## ECSE 6460: Multivariable Control Systems

Homework set 5. Due date: 8 December 2009

**Points:** Problem 1: 5+15+10+10+10+20 pts, Problem 2: 30 pts

**Problem 1.** Consider the usual mass-spring-friction control system:



The parameters of the system and their range of uncertainty are given as follows:

| Quantity (unit)                 | Value     |
|---------------------------------|-----------|
| Mass $m$ (kg)                   | 0.1 - 0.3 |
| Spring constant $k$ (N/m)       | 10        |
| Friction coefficient $b$ (Ns/m) | 1 - 2     |

We want to design a stabilizing feedback controller K(s), to be implemented in the following loop, such that the following control performance criteria is achieved. Rise time < 0.2 sec, Overshoot < 5%, steady state tracking error for step reference signal is practically 0.



We want the controller K(s) to satisfy all the requirements above **robustly**, i.e. for any value of the parameters above.

(a) Derive the transfer function  $G(s) = \frac{X(s)}{F(s)}$  for the nominal values of the mass  $(m_{\text{nom}} = 0.2)$  and the friction coefficient  $(b_{\text{nom}} = 1.5)$ .

(b) Represent the uncertainty in the plant as multiplicative uncertainty, with the nominal plant model given above. Compute the weight function W(s). You can sample the parameter sets. Hint: Example 7.6 in the textbook.

(c) Using  $H_{\infty}$  synthesis, design a controller that satisfy the design requirement for the nominal plant (i.e. not necessarily robust). Explain/motivate your design, and simulate the performance of the system.

(d) Derive an  $H_{\infty}$  norm condition for robust stability (RS) for controller design. Hint: Section 7.5 in the text book.

(e) Derive an  $H_{\infty}$  norm condition for robust performance (RP) for controller design. Hint: Section 7.6 in the text book.

(f) Design a controller that is both RS and RP. Explain/motivate your design, and simulate the performance of the system for a set of perturbed plant models. You can sample the parameter sets. Use at least 10 samples.

**Problem 2.** For each of the six uncertainty configurations shown in Figure 8.5 (page 293) in the textbook, derive the transfer matrix M. Hint: Recall the  $M\Delta$  loop, where M is the transfer function from the output of the  $\Delta$  block to its input. You can use page 303 to check if your derivation is correct.