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Via Ferrata 1, 27100 Pavia, Italy

Abstract. Recent advances of experimental techniques in biology have
led to the production of enormous amounts of data on the dynamics of
genetic regulatory networks. In this paper, we present an approach for
the identification of PieceWise-Affine (PWA) models of genetic regula-
tory networks from experimental data, focusing on the reconstruction
of switching thresholds associated with regulatory interactions. In par-
ticular, our method takes into account geometric constraints specific to
models of genetic regulatory networks. We show the feasibility of our
approach by the reconstruction of switching thresholds in a PWA model
of the carbon starvation response in the bacterium Escherichia coli.

1 Introduction

Recent advances of experimental techniques in biology have led to the production
of enormous amounts of data on the dynamics of cellular processes. Prominent
examples of such techniques are DNA microarrays and gene reporter systems,
which allow gene expression to be measured with varying degrees of precision
and throughput. One of the major challenges in biology today consists in the
analysis and interpretation of these data, with a view to identifying the networks
of interactions between genes, proteins, and small molecules that regulate the
observed processes. The mapping of these genetic regulatory networks is a key
issue for understanding the functioning of a cell and for designing interventions
of biotechnological or biomedical relevance.

The problem of identifying genetic regulatory networks from gene expression
data has attracted much attention over the last ten years. Most approaches are
based on the use of linear models (e.g., [1, 2, 3]), for which powerful identifica-
tion algorithms exist. However, given that the underlying biological processes
are usually strongly nonlinear, the models are valid only near an equilibrium
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point (see [4] for an exception). While there have been some approaches based
on nonlinear models of genetic regulatory networks, the practical applicability
of these models is often compromised by the intrinsic mathematical and com-
putational difficulty of nonlinear system identification. Not surprisingly, most
authors have therefore focused on specific classes of nonlinear models, with re-
strictions that reduce the number of parameters and simplify the mathematical
form (e.g., [5, 6]).

Another class of models that seems to strike a good compromise between the
advantages and disadvantages of linear and nonlinear models are the PieceWise-
Affine (PWA) models of genetic regulatory networks introduced by Glass and
Kauffman in the 1970s [7]. The study of these models and their generaliza-
tions has been an active research area in both mathematical biology and hybrid
systems theory (e.g., [8, 9, 10, 11, 12, 13]). Notwithstanding their simple math-
ematical form, PWA systems capture essential aspects of gene regulation, as
demonstrated by several modeling studies of regulatory networks of biological
interest [12, 14]. Moreover, powerful techniques for the identification of PWA
systems have been developed in the field of hybrid systems (see [15] and the
references therein), which might be profitably applied to the reconstruction of
genetic regulatory networks from experimental data.

Although the available hybrid identification algorithms provide a good start-
ing point, they are generic in nature and therefore not well-adapted to a number
of constraints specific to PWA models of genetic regulatory networks. First of
all, the state space regions associated with modes of the system are hyperrectan-
gular, as they are defined by switching thresholds of the concentration variables.
Second, there exist strong dependencies between the modes of the system, as a
consequence of the coordinated control of gene expression. Third, the aim of the
system identification process is not to generate a single model, but all models
with a minimal number of regulatory interactions that are consistent with the
experimental data.

The aim of our paper is to make a first step towards the adaptation of existing
algorithms for the identification of PWA models so as to take into account the
above constraints. In particular, we focus on a crucial stage of the identification
process: the estimation of the switching thresholds that partition the state space
into hyperrectangular regions. We introduce an algorithm that, given gene ex-
pression time-series data classified according to the regulatory modes, produces
all minimal sets of switching thresholds. We thus assume here that the prelim-
inary problem of detecting mode switches in time-series data has been solved
[15], although we are of course well aware that the underlying classification al-
gorithms will probably have to be tailored to gene expression data as well. In
order to illustrate the feasibility of our approach, we apply the threshold re-
construction algorithm to a PWA model of the carbon starvation response in
Escherichia coli [8, 14]. The gene expression data has been obtained by simu-
lation, while adjusting the noise level and the sampling frequency to the real
data that will ultimately be available to us. The work presented in this paper
is complementary to the approach of Perkins and colleagues [16], who focus on
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the reconstruction of the regulatory modes once the switching thresholds of the
system are known.

In the next two sections, we will review PWA models of genetic regulatory
networks and discuss the use of hybrid identification techniques for their recon-
struction. In Sections 4 to 6 we introduce the notions of cut and multicut, formu-
late the switching threshold reconstructing problem in terms of these concepts,
and introduce a so-called multicut algorithm that, under suitable assumptions,
reconstructs minimal sets of switching thresholds from gene expression data.
Section 7 presents the results of the multicut algorithm in the context of the E.
coli carbon starvation model. In the final section we summarize our contributions
and indicate directions for further research.

2 Piecewise-Affine Models of Genetic Regulatory
Networks

A variety of model formalisms have been proposed to describe the dynamics
of genetic regulatory networks (see [17] for a review). One particularly well-
adapted to the currently available experimental data is the following class of
PWA differential equations [7]:

ẋ = h(x) = f(x) − g(x)x, (1)

where x = [x1, . . . , xn]′ ∈ Ω ⊂ R
n
≥0 is a vector of cellular protein concentrations,

f = [f1, . . . , fn]′, g = diag (g1, . . . , gn), and Ω is a bounded, n-dimensional hy-
perrectangle. In (1), the rate of change of each protein concentration xi is the
difference of the rate of synthesis fi(x) and the rate of degradation gi(x)xi. The
map fi is defined as a sum of terms having the general form κl

i bl
i(x), where

κl
i > 0 is a rate parameter and bl

i(x) : Ω → {0, 1} a piecewise-constant function
defined in terms of the scalar step functions s+ and s− defined as

s+(xi, θi) =

{
1 if xi > θi

0 if xi < θi

and s−(xi, θi) = 1 − s+(xi, θi), (2)

with θi > 0 a constant denoting a threshold concentration for xi. The step
functions are reasonable approximations of sigmoid functions, which represent
the switch-like character of the interactions found in gene regulation. The map
gi, which expresses regulation of protein degradation, is defined analogously,
except that it is required to be strictly positive. Examples of PWA models of
genetic networks are given in [8, 10].

We now show how model (1) can be recast into a standard PWA system.
Consider the union of threshold hyperplanes Θ = ∪i∈{1,...,n},li∈{1,...,pi}{x ∈ Ω :
xi = θli

i }, where pi denotes the number of thresholds for xi. Θ splits Ω in open
hyperrectangular regions ∆j , j = 1, . . . , s, s =

∏n
i=1(pi + 1), called regulatory

domains. One can show that if x ∈ ∆j , then model (1) reduces to ẋ = µj − νjx,
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where µj = f(x) is a constant vector and νj = g(x) is a constant diagonal matrix.
In summary, when x ∈ Ω\Θ, model (1) is equivalent to the PWA system

ẋ = h(x) = µj − νjx, if λ(x) = j, j = 1, . . . , s, (3)

where the switching function λ is defined as: λ(x) = j, if and only if x ∈ ∆j . Note
that in every domain ∆j , the map h(x) is affine and in each mode of operation
the state variables evolve independently of each other.

3 Hybrid System Identification of Genetic Regulatory
Networks

Experimental techniques in biology, like DNA microarrays and gene reporter
systems, allow gene expression to be measured at discrete time instants. In what
follows, we assume that data are obtained with a uniform sampling period T > 0,
where T is small with respect to the time constants of gene expression. We denote
by x̂(k), k = 1, . . . , N + 1, the measured vectors of concentrations x̂(kT ). By
approximating derivatives through first-order differences, from (3) one obtains
the following data model:

x̂(k + 1) = (I − Tνj) x̂(k) + Tµj + ε(k), if λ(x̂(k)) = j, (4)

where ε(k) is an additive noise corrupting the measurements. By focusing on the
dynamics of a single protein concentration, say x̂i, model (4) becomes

x̂i(k + 1) =
[
x̂i(k) 1

]
φj + ε(k), if λ(x̂(k)) = j, (5)

where φj =
[
1 − T (νj)ii T (µj)i

]′. 1

Over the last few years, several hybrid system identification algorithms have
been proposed for the reconstruction of so-called PieceWise AutoRegressive
eXogenous (PWARX) models (see [15] for a review). Without going into details
(which can be found in [18]), we just highlight that (5) is a PWARX system with
input u(k) = [x̂1(k), . . . , x̂l �=i(k), . . . , x̂n(k)]′ and output y(k) = x̂i(k).

The identification of model (5) involves various tasks [15, 18]. In the sequel, we
focus on the estimation of the hyperrectangular domains ∆j , which usually re-
quires an intermediate result produced by all of the above algorithms: the recon-
struction of the switching sequence λ(x̂(k)), k = 1, . . . , N . More specifically, as
illustrated in [18], a domain ∆j is found by looking for the s−1 hyperplanes sepa-
rating the set Fj = {x̂(k) : λ(x̂(k)) = j} from all sets Fl = {x̂(k) : λ(x̂(k)) = l},
l �= j. These hyperplanes can be obtained through pattern-recognition techniques
such as Multicategory Robust Linear Programming (MRLP) [19] or Support
Vector Classifiers (SVC) [20].

A problem with this approach is that both MRLP and SVC do not impose any
constraints on the hyperplanes to be estimated. As a consequence, even if the

1 (νj)ii is the element at position (i, i) of νj , (µj)i is the ith element of µj .
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switching sequence is perfectly known, there is no guarantee that the estimated
domains ∆j will be hyperrectangular. This may result in hybrid models that are
meaningless from a biological point of view, since they do not preserve the con-
cept of a switching threshold associated with a concentration variable. Another
problem with existing techniques is that they produce a single model. This is
not realistic in our case, because only a fraction of the modes are encountered in
the experiments. As a consequence, several hybrid models of the network, each
characterized by a different combination of thresholds for the variables, may be
consistent with the data and need to be considered.

For all of these reasons, we propose a pattern recognition algorithm tailored
to the features of PWARX models of genetic regulatory networks in the next
three sections.

4 Switching Thresholds and Multicuts

Let F1, . . . , Fs be disjoint sets collecting finitely-many points in R
n and F∗ =

{F1, . . . , Fs}. Hereafter, we focus on the problem of separating the sets in F∗

with hyperplanes parallel to the linear combination of n − 1 axes. In order to
illustrate the main concepts, we will use the collection F∗ depicted in Figure 1(a).
Pairs of distinct sets in F∗ will often be indexed by means of pairs in U =
{(p, q) ∈ {1, . . . , s}2 : p < q}.

(a) (b) (c)

Fig. 1. Simple example of multicuts. (a) Data sets F∗. (b) Multicut C∗: bold lines
correspond to cuts and dotted lines are the limits of their equivalence class. (c) Multicut
Max� C∗.

Definition 1 (Ap-hyperplane). An axis-parallel (ap-) hyperplane in R
n with

direction i ∈ {1, . . . , n} is a hyperplane of equation xi = α, α ∈ R, or equiva-
lently, the zero level set of the function θ(x) = xi − α.

By abuse of notation, θ will denote both an ap-hyperplane and its associated
function. The function dir(θ) gives the direction i of the ap-hyperplane θ, while
the function Z (θ) gives the zero-level α. We introduce the following set-valued
functions that will turn out to be useful below:

I−(θ) = {j : ∀x ∈ Fj , θ(x) < 0}, B−(θ) = ∪j∈I−(θ)Fj ,
I+(θ) = {j : ∀x ∈ Fj , θ(x) > 0}, B+(θ) = ∪j∈I+(θ)Fj .



Reconstruction of Switching Thresholds in Piecewise-Affine Models 189

Definition 2 (Separability). Let Fp and Fq be disjoint sets collecting finitely
many points in R

n. An ap-hyperplane θ in R
n separates Fp and Fq if there exists

δ ∈ {+1, −1} such that for all x ∈ Fp ∪ Fq one has δ θ(x) > 0, if x ∈ Fp, and

δ θ(x) < 0, if x ∈ Fq. In this case, we write Fp

θ
� Fq. Fp and Fq are separable

if there exists an ap-hyperplane separating the sets.

We introduce two additional functions on sets Fp and Fq, for i ∈ {1, . . . , n},

Inf i(Fp, Fq) = min(maxx∈Fp xi, maxx∈Fq xi),
Supi(Fp, Fq) = max(minx∈Fp xi, minx∈Fq xi).

In Figure 1, F1 and F2 are separable since there exist ap-hyperplanes in
the x1-direction (e.g., θ(1),1 and θ(2),1), such that all points in F1 lie on one
side of the hyperplane θ(1),1 and all points of F2 on the other side. Notice that
the sets F1 and F2 are not separable in the x2-direction. As can be verified in
Figure 1, the ap-hyperplane θ(1),1 separates more sets than the ap-hyperplane
θ(2),1. The difference in separation power of ap-hyperplanes can be formally
defined as follows.

Definition 3 (Separation power). The separation power of an ap-hyperplane

θ is the set-valued function S(θ) = {(p, q) ∈ U : Fp

θ
� Fq}.

In the remainder of this section, we focus on ap-hyperplanes in the set Θ =
{θ : S(θ) �= ∅}. The comparison of the separation power of ap-hyperplanes in
Θ in a given direction motivates the introduction of equivalence classes of ap-
hyperplanes.

Definition 4 (Equivalence). Two ap-hyperplanes θ, θ′ ∈ Θ are equivalent if
dir (θ) = dir (θ′) and S(θ) = S(θ′). Equivalent ap-hyperplanes will be denoted by
θ ∼ θ′ and the equivalence class of θ by [θ] = {θ′ : θ′ ∼ θ}.

Following the above definition, the ap-hyperplanes θ(1),1 and θ(2),1 in Figure 1
are not equivalent.

We recall that, given an equivalence relation ∼ on a set X and a function
f : X → Y , f is invariant under ∼ if x ∼ y implies f(x) = f(y). It is not
difficult to show that the functions dir, S, I+, I−, B+ and B− are invariant
under the equivalence relation ∼ defined in Definition 4. This implies that we
can generalize these functions to the quotient set E∗ = Θ/ ∼. Note also that the
cardinality of E∗ is finite [21].

Although all ap-hyperplanes in an equivalence class E ∈ E∗ have the same sep-
aration power, only one is optimal in a statistical sense [20]. This ap-hyperplane
will be called a cut.

Definition 5 (Cut). Let E ∈ E∗ and i = dir (E). The cut associated to E is the
ap-hyperplane θ ∈ Θ such that

Z(θ) = Inf i(B+(E), B−(E)) +
Supi(B+(E), B−(E)) − Inf i(B+(E), B−(E))

2
. (6)
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In what follows the set of all cuts is denoted by C∗. Since E∗ and C∗ are isomor-
phic, the cardinality of C∗ is also finite. In the example with three data sets in
Figure 1(a), C∗ is composed of five cuts (θ(1),1, θ(2),1, θ(3),1, θ(1),2, and θ(2),2),
which are represented in Figure 1(b) by means of bold lines.

Intuitively, we would be inclined to say that the cut θ(1),1 is more powerful
than θ(2),1, in the sense that the former separates F1 and F2 as well as F1 and F3,
whereas the latter separates only F1 and F2 (that is, S(θ(1),1) = {(1, 2), (1, 3)}
and S(θ(2),1) = {(1, 2)}). This motivates the introduction of the following rela-
tion on C∗, denoted by 	:

θ 	 θ′ if S(θ) ⊆ S(θ′) and dir (θ) = dir (θ′). (7)

It is straightforward to show that 	 is reflexive, antisymmetric, and transitive,
and hence that 	 is a partial order on C∗. That is, C∗ is a poset (partially ordered
set).

Fig. 2. (a) Poset diagram for the set of cuts C∗ in Figure 1. The diagram shows, e.g.,
θ(2),1 � θ(1),1. (b) Poset diagram for the down-set of M = {θ(1),1, θ(3),1, θ(2),2}, which
is a multicut for Figure 1. In fact, M equals Max� C∗.

The poset diagram corresponding to the example in Figure 1 is shown in
Figure 2(a). As for any poset, C∗ admits maximal and minimal elements. The sets
of maximal and minimal elements of C∗ are denoted by Max� C∗ and Min� C∗,
respectively. For instance, in Figure 2(a) Max� C∗ = {θ(1),1, θ(3),1, θ(2),2}.

In general, several cuts will be required to separate all sets in F∗. This moti-
vates the introduction of multicuts.

Definition 6 (Multicut). A multicut M of F∗ is a finite set of cuts such

that for all (p, q) ∈ U there exists a θ ∈ M, such that Fp

θ
� Fq. A collection

F∗ is said to be m-separable if there exists a multicut of F∗ or, equivalently, if
U = ∪θ∈M S(θ).

We call M∗ the set of multicuts. Due to the fact that C∗ is finite, M∗ is finite
as well. Notice that M∗ may be empty, that is, F∗ may not be m-separable.
In the example of Figure 1, M = {θ(3),1, θ(2),2} is a multicut since we have
S(θ(3),1) = {(1, 2), (2, 3)} and S(θ(2),2) = {(1, 3)}.

The following proposition, proven in [21], states a relevant property of C∗.

Proposition 1. F∗ is m-separable if and only if C∗ is a multicut.

We define an obvious partial order relation on the set of multicuts M∗, the set
inclusion ⊆. The poset M∗ for the example in Figure 1 consists of 20 multicuts
(figure not shown).
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To every subset B of M∗ we can associate a down-set, which consists of the
multicuts in M∗ upper bounded (according to ⊆) by some multicut in B. For
reasons that will become clear below, we focus here on the down-set of singletons
B = {M}, for some M ∈ M∗.

Definition 7 (Down-set of multicut set). The down-set of {M}, M ∈ M∗,
denoted by ↓ {M}, is defined by ↓ {M} = {M′ ∈ M∗ : M′ ⊆ M}.

Consider the multicut Max� C∗ in the example (Figure 2(a)). The down-set of
{Max� C∗} is the union of all sets appearing in Figure 2(b). We note that ↓ {M}
is also a poset with respect to set inclusion.

5 Formulation of Switching Threshold Reconstruction
Problem

The introduction of the concepts of cut and multicut, and the partial orders
defined on them, allows us to formulate the problem of reconstructing switching
thresholds in a more precise way. In general, the available data are consistent
with a large number of multicuts, and thus with a large number of PWA models
of the genetic regulatory network. A priori there is no reason to prefer one of
these models above the others. However, in practice we are most interested in
the minimal models that account for the available data, that is, those models
that contain a minimal number of thresholds and separate all pairs of sets in F∗.
Assuming that the set of data points is m-separable, so that C∗ is a multicut, it
seems reasonable to accept as solutions all multicuts in Min⊆ ↓ {C∗}.

Notice though that C∗ may contain many cuts with a weak separation power
that could be eliminated beforehand if we are only interested in finding minimal
multicuts. That is, we can remove cuts θ ∈ C∗ if there exists another θ′ ∈ C∗,
θ′ �= θ, such that θ 	 θ′. Eliminating these cuts does not affect the m-separability
of the sets of data points, as indicated by the following proposition (proven in
[21]), which should be compared with Proposition 1.

Proposition 2. Max� C∗ is a multicut if and only if F∗ is m-separable.

Once C∗ has been reduced to Max� C∗, our switching threshold reconstruction
problem can be recast into the problem of computing the set

Min⊆ ↓ {Max� C∗}. (8)

Notice that Max⊆ ↓ {Max� C∗} is {Max� C∗} itself, so that we will call Max� C∗

the maximal multicut. In the example of Figure 1, Max� C∗ consists of three cuts,
as shown in Figure 2(a). That is, two cuts with obvious weaker separation power
have been eliminated (θ(2),1 and θ(1),2). The down-set of {Max� C∗} is shown
in Figure 2(b). It has three minimal multicuts: {θ(1),1, θ(3),1}, {θ(1),1, θ(2),2},
and {θ(3),1, θ(2),2}. As illustrated by the example, there will generally be several
minimal multicuts. We can distinguish between locally and globally minimal
multicuts.
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Definition 8. Let M be a multicut of F∗. M is locally minimal if for all θ ∈
M, the set M\{θ} is not a multicut of F∗. M is globally minimal if

|M| = min
M̃∈Mmin

|M̃|, (9)

where Mmin is the set of all locally minimal multicuts of F∗.

It can be shown (see [21]) that the elements of Min⊆ ↓ {Max� C∗} are locally
minimal multicuts, but they are not necessarily globally minimal.

The above remarks lead us to a final refinement of the problem statement:

find all globally minimal multicuts in Min⊆ ↓ {Max� C∗}. (10)

6 Algorithms for Computing Switching Thresholds

In this section we present an approach to compute the multicuts satisfying cri-
terion (10), and thus infer the minimal set of switching thresholds for a PWA
model of a genetic regulatory network from a classified data set F∗ .

The computation of the set of all cuts (C∗) is rather straightforward, based on
the definition of a cut (Definition 5). For sake of brevity, we omit the algorithm
which can be found in [21]. Similarly, the set of maximal cuts (Max� C∗) can
be computed by applying directly the definition of maximal element of C∗ with
respect to the partial order (7) (see [21] for further details).

A more challenging task is the computation of all globally minimal multicuts.
In order to find them, we could in principle enumerate all subsets of Max� C∗

and verify minimality by means of Definitions 6 and 8. However, this procedure is
computationally prohibitive even for simple examples. Therefore, in the sequel,
we present an additional result on multicuts that will allow us to reduce the
dimension of the search space.

Definition 9 (Redundancy). Let M be a multicut of F∗. A cut θ ∈ M is
redundant in M, if S(θ) ⊆ ∪θ′∈M\{θ}S(θ′).

In the example of Figure 1, each of the three cuts in the multicut {θ(1),1, θ(3),1,
θ(2),2} is redundant. The following proposition (proven in [21]), shows that re-
dundant cuts can be safely ignored.

Proposition 3. A multicut M of F∗ is locally minimal if and only if no θ ∈ M
is redundant in M.

Definition 10 (Kernel). Let M be a multicut of F∗. The kernel of M is
defined as ker(M) = {θ ∈ M : ∃u ∈ S(θ), � ∃θ′ ∈ M \ {θ}, u ∈ S(θ′)}.

From Definition 10, it is apparent that ker(Max� C∗) collects the cuts in M that
must belong to every minimal multicut, otherwise at least one pair of sets in F∗

will not be separated. In the case of M = {θ(1),1, θ(3),1, θ(2),2} in the example of
Figure 1, the kernel is empty: none of the cuts is indispensable.
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Algorithm 1. Create the set M∗
min of all globally minimal multicuts

1: Initialize the global variables M∗
min = ∅ and best = |Max� C∗|. Initialize Min =

ker(Max� C∗)
2: if U = ∪θ∈MinS(θ) then
3: Append ker(Max� C∗) to M∗

min and exit
4: else
5: Branch(Min)
6: end if

function Branch(Min)
1: for all θ ∈ Max� C∗\Min do
2: if S(θ) �⊆ ∪θ′∈Min

S(θ′) then //θ is not redundant in Min ∪ {θ}.
3: Set Mout = Min ∪ {θ}
4: if U = ∪θ′∈MoutS(θ′) then //Mout is a multicut.
5: if |Mout| = best and Mout �∈ M∗

min then
6: Append Mout to M∗

min

7: else if |Mout| < best then
8: Set M∗

min = {Mout} and best = |Mout| //Reset M∗
min and update

best .
9: end if

10: else if |Mout| < best then
11: Branch(Mout)
12: end if
13: end if
14: end for

The notions of redundancy and kernel are used to speed up the branch-and-
bound strategy of Algorithm 1 below, computing the set M∗

min ⊆ M∗ of globally
minimal multicuts. The basic idea is to start with a small subset of Max� C∗,
given by ker(Max� C∗), and add new cuts iteratively.

During the execution of Algorithm 1, the global variable best stores the size
of the smaller multicut found so far. If ker(Max� C∗) is a multicut, it is also
the only globally minimal multicut in Max� C∗ and the algorithm terminates
(lines 1 and 1 of the main procedure). Otherwise, the function Branch is called
in order to add suitable cuts to ker(Max� C∗). At line 1 of the function Branch,
the addition of a new cut θ to Min is considered only if θ is not redundant in
Mout = Min ∪ {θ} (following Proposition 3). Lines 1-1 process sets Mout that
are multicuts and modify the set M∗

min accordingly. More specifically, a multicut
of size best is added to M∗

min (line 1), while a multicut of size less than best
causes the reset of the set M∗

min (line 1) and the update of best . These operations
guarantee that only globally minimal multicuts will be stored in M∗

min.

7 Reconstruction of Switching Thresholds in PWA Model
of Carbon Starvation Response of E. coli

In order to test the applicability of the multicut approach, we have used it for the
reconstruction of switching thresholds in a PWA model of the carbon starvation
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response in the bacterium Escherichia coli. In the absence of essential carbon
sources, an E. coli population abandons exponential growth and enters a non-
growth state called stationary phase. On the molecular level, the transition from
exponential phase to stationary phase in response to a carbon stress is controlled
by a complex genetic regulatory network.

A PWA model of the carbon starvation response has been developed in
E. coli [14]. The model describes how a carbon stress signal is propagated
through a network of interactions between global transcriptional regulators of
the bacterium, so as to influence the synthesis of stable RNAs and thereby adapt
the growth of the cell. For this study, we have used a simplified version of this
model (Figure 3), which preserves essential properties of the qualitative dynamics

Signal
Fis

CRP

Stable RNAs
GyrAB

Fis Synthesis of protein Fis

Legend

Activation

Inhibition

Fig. 3. (a) Simplified PWA model of the carbon starvation network in E. coli
[14]. The variables xCRP , xF is, xGyrAB, and xrrn denote the concentrations of
CRP, Fis, GyrAB, and stable RNAs, while xS represents the carbon starva-
tion signal (s+(xS, θS) = 1 means that the carbon starvation signal is present).
The variables have been rescaled to the interval [0, 1], and the following param-
eter values have been used for the simulations: θ1

CRP = 0.33, θ2
CRP = 0.67,

θ1
F is = 0.1, θ2

F is = 0.5, θ3
F is = 0.75, θGyrAB = 0.5, θrrn = 0.5, θS = 0.5,

γCRP = 0.5;, γF is = 2, γGyrAB = 1, γrrn = 1.5, γS = 0.5, κ0
CRP = 0.25,

κ1
CRP = 0.4, κ1

F is = 0.6, κ2
F is = 1.15, κGyrAB = 0.75, κrrn = 1.12, (b)

Graphical representation of the PWA model, indicating genes and their regulatory
interactions. The interactions in bold have been correctly identified by the best glob-
ally minimal multicuts obtained from the data for the reentry into exponential phase
after a carbon upshift (MC2 in Figure 5(c)) and for the entry into stationary phase
(results not shown).
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predicted by the original model, as verified by means of the approach described
in [8]. In response to a carbon starvation signal, the system switches from an
equilibrium point characteristic for exponential growth to another equilibrium
point, corresponding to stationary phase. Reentry into exponential phase after a
carbon upshift gives rise to a damped oscillation towards the exponential-phase
equilibrium point.

The use of reporter genes encoding fluorescent and luminescent proteins makes
it possible to obtain precise and densely-spaced measurements of the expression
of the genes in the carbon starvation response network. This kind of data is
well-suited for system identification purposes, as shown previously in [2, 6]. In
this paper, we use simulated data to test the multicut approach, staying close
to the expected noise and sample density of the real measurements.

Figure 4 gives an indication of the data obtained from simulating the reentry
into exponential phase after a carbon upshift. In order to separate the threshold
reconstruction problem from the classification problem for the purpose of this
paper, we have generated the correct classification by detecting mode switches
during simulation.

The resulting datasets have been analyzed by means of a Matlab implemen-
tation of the algorithms presented in Section 6. The results for the transition
from stationary to exponential phase after a carbon upshift are summarized
in Figure 5. The algorithm finds the maximal multicut C∗, consisting of six
cuts (θ1, . . . , θ6). In order to get an idea of the separation power of the cuts,
Figure 5(b) pictures the projection of the data points on the (xFis, xGyrAB)-
subspace. As can be seen, the cuts θ2, θ5, and θ6 nicely separate the classes
generated from the damped oscillation (Figure 4).
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Fig. 4. Simulation of the reentry into exponential phase following a carbon upshift,
using the PWA model in Figure 3(a). In order to mimic the absence of a carbon stress,
xS(0) has been set to 0. For each protein concentration variable, the mode switches
are indicated by means of vertical bars.
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Cut Variable Threshold value Interaction Correct? (Y/N)
θ1 xF is 0.26 Fis activates fis N
θ2 xGyrAB 0.49 GyrAB activates fis Y
θ3 xrrn 0.03 Stable RNAs activate rrn N
θ4 xCRP 0.65 CRP inhibits fis Y
θ5 xF is 0.5 Fis activates rrn Y
θ6 xF is 0.74 Fis inhibits gyrAB Y

(a)
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Multicut Composing cuts Correct?
MC1 {θ2, θ3, θ6} {Y, N, Y }
MC2 {θ2, θ4, θ6} {Y, Y, Y }
MC3 {θ2, θ5, θ6} {Y, Y, Y }

(c)

Fig. 5. (a) Maximal multicut for the data in Figure 4. (b) Illustration of the separation
power of the cuts θ2, θ5, and θ6, included in the globally minimal multicut MC3 in (c).
The data have been projected on the (xF is, xGyrAB)-subspace. (c) Globally minimal
multicuts generated by Algorithm 1 from the maximal multicut in (a).

To each of the cuts corresponds a switching threshold, associated with a reg-
ulatory interaction in the network. For instance, one can verify in Figure 4 that
when xFis crosses the threshold value 0.5 from below, the concentration xrrn of
stable RNAs starts to increase as well. This motivates the conclusion that the
threshold where xFis equals 0.5 corresponds to the activation of the rrn operon
by Fis, an interaction that is correctly inferred from the simulation data (Fig-
ure 4). Four of the cuts in the maximal multicut correspond to real switching
thresholds of the system.

Applying Algorithm 1 to the maximal multicut yields three globally minimal
multicuts, shown in Figure 5(c). Each of the multicuts consists of three cuts,
two of which occur in every solution. The cut θ6 corresponds to the switching
threshold above which Fis starts to inhibit the expression of the gene gyrAB,
while θ2 represents the switching threshold associated with the activation of fis
by GyrAB. Notice that the globally minimal multicuts MC2 and MC3 contain
only cuts corresponding to correct switching thresholds, whereas for MC1 two
out of three thresholds are correct.

Repeating the above procedure for the second set of simulation data, corre-
sponding to the entry into stationary phase, yields a maximal multicut consisting
of four cuts, three of which correspond to a real switching threshold of the system
(results not shown). From this information, Algorithm 1 generates four globally
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minimal multicuts, each composed of two cuts. Two of the globally minimal
multicuts entirely consist of cuts corresponding to correct switching thresholds,
whereas in the other two cases one of the cuts corresponds to a non-existing
threshold.

Summarizing the results of the switching threshold reconstruction process,
the best globally minimal multicuts for the first and second data series have
been projected on the graphical representation of the carbon starvation net-
work in Figure 3. As can be seen, the multicut approach has inferred five
out of six interactions from the data (only the autoactivation of CRP is miss-
ing). As for the worst globally minimal multicuts found by the algorithm, they
nevertheless achieve the correct identification of three of the switching thresh-
olds in the model. These results confirm the in-principle applicability of our
approach.

8 Conclusions

In this paper we have proposed a pattern recognition technique for reconstruct-
ing all combinations of switching thresholds that are consistent with measured
data in PWA models of genetic regulatory networks. We have shown how to
recast this problem into finding all globally minimal multicuts of maximal cuts
that separate different sets of points within a given collection. This algorithm
is intended to be used in combination with hybrid identification procedures for
classifying the data (i.e., partitioning temporal gene expression data into subsets
associated with different regulatory modes) and for reconstructing the values of
synthesis/degradation parameters characterizing the dynamics of the network in
different regulatory domains.

A potential pitfall of the multicut approach is that the algorithms presented
in Section 6 have been derived under the assumption that the sets of points
considered are m-separable. Although this assumption is satisfied in the exam-
ple of Section 7, it may be violated in other situations for two main reasons.
The first one is that noisy data may affect the quality of the results obtained
through hybrid systems identification, and lead to a misclassification of some
data points [15]. The second reason is that genetic regulatory networks may ex-
hibit the same dynamics on different regulatory domains, a fact that may result
in a structural loss of m-separability. However, we stress that even if some pairs
of sets are not separable, this does not prevent the multicut algorithm from
finding some of the thresholds. Most importantly, the m-separability assump-
tion can be verified once C∗ has been found. We also believe that even if the
mathematical framework for multicuts developed in Sections 4 to 6 is tailored to
an idealized case, it provides a sound background for developing new methods
capable of dealing with m-inseparable collections of sets.
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