Problem 1. Given a state-space representation of a system with disturbance
\[\dot{x} = Ax + Bu + Gd, \]
\[y = Cx, \]
with
\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
B = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix},
G = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix},
C = \begin{bmatrix}
1 & 0 & 0 & -1 & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1
\end{bmatrix}.
\]

(a) Compute the largest controlled invariant subspace of ker C.
(b) Can the Disturbance Decoupling Problem (DDP) be solved for this system? If so, compute the state feedback that solves it.

Problem 2. Consider the following input-state system:
\[\dot{x} = Ax + Bu, \]
\[A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{bmatrix},
B = \begin{bmatrix}
b_1 \\
b_2 \\
0
\end{bmatrix}.
\]
Assume that all the coefficients above are nonzero, unless explicitly stated.

(a) Determine if (A, B) is controllable.
(b) Show that a_{33} is one of the open loop poles.
(c) Prove that for any linear state feedback $u = -Kx$, a_{33} is one of the close loop poles.
(d) Based on (a) - (c), if given (A, B), $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ that is not controllable, describe a procedure to find all the open loop poles that cannot be moved by linear state feedback.