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Decoupling  in the Design and Synthesis of 
Multivariable  Control Systems 

Absfracf-Necessary and  sdicient conditions  far  the "decou- 
pling" of an m-input,  m-output  time-invariant linear  system  using 
state  variable  feedback  are  determined. Given a system  which  satis- 
fies these conditions, i.e., which  can be decoupled by state  variable 
feedback,  the  class of all feedback  matrices  which  decouple  the 
system is characterized.  The  characterization of @ is  used  to  deter- 
mine  the  number of closed-loop  poles  which  can be specified for  the 
decoupled  system and  to develop a synthesis  technique  for  the  real- 
ization of desired closed-loop  pole  configurations. Transfer  matrix 
consequences of decoupling are  examined  and practical  implications 
discussed  through  numerical  examples. 

I. INTRODIJCTION 

H E   D E V E L O P M E N T  of techniques  for  the 
design of multivariable  control  systems is of con- 
siderable  practical  importance. A particular  de- 

sign approach  involves  the use of feedback  to  achieve 
closed-loop control  system  stability.  In  conjunction 
with  this  approach,  it is  often of interest  to  know 
whether  or  not  it is possible to  have  inputs  control  out- 
puts  independently, Le., a single input influences a 
single output.  This is, in heuristic  terms,  the  problem of 
decoupling. 

The  problem of decoupling a time-invariant  linear 
system  using  state  variable  feedback  and  the  relation of 
this  problem to  control  system design have been dis- 
cussed  by  several  authors. [11--[31 hiorgan[']  considered 
the  question of decoupling  for  systems  n-hose  state 
equations  had  a  somewhat  special  form.  His  main re- 
su l t ,  which is a special  case of the  main  theorem of this 
paper,  was  the following: the  time-invariant  linear 
system 

x = A x + B u  

y = cx 
can  be  decoupled if the  matrix CB is  nonsingular. 
Rekasius[*]  extended  Morgan's  result  'and  outlined  an 
essentially  trial-and-error  procedure  for  specifying a 
certain  number of the  system's poles  while decoupling 
the  system.  Xeither  IIorgan  nor  Rekasius  gave  a  clear 
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proof of sufficiency, and  they  did  not  consider  the  ques- 
tion of necessity. 

In  this  paper, a necessary and sufficient  condition  for 
decoupling will be  given;  a  characterization of the class 
of feedback  matrices  which  decouple  a  system u-ill be 
determined;  the  number of closed-loop  poles  which can 
be specified  while decoupling will also  be  determined; 
and  a  synthesis  procedure  for  obtaining  desired closed- 
loop  pole configurations will be developed.  In  line  n-ith 
these  objectives,  the  remainder of this  paper is divided 
into  the following sections: 

11. 
111. 
11'. 
v .  

VI. 
VII.  

Definitions 
Main  Theorem 
Class of Decoupling  3Iatrices 
A Synthesis  Procedure 
Decoupling  by  Output  Feedback 
A Practical  Example. 

In  Section  I1  precise  definitions of state variable feed- 
back  and  decoupling  are  given.  Then  the  basic  necessary 
and sufficient  condition for decoupling  is  proved  in 
Section 111. Using the  main  theorem,  a  description of all 
the  decoupling  matrices is presented  in  Section 117. 
Next, in  Section V the  questions of synthesis  and closed- 
loop  pole  placement  are  examined. In  Section  VI  state 
variable  feedback  is  replaced  by output  feedback  and 
the  relevant  theory  developed.  The  practical  potential 
of the  methods is indicated in the discussion of a 
VjSTOL  stability  augmentation  system in Section  VII. 

11. DEFIXITIONS 

Consider  the  time-invariant  linear  system 

X = A x + B u  

y = cx (1) 

where x is an n vector  called  the  state, u an m vector 
called the  control (or input), y an m vector  called  the 
output,  and A ,  B, and C are n Xn ,  n X m ,  and YIZ Xn 
matrices,  respectively. I t  is assumed  that nzsn.  If F is 
an m X n  matrix  and G a  nonsingular n z X m  matrix,  then 
the  substitution of 

u = Fx 4- Go (2) 

where  represents  the  new m vector  control  (Fig. I ) ,  
into (1) shall be called linear  stafe  variablefeedback. 

Let d l ,  d?, . - . , d m  be  given  by 
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Y - 

I '-=-I E I 
Fig. 1 .  &Idtivariable feedback system. 

or 

a; = tz - 1 if CiAjB = 0 for a l l j  

x-here Ci denotes  the  ith row of C. Then,  a  simple  calcu- 
lation  shows  that 

where 0 is a zero  matrix  consistent  with  the  order of 
Li{ F, G ) .  If Eij denotes  the n2X.m matrix  with 1 as 
ijth  entry  and  zeros elsewhere,  then E& is an m X n  
matrix  xith  the  ith row identical to the  ith row of and 
all  other  rows  zero. The  matrix EiiQ will be  denoted  by 
Qi. The following  definition  can no\\- be  made. 

The  matrices F and G ,  with G nonsingular, decouple 
the  system (1) if 

I:=O 

= t r   (L i (F ,  GIG'), 

. , i l l .  (1 1) 

for i= I ,  . . . , m.. Application  of  the  state  variable  feed-  Note  that  this is a precise  definition that  does  not 
back (2)  and  repeated  differentiation 
yield the  relations 

Y i  = C ~ X  = C;(A + BF)OX 
yi = C ~ A X  = Ci(A + BF)x 

together  with (4) involve  vague  statements  about  inputs  controlling 
outputs  independently. 

111. AIAIS THEOREM 
IVith  the  definitions of Section 11, it  is no\v possible 

to  state  and  prove a theorem  which  gives a necessary 
and sufficient  condition  for  decoupling. 

\\-here the &(F) are  scalars  depending  on F. Thus, x can 
be  eliminated  from  the final relation of (5) to give 

n-1 
3, . (n)  - pk(F)y ick )  = tr ( L i { F ,  GIB) (7)  

k=O 

(12) 

Then  there is a pair of matrices F and G which  decouple 
the  system (1) if and  only if 

det B* # 0 (13) 

Le., if and  only if B* is nonsingular. 

is claimed that  the  pair 
Proof: Suppose  first  that B* is nonsingular.  Then  it 

F* = - B*-lA* 

where tr  (.) denotes  the  trace of a matrix, P is the mX?z 
matrix  given by 

G* = B*-l 

\\-here 

and Li [ F, G ] is the n X m  matrix  given by 

CIAdl+l 

A * = [  ] 
C,Adm+l 

C i [ ( A  + BF)di]BG 

0 J 
Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 9, 2009 at 00:34 from IEEE Xplore.  Restrictions apply. 



FALB AND  WOLOVICH:  DECOUPLING  IN  MULTIVARIABLE  CONTROL  SYSTEMS 653 

decouples (1). In  view of (4), 

Ci(A + BF*)di+l = C.Adi+l + C.Ad’ lBF*. (16) 

But CiAdiB is  simply  the  ith row of B* and so i t  follows 
tha t  

CAdiBF* = - Bi*B*-lA* = - Ai* = - CiAdi+l (17) 

where Bi* and Ai* are  the  ith rows of B* and A*, respec- 
tively.  Thus 

Ci(A + BF*)di+k = 0 (18) 

for any  positive  integer k. In  a  similar  way, i t  follows 
that  

Ci(A + BF*)diBB*-l = B .*B*-l (19) 

and  hence  that 

1 
’ Bi*B*-l 

l o  
However, Bi*B*-l = e i ,  a row vector  with 1 in the  i th  
place and zeros  elsewhere and so 

t r  ( L ~ ( F * ,  G*}Q)  = - ~ ~ i + l ( ~ ) W ~ - ~ ~ * + ~ ( ~ ) W i ( l ) -  . . . 
+ Wi(n-di-l) (21) 

= tr (Li {  F*, G * } a i )  P O .  (22) 

In  other  words, F* and G* decouple  (1). 

which  decouple  (1). Then  i t  follows from (4) that  
Now suppose  that  there is  a  pair of matrices F, G 

Ci(A + BF)diBG = Bi*G, i = 1, . * * , m. (23) 

Since CiAiB = 0 for  all j would imply  that 
t r  (Li {  F, G }  SL) = 0,  which would contradict  the  fact  that 
F and G decouple (l),  i t  is  clear that  Bi*#O for 

Since (10) is satisfied, i t  follows that  Bi*G is an m row 
vector of the  form airi with ai#O [otherwise  there 
would  be uj(;:), j#i, terms in t r  (Li{ F,  G}SL)]. Thus, 

i = l , .  . . , m. As G is nonsingular, Bi*G#O for  all i. 

B*G = 

where 
m 

TJI ai # 0. 
i= 1 

Hence, B* is  nonsingular  since G is. 
The  theorem  just  proved  shows  that B* is of para- 

mount  importance in the  decoupling of (1) by  state 
variable  feedback. The  basis  for the choice of F* andG* 
in the proof of the  theorem  is  the following observation. 

Since (5) implies that  

yi(di+l) = Ci(A  + BF)ds+ l~  + CiAd’BGw (25) 

u-hich may  also  be  written in the  form 

y*  = (A” + B*F)x + B*Go (26) 

where y* is the m vector  with  components y i (&+l ) ,  it is 
clear that the choice F = F* and G = G* leads  to 

y* = 0 (27) 

or,  equivalently,  to 
j r i ( d i + l )  = uj .  (28) 

Caution: Equation (28) does  not  represent  the  de- 
coupled  system  since, in general, it involves the cancel- 
lation of zeros. The  equations of the decoupled  system 
are  given  by (10) or in state form as 

x = ( A  + BF)x + BGo 

y = cx 
where F, G are a decoupling  pair. 

I t  has now  been established  that  the  nonsingularity 
of B* is a necessary  and  sufficient  condition  for  the 
existence of a pair of matrices F, G which  decouple (1). 
In  the  next  section,  the  set of all  pairs F, G which  de- 
couple (1) will be  characterized  under  the  assumption 
tha t  B* is nonsingular.  This  characterization  leads to 
“answers”  to  the following two  questions: 

1)  the  synthesis  question,  namely: how many closed- 
loop  poles can  be specified  for the decoupled  sys- 
tem, how  arbitrarily  can  they  be specified, and 
how  easily  can  an  algorithm  for  specifying  these 
poles  be developed? 

2) the  output  feedback  question,  namely: when  can 
feedback of the form u = H y + G w  decouple ( l )?  

IV. CLASS OF DECOUPLIKG RIATRICES 

Let F be an m x n  matrix  and  let G be a nonsingular 
m Xm  matrix.  Under  the  assumption  that (1) can  be  de- 
coupled,  necessary  and  sufficient  conditions  for F, G to 
be a  decoupling  pair  are  determined in this  section. 
These  conditions  turn  out to be  independent of G so 
that   i t  will make  sense to  speak of the class C€J of matrices 
F which “decouple” (1). 

Definition 
Let Q(F) be the  nXm  matrix given by 

Ci(A + BF)n-’B 

Ci(A + BF)n-2B 
Qi(F) = [ \ 1, i = 1,. - . ,nz (29) 

where 0 is a  zero  matrix  consistent  with  the  order of 
Qi(F) .  Let Pi(F) be  the n X n  matrix  given  by 

Ci(A + BF)d’B 
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where  the &(F) are  the coefficients of the  characteristic 
polynomial of A+BF, i.e., tr  (L'(F, B*-']Q) = tr ( P ~ ( F ) Q ~ ( F ) B * - ~ P )  

n- 1 = tr  (Pi(F)Qi(F)B*-'Pi) # 0 (39) 
( A  + BF)" = pk(F)(A + BFIk (3 1) 

0 and so the  pair F, B*-l decouples (1). 

and I is  an  identity  matrix  consistent  with  the  order 
of Pi(F). Corollary 1 

Since P'(F) is nonsingular,  it follon-s that  the  rank If  the  pair F, G decouples (l), then  there is adiagonal 
of Pi(F)Qi(F) is the  same  as  the  rank of Qi(F).  Kote matrix A such  that G=AB*-l. 
also that  Proof: If F, G decoupless (l), then Qi(F)  is given  by 

~, 

L i { F ,  G }  = Pi(F)Qi(F)G (3 2) (37) and 

where Li { F, G } is  defined  by (9). Thus 
I I xis+ I I 
I 1  I 1  

rank [L'{F, GI] = rank  [Qi(F)], i = 1, . - I '?Z (33) Qi(F)G = 0 1 . .I "y 1 . . . I  0 1 ;  X i # ( ) ,  (40) 

since G is nonsingular.  In  view of the  definition of de- l xi l 
coupling,  the  follou-ing  theorem  can  be  established. 

Theorem 2 I t  follo\vs that  B*G=diag [ X 1 ,  . . , X.], and  the c o d -  

is one  for all i ;  conversely, if the  rank of Qi(F) is  one  for 
all i and if B* is nonsingular,  then  the  pair F, E*-' Corollary 2 
decouples  the  system (1).  

I I I I  
I 1 0 1  I 

If the  pair F, G decouples ( l ) ,  then  the  rank of Q i ( F )  1aV  is  established. 

Proof: Suppose  first  that F, G decouple (1). Then  matrix ~ such that 
If  the  pair F, G decouples (l), then  there is a  diagonal 

tr  ( L ~ { F ,  G ] Q )  = tr ( L ~ ( F ,  G)Q'> z o (34) FB = B*-l{ ,,A** - A*} B 
(41) 

for  all i where a is the m X l z  matrix  given  by  where A** and A* are given by 

p =[ I I I  I . . . j  "(n-1 )  . (35) CIA'' I I I  1 A** = [ ] , A* = A**A. 
(42) 

Since P is  arbitrary,  the  ith  column of L i ( F ,  G }  is a C,AL 
nonzero  vector,  while  every  other  column of Li { F, G } 
is the  zero  vector. I t  follows that Li( F, G }  has rank one Proof: The corollary is an  immediate  consequence  of 
and  hence,  by (33), that  rank [ Q i ( F ) ]  = 1. the  relations 

B* is nonsingular.  Since 
Kow suppose  that  rank [ Q i ( F ) ]  = 1 for  all i and  that  Ci(A + BF)"+' = CiAdiB + CiAdi+'BFB (43) 

Ci(A + BF)"+' = riCi(A + BF)'iB. (44) 
Ci(A + BF)d'B = CiA'iB = Bi* # 0 (3 6) 

In summary,  thus  far i t  has been shown that  the non- by  the  definition  of  di, \There &* is  the  ith of B*, of is a necessary and  sufficient condition 
i t  follows that for  the  existence of a  decoupling  pair F, G. Furthermore, 

the  set of all  pairs F, G which  decouple (1) consists of 
matrices F such  that  rank  [Qi(F)] = 1 for  all i, and G 

(35) such  that G=AB*-l, where A is diagonal  and  non- 
singular.  In  order  to  clarify  these  points,  an  example 
will now  be presented. 
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Example 1 

Let 

1 1 0  

A = [ : :  :I, .-[d b] ,  
= [o 0 11. 

1 0 0  

Then 

B* = ['IB ] = [ '1. 
C2AB -1 1 

Thus, B* is nonsingular  and  the  system  can  be  de- 
coupled. The  set  @ of all F which  decouple  the  system 
(45) can now be  obtained  by  determining all 2x3 
matrices F such  that  rank [ Q i ( F ) ]  = 1. In this  example, 
this  implies that  the  elements of SP must be of the form 

V. A STXTHESIS PROCEDURE 
Theorem 2 does  provide a procedure  for  determining 

a, the class of all feedback  matrices F which  decouple 
(1). However,  the  direct  application of the  condition, 
rank [ Q i ( F ) ]  = 1 for  all i, results only in  constraints 
being  placed on certain of the nzn parameters of F. What 
is still  required is a  procedure  for  specifying  closed-loop 
system poles  while simultaneously  decoupling (1) using 
an appropriate FE@. In  this  light, a synthesis  pro- 
cedure will now be  presented  for  directly  obtaining  a 
feedback  matrix F e @  whose parameters  are so deter- 
mined as  to yield a desired  closed-loop  pole structure. 

In  particular,  suppose  that M k ,  R =0, 1, . . . , 6 are 
given m X m  matrices.  Then  the choice 

6 

F = B*-'[ M&Ak - A*] 

which  indicates that  F and G decouple (1) and  that  
m+ cy=l di of the closed-loop  poles  can  be  varied by 
varying  the Mk. In  this  light,  consider  the following 
example. 

Example 2 

Let 

A =  

- 0 1 0 0 0 0 -  

0 0  0 0 - 1  0 0 0 

1 0  0 0 1 0 0 0  

- 0  1 

0 0  

0 0 0 0 0 1  0 0  

- 0  0 0 0 0 0 -  ,1 0 

0 0 0 0 1 0 '  
B =  

N O m  

B* = [ y  A], A * = [  
0 1 0 0 0 0  

0 0 0 0 0 0  

Since B* is nonsingular,  the  system  can be decoupled. 
Setting, for  example, 

one  obtains,  using (29), the decoupled  system 

Note  that  in  this  case 

det (SI - A - BF) = s2(s + l)(s3 - s? - s - 1) 

where  the poles representing s(s3-ss% -s- 1) have been 
specified by  the choice of the M k .  Other choices of the 
Mk would  lead to other closed-loop  pole  configurations. 
Therefore, if B* is nonsingular, m+ d ,  of the  sys- 
tem's closed-loop  poles can  be  arbitrarily specified 
(&+l a t  a time)  while  simultaneously  decoupling  the 
system  using  the  synthesis  procedure.  The  synthesis 
question is, therefore,  partially  resolved,  although  some 
points  still  require  clarification.  In  particular,  it will be 
shown  that m+ zz, d i  can  never exceed n,  the  number 
of system poles, and  that   i t  is sometimes  possible to  
specify  more  than m+xy-l d i  poles  while simultaneously 
decoupling  the  system. 
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Lemma 
Let K be  the (m+ x?=, d i )  X n matrix  given  by 

Example 3 

Let 

0 1 0 0 1  

1 0 '  

0 1  "1 O o 1 O I  0 0 0 0 '  B =  
A =  

L o  o o IJ 

r l  0 
K =  

c ' = J  0 0  

0 0  

L o  1 

Then Then  rank [K] = m + x;"= di  and  hence m + di 4 n. 
Proof: Let ki denote  the  ith row of K, and  let ri  be 

arbitrary  scalars  such  that 

2 riki = 0 (57) 
1 

where 

B* = [c2B ] = I 
C1A2B 

and m+ d i = 4  =n. Thus, all the closed-loop  poles 
can  be specified by  using  the  synthesis  procedure. 

v = m + di. 
m 

1 

In  order  to  establish  the  lemma,  one  need  only  show  that 
(57)  implies that  each ri=O. However,  this follows 
directly  from (57) by successive  postmultiplication  by 
B, AB, . . . , A6B, and  the  fact  that B* is nonsingular. 

hioreover,  application of Theorem 2 shows that  (62) 
represents  the  most  general  form  for a decoupling F so 
t h a t f =  4 = n. The general  form  of the  decoupled  transfer 
matrix  is 

1 
0 I 

Now let p denote  the  number of closed-loop  poles 
which  can  be specified while  decoupling,  and  let f denote 
the  number of free  parameters  (entries) in a decoupling 
matrix F [for  example, f = 3  in (47)].  Then  the  lemma 
and (51) combine  to  give 

m 

n z f ~ d i I p I n  
1 

Example 4 

Let 
0 1 0  0 0  

[ 2  3 0 1 ,  
B = [ l  0 

1 1 1  0 1  1 A =  

= co 0 11. 
1 1 0  

Then 

Moreover, if m f  cy di = n, then  all n of  the closed- 
loop  poles  can  be  arbitrarily  positioned  while  simultane- 
ously  decoupling  the  system. Also, if f=m+ d i ,  
then (51) gives  direct  physical  significance to  the  free 
parameters  in F. If f >m+ di (or n),  then i t  may 
be  possible to  specify  more  than .m+ di  of  the 
closed-loop  poles. In this  situation,  it is often  advanta- 
geous to calculate C(s1- A-BF)-lBB*-l with f entries 
in F remaining  arbitrary.  The following examples 
illustrate  these  ideas  and  some of the difficulties  in- 
volved  in  their  application. 

B* = [zz] = I .  

Thus, B* is nonsingular  and  the  system  (64)  can  be  de- 
coupled. I t  can  be  shown  that  the  elements of @ must  be 
such  that 

so that  f = n = 3 > 2 = m+ xy di. Moreover,  the  closed- 
loop  transfer  matrix  is  given  by 
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C(d-A- BF)-'BB*-' 

[ ( S S  1) ( s ; j 2 r  1) 0 
- S2-(f i2f3)S-((f i~f2)  1 
- (65) 

so that  all of the closed-loop  poles can be specified by 
application of Theorem 2. However,  note  that  appli- 
cation of the  synthesis  procedure in this case  would 
allow one  to specify  only  two of the  three closed-loop 
poles. 

(s-jz3-1) [~'-((f12+3)S-((f l l+2)]  

I?I .  DECOCPLING BY OUTPUT FEEDBACK 
Since  output  feedback is only  a  special  case of state 

variable  feedback,  i.e., 

u = H y + G o = H C x + G o  (68) 

with H C  replacing F,  i t  follows immediately  that (1) 
can  be  decoupled  using output  feedback if and  only  if 
1) B* is nonsingular  and 2) there is an m X m  matrix H 
such  that  rank  [Q'(HC)] = 1 for i =  1, . . . , m. These 
conditions  provide a suitable  test for whether  or  not a 
system  can  be  decoupled  using output  feedback. 

Example 5 
Let 

c =  [o 0 11- 
1 0 0  

Then 

B* = [ '1 
-1 1 

is nonsingular so that  the  system defined by (69) can  be 
decoupled.  However, i t  is not possible to  decouple  this 
system  using  output  feedback. T o  see  this,  observe  that 
Theorem 2 and (39) imply  that  an F which  decouples 
must  be of the form 

and  that   HC  must  be of the form 

Equations (71) and ( 7 2 )  lead to  the  contradictory re- 
quirement  that flz = 0 and flz = - 1. This  example illus- 
trates  the  point  that  decoupling  by  state  variable  feed- 
back need not  imply  decoupling  by  output  feedback. 

I t  should  be  noted  that,  although a system  may  be 
decoupled  using output  feedback,  some of the flexibility 
of specifying  closed-loop poles, as with  state  variable 

the  system described by (60),  with  the  most  general 
H given by 

Since  det(sI-A-BHC) = (s- 1 -hz2)(s3-h11), output  
feedback will not be adequate  to  stabilize  the  system 
although  state  variable feedback  provides a higher  de- 
gree of flexibility (63). 

Example 6 
Consider  the  system described by (64). I t  has been 

shown  in ( 6 7 )  that  state  variable  feedback  can  be used 
to decouple the  system while  simultaneously  specifying 
all three closed-loop  poles. Application of Theorem 2 
and (39) imply  that  any 2 x 2  matrix H of the form 

(74) 

will define an  output  feedback n-hich  decouples  this 
system.  From ( 7 4 )  it follows that  

det(sl-A-BHC)=(s-l-h~~)(s2-(h~+3)s-(hll+2)) 

and hence that  the  system  can be  stabilized  using  out- 
put  feedback (e.g., hZ2= - 1, kll= - 5 ) ,  although  the 
poles are  not  completely  arbitrary. 

Example 7 

Let 

c' = L -1 0 

Then 

0 1  
B* = CB = [1 0] 

m + ai = 2 < 3 = n. 

I t  can  be  shown,  using  Theorem 2 ,  that  any  decoupling 
F is of the form 

m 

1 

0 fl2 

= [, f2Z -1 - f 1 3 1  f22 
(77)  

feedback, wil1:in general  be  lost.  For  example,  consider 
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so that  p = 2, i.e., only  two of the closed-loop  poles  can 
be specified. I t  can  also  be  shown  for  this  example  that 
output  feedback leads to  the  transfer  matrix 

[ 0 (s - l)(s - 1221 - 1) 1 (s - l)(s - h12 - 1) 0 

(79) 
(s - 1) (s - 1212 - l)(s - h21 - 1) 

so that  output  and  state  variable  feedback  are  equiva- 
lent.  This,  as  previous  examples  illustrate, is not  true 
in  general. 

VII.  A PRACTICAL EXAMPLE 

An area in which  decoupling  techniques  may  be of 
interest is the design of flight  control  and  stability 
augmentation  systems.  Consider,  for  example,  the fol- 
lowing  linearized  longitudinal  equations of motion  for 
a lift-fan  V/STOL  vehicle' in a  hovering  condition. 

X , X e O  0 0 0 

0 0 1 0 0 0  

Mu 0 Me l t i ,  0 0 
0 0 Z e Z , O  0 

1 0 0 0 0 0  

0 0 0 1 0 0  

z c s  

0 

0 T 1  
where 

24 =incremental  longitudinal ( x )  velocity  change, 
8 =incremental  pitch  angle, 
e = pitch  rate, 
w =incremental  vertical (2) velocity  change, 

Ax = incremental  position  error, 
AZ =incremental  altitude  error, 
6, =incremental  collective  fan  input, 

= incremental  nose  fan  input, 
6, =incremental  fan  stagger  input. 

The  relevant  outputs in  this  example  are 8, Ax,  and 
Az, and  the  subscripted  capitals (e.g., X,) are  the rele- 
vant  stability  derivatives. 

The  output  matrix C is thus defined as 

0 1 0 0 0 0  
c = 0 0 0 0 1 0 .  

[ o o o o o l l  (8 1) 

1 Similar to the XV-5.4. 

In  this  example 

and is nonsingular  since  it  is  assumed  that Zcsl?f~nfXcr;  z O .  
Therefore 

3 

?rz 4- di = 6 
1 

and hence  all six of the closed-loop  poles can  be  arbi- 
trarily specified  while simultaneously  decoupling  this 
system. I t  can  be  shown,  using  Theorem 2, that  a  de- 
coupling F has 6 (Le., f =  6) free  parameters.  Thus,  the 
synthesis  procedure  (Section 1,') can  be  directly  applied 
to give  physical  significance to these  free  parameters. 
For  example,  suppose  that  independent  pitch,  trans- 
lation,  and  altitude  control  is  desired,  i.e., 

e = mlOe + + W1 
AX = ?rzzoAx -l- ?n2'Af 4- u2 

= ? 1 Z 3 ° h  + ?n.3'& + W3. (83) 

According to the  synthesis  procedure, F can  be  set  equal 
to  

I t  can  be  shown that  for  this  decoupling F, 

?n2' 0 0 0 WZ20 0 

0 0 1 0 0 0  1 
1 0 0 0 0  

0 0 0 1 0 0  O I  

If G is  now set equal  to B*-l, the closed-loop transfer 
matrix  is 

C(d-A - BF)-'BB*-' 

[ 0, 0, (s2-nzllS-nzlo)(s2-~~p'S-m20) :I (S2-?~22.71s-?~20)(s2-m31s--230), 0, 

0, (S'-17t11S-?~Z10)(~-m31S-~30), 

- - - (85 )  
(s2-~~z11s-~~~10)(s2-~~z21--1n20)(s2-m31s-?~.30) 

If the mii are  suitably  chosen,  then,  in effect, the  pilot 
will be  faced  with  the  task of controlling  three  highly 
stable  second-order  systems.  This  example  serves  only 
to  indicate a potential  practical  area of application  for 
the  ideas  presented  in  this  paper. 

The  above  examples  illustrate  the  techniques  de- 
veloped  for  synthesizing  decoupling  controllers  for 
multivariable  systems. 
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VIII.  CONCLCSIONS 

The  problem of decoupling a time-invariant  linear 
system  using  state  variable  feedback  has been con- 
sidered.  Necessary  and  sufficient  conditions  for  de- 
coupling  have  been  determined in terms of the non- 
singularity of a  matrix B*. The  class @ of all feedback 
matrices  n-hich  decouple a system  has been character- 
ized, and  a  synthesis  technique  for  the  realization of de- 
sired  closed-loop  pole configurations  has been de- 
veloped. In essence, the  major  theoretical  questions re- 
lating  to  decoupling  via  state  variable  feedback  have 
been  resolved  for time-invariant  linear  systems. 

4 number of interesting  potential  areas of future re- 
search  arise  from  the  results  obtained  here.  In  particu- 
lar,  the  question  of  extending  the  theory  to  the  time- 
varying  situation is of  considerable  interest.  Some  pre- 
liminary  results  relating  to  stabilization  have  already 
been  obtained.r61 The  design of aircraft  and  V/STOL 
stability  augmentation  systems  via  decoupling  tech- 
niques is a  potential  practical  area of application  as mas 
mentioned in Section  VII.  Practical  implementation of 
the  techniques  presented  in  this  paper  has  begun  but 
much  remains  to  be  done  before  the  theory is trans- 
formed  into a practical  design  technique. 
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