The frequency domain representation is very convenient for analyzing the spectral properties of the signals and systems

If $u(t)$ is sinusoidal : $u(t)=u_{0} \sin (\omega t+\alpha)$, then $y(t)$ is also sinusoidal $\quad y(t)=y_{0} \sin (\omega t+\beta), t \in(-\infty, \infty)$

Properties: $\frac{y_{0}}{U_{0}}=|G(j \omega)|$, and $(\beta-\alpha)=\operatorname{Im}_{\operatorname{Im}} G(j \omega)$

Recall that $G(j \omega)$ is a complex number:
Bode plot: The plot of $|G(j \omega)|$ and $\angle G(j \omega)$
versus ω (in \log scale)
The plot of $|G(j \omega)|$ is typically given in $d B$ scale

$$
|G(j \omega)|[d B]=20 \log |G(j \omega)|
$$

- use MATLAB command 'bode', or
- use linear approximation (read textbook p.19-p.20)

Example: $G(s)=\frac{1}{s+1} \rightarrow G(j \omega)=\frac{1}{1+\jmath \omega}$

$$
|G(j \omega)|=\sqrt{\frac{1}{1+\omega^{2}}} \longrightarrow \text { if } \begin{aligned}
& \omega \ll 1,|G(j \omega)| \approx 1 \\
& \omega \gg 1,|G(j \omega)| \approx \frac{1}{\omega}
\end{aligned}
$$

Linear approximation -

$$
\angle G(j \omega)=-L(1+j w)=0 \text { if } \omega \ll 1
$$

In case of multiple zeros and poles, the corresponding Bode plot is the superposition of the individual plots.

Feedback Control

$$
\begin{aligned}
& y=G u+G_{d} d \\
& u=K(r-y-n) \\
& y=G K r-G K y-G K n+G_{d} d \\
& (I+G K) y=G K r-G K n+G_{d} d \\
& y=(I+G K)^{-1} G K r-(I+G K)^{-1} G K n+(I+G K)^{-1} G_{d} d
\end{aligned}
$$

Definitions: $L \triangleq G K \rightarrow$ loop transfer function
$\delta \triangleq(I+G K)^{-1} \rightarrow$ sensitivity function
$T \triangleq(I+G K)^{-1} G K \rightarrow$ complementary sensitivity function \rightarrow closed loop tran fer function

Notice that: $S+T=(I+G K)^{-1}(I+G K)=I$

Consider Siso case: $T=\frac{G K}{1+G K} \rightarrow d T=\frac{(1+G K) K-6 K}{(1+G K)^{2}} d G$

$$
\begin{aligned}
& \frac{d T}{T}=\frac{K}{(l+G K)^{2}} \cdot \frac{1+6 K}{G K} d G=\frac{1}{(1+6 K) G} \cdot d G, \text { thus: } \frac{\frac{d T}{T}}{\frac{d G}{G}}=\frac{1}{1+G K}=S \\
& \text { Hence sensitivity function! }
\end{aligned}
$$

Assume perfect measurement: $n \equiv 0$; then:

$$
e=y-r=(\operatorname{Tr}+S G d d)-r=-S r+S G d d
$$

ideally S is small for good tracking
Two degrees of freedom and feed forward configuration

$$
\begin{aligned}
& y=G_{u}+G_{d} d \\
& u=k(r-y)+k_{r} r-k_{d} d
\end{aligned}
$$

$$
\begin{aligned}
& y=(I+G K)^{-1}\left[G\left(K+K_{r}\right) r+\left(G_{d}-G K_{d}\right) d\right] \\
&=\left(T+S G_{r}\right) r+S\left(G d-G K_{d}\right) d \\
& e=-S\left(I-G K_{r}\right) r+S\left(G_{d}-G K_{d}\right) d=-S S_{r} r+S S_{d} G_{d} d \\
& S_{r} \triangleq I-G K_{r} ; S_{d} \triangleq\left(I-G K_{d} G_{d}^{-1}\right)
\end{aligned}
$$

Extra DOF helps designing controllers for better tracking.
Perfect feedforward control: $\quad K_{r}=G^{-1} ; K_{d}=G^{-1} G_{d}$ requires inverse plant model \rightarrow not feasible

