Generally speaking, close-loop stability (i.e. from the poles of S or T) is not sufficient for determining the stability of the system.

Internal Stability:

\[
Y = dy + G(U + du)
\]

\[
Y = dy + G(K(r-y) + du)
\]

\[
(1+GK)Y = dy + 6Kr + Gdu
\]

\[
Y = (I+6K)^{-1}dy + (I+GK)^{-1}6Kr + (I+6K)Gdu
\]

\[
U = K(r-y)
\]

\[
U = K(r - G(U + du) + dy)
\]

\[
(1+KG)U = Kr - KGdu + Kdy
\]

\[
U = (1+KG)^{-1}Kr - (I+KG)Gdu + (I+KG)^{-1}Kdy
\]

All of these transfer functions must be stable.

For SISO systems:
\[
\frac{K}{1+6K}, \frac{6K}{1+6K}, \frac{1}{1+6K}, \frac{G}{1+6K}
\]

must be stable.

Suppose: $G(s) = \frac{A(s)}{B(s)}$; $K(s) = \frac{C(s)}{D(s)}$.

And A and B do not share common factors.

C and D
- Suppose that the controller cancels a RHP zero of the plant with a RHP pole:

\[A(s) = (s - z) \hat{A}(s) \]
\[D(s) = (s - z) \hat{D}(s) \]

\[S = \frac{1}{1+6kC} = \frac{1}{1 + \frac{AC}{BD}} = \frac{BD}{BD + AC} = \frac{(s-z)\hat{B}D}{(s-z)\hat{B}D + (s-z)\hat{A}C} \]

\[\text{no unstable pole } \Rightarrow \hat{B}D \]
\[\frac{BD + \hat{A}C}{\hat{B}D + \hat{A}C} \]

However:

\[K = \frac{\hat{S}}{D} = \frac{\hat{S}}{BD + AC} = \frac{1}{AC + BD} = \frac{\hat{B}C}{(s-z)\hat{A}C + BD} \]

\[\text{unstable pole} \]

Theorem: If there is no unstable pole-zero cancellation, then it is sufficient to check the stability of just one of the four transfer functions.

• If \(G(s) \) has a RHP zero at \(z \), then \(L, T \), and \(SG \) also have a RHP zero at \(z \).

\[A(s) = (s-z)\hat{A}(s) \rightarrow L(s) = (s-z)\frac{\hat{A}C}{BD} \rightarrow L(s) = (s-z)\frac{\hat{A}C}{BD} \]

\[T = \frac{L}{1+L} = \frac{(s-z)\hat{C}}{1+(s-z)\hat{C}} \]

\[SG = \frac{G}{1+6kC} = \frac{A}{1 + \frac{AC}{BD}} = \frac{AD}{AC + BD} \]

\[= \frac{(s-z)\hat{A}D}{(s-z)\hat{A}C + BD} \]

but \(BD \) cannot have \((s-z)\) as a factor, so \(SG \) has \(z \) as a zero.
If \(G \) has a RHP pole at \(p \) then
- \(L \) will have a RHP at \(p \)
- \(S \) and \(K_S \) will have a RHP zero at \(p \) (show it!)