ECSE 6460: Multivariable Control Systems

Homework set 4. Due date: 24 November 2009

Points: Problem $1=15+15+10 \mathrm{pts}$, Problem $2=10+15+10+25$ pts
Problem 1. Consider the following plant

$$
G(s)=\left[\begin{array}{cc}
\frac{s-1}{s-2} & -\frac{0.1 s+1}{s-2} \\
\frac{s-1}{0.1 s+1} & 1
\end{array}\right]
$$

(a) Determine all the poles and zeros of the plant, and compute their input and output directions
(b) Determine the bound for $\|S\|_{\infty}$ and $\|T\|_{\infty}$ using Theorem 6.1 in the textbook.
(c) Determine the bound for $\|S\|_{\infty}$ and $\|T\|_{\infty}$ using formula (6.11) in the textbook.

Problem 2. (From Example 6.3) Consider the following plant

$$
G_{\alpha}(s)=\left[\begin{array}{cc}
\frac{1}{s-2} & 0 \\
0 & \frac{1}{s+3}
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\frac{s-3}{0.1 s+1} & 0 \\
0 & \frac{s+2}{0.1 s+1}
\end{array}\right]
$$

(a) Show (analytically, not through numerical calculation) that the poles and zeros of the plant do not depend on α.
(b) For four values of $\alpha\left(0^{\circ}, 30^{\circ}, 60^{\circ}\right.$, and $\left.90^{\circ}\right)$ compute the output directions of any RHP poles and zeros.
(c) Compute the bound for $\|S\|_{\infty}$ and $\|T\|_{\infty}$ for each of values of α.
(d) Use $H_{\infty} S / T$ mixed synthesis to construct a controller for each of values of α. Compare the $\|S\|_{\infty}$ and $\|T\|_{\infty}$ that you obtain for each case and the bounds that you computed in part c (i.e. compile a table like the one on page 227). Comment on any overshoot and undershoot that you observe in the step reference tracking performance. Is there any value of α that results in no overshoot or undershoot in one of the outputs? Explain the result. Note: Remember that S and T are matrices and

$$
\begin{aligned}
\|S\|_{\infty} & :=\sup _{\omega} \sigma_{\max }(S(j \omega)) \\
\|T\|_{\infty} & :=\sup \sigma_{\max }(T(j \omega))
\end{aligned}
$$

ω

