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Abstract. The lack of precise numerical information for the values of
biological parameters severely limits the development and analysis of
models of genetic regulatory networks. To deal with this problem, we
propose a method for the analysis of genetic regulatory networks with pa-
rameter uncertainty. We consider models based on piecewise-multiaffine
differential equations, dynamical properties expressed in temporal logic,
and intervals for the values of uncertain parameters. The problem is then
either to guarantee that the system satisfies the expected properties for
every possible parameter value - the corresponding parameter set is then
called valid - or to find valid subsets of a given parameter set. The pro-
posed method uses discrete abstractions and model checking, and allows
for efficient search of the parameter space. This approach has been im-
plemented in a tool for robust verification of gene networks (RoVerGeNe)
and applied to the tuning of a synthetic network build in E. coli.

1 Introduction

Numerous cellular processes are controlled at the molecular level by networks
of interactions between genes, proteins and small molecules, called genetic reg-
ulatory networks. Understanding how the cellular behavior emerges from these
networks of interactions is a central problem in systems and synthetic biology [1,
2]. Arguably, the most widely-used modeling frameworks for the analysis of the
dynamics of these networks are based on differential equations [3]. With few ex-
ceptions [4], it is generally assumed that the numerical values of state variables
and model parameters are precisely known. However, given the current limi-
tations of experimental measurement techniques, and the fact that parameter
values themselves vary with the ever-fluctuating extra- and intracellular envi-
ronments, the results obtained by these techniques may be of limited validity.

In this work, we present a method for the analysis of genetic regulatory
networks with parameter uncertainty. We consider gene network models based
on piecewise-multiaffine (PMA) differential equations, dynamical properties ex-
pressed in temporal logic, and intervals for the values of uncertain parameters.
The problem is then either to guarantee that the system satisfies the expected
properties for every possible parameter value - the corresponding parameter set
is then called valid - or to find valid subsets of a given parameter set.



In the proposed approach, we use a partition of the state space induced by the
piecewise nature of the models and specific properties of multiaffine functions [5]
to define an equivalence relation on parameters. Discrete abstractions [6] are used
to transpose the problem defined on (infinite) continuous state and parameter
spaces into a problem defined on (finite) discrete spaces. Algorithmic analysis by
model-checking [7] is then possible. Conservative approximations are used that
guarantee that the parameter sets returned by the procedure are valid. However,
not all valid parameter sets are guaranteed to be found. This approach has been
implemented in a tool for Robust Verification of Gene Networks (RoVerGeNe)
and applied to the analysis of the tuning of a synthetic gene network, build in
the bacterium E. coli. This case study demonstrate the practical applicability
and biological relevance of the proposed approach.

This paper is organized as follows. Section 2 introduces preliminary notions.
PMA models are presented in Section 3, and the proposed approach is detailed
in Section 4. The application to the tuning of a network is presented in Section 5.
The final section discusses the results in the context of related work.

2 Preliminaries

All the notions and notations presented here are described at length in [8]. We
consider Kripke structures T = (S,→,Π, |=) defined over sets of atomic propo-
sitions Π, and simply called transition systems [7]. S is a (finite or infinite) set
of states, →⊆ S × S, a total transition relation, and |=⊆ S ×Π, a satisfaction
relation. An execution of T is an infinite sequence e = (s0, s1, s2, . . .) such that
for every i ≥ 0, si ∈ S and (si, si+1) ∈→. We use the syntax and the seman-
tics of Linear Temporal Logic (LTL) formulas defined over executions of Kripke
structures given in [7]. We refer to [6] for the usual notions of simulation between
transition systems and of quotient transition systems. T1 simulates T2 is denoted
T2 ¹ T1, and we recall that simulation relations weakly preserve LTL [7].

Polytopes are bounded intersections of finitely-many open or closed half-
spaces. A polytope P is hyperrectangular if P = P1 × . . .× Pn with Pi = {xi ∈
R | x = (x1, . . . , xn) ∈ P}, i ∈ {1, . . . , n}. The definitions of the closure,
vertices, faces and facets of a polytope are recalled in [8]. P and VP denote
respectively the closure and the set of vertices of a polytope P . A function
f : Rn → Rm is multiaffine if it is a polynomial with the property that the
degree of f in any of its variable is at most 1. Theorem 1 is proven in [5].

Theorem 1 Let f : Rn → Rm be a multiaffine function and P be a hyperrec-
tangular polytope in Rn, n,m ∈ N. Then, for every x ∈ P , f(x) is a convex
combination of the values of f at the vertices of P .

3 Uncertain PMA models of genetic regulatory networks

3.1 PMA systems and specifications

In this section, we present a formalism for modeling gene networks. The notations
and terminology are adapted from [9]. We consider a gene network consisting of



n genes. The state of the network is given by the vector x = (x1, . . . , xn), where
xi is the concentration of the protein encoded by gene i. The state space X
is a hyperrectangular subset of Rn: X =

∏n
i=1[0,maxxi

], where maxxi
denotes

a maximal concentration of the protein encoded by gene i. Some parameters
may be uncertain: p = (p1, . . . , pm) is the vector of uncertain parameters, with
values in the parameter space P =

∏m
j=1[minpj

,maxpj
], where minpj

and maxpj

denote a minimal and a maximal value for pj .
The dynamics of the network is given by the differential equations

ẋi = fi(x, p) =
∑

j∈Pi

κj
i rj

i (x)−
∑

j∈Di

γj
i rj

i (x) xi, i ∈ {1, . . . , n}, (1)

where Pi and Di are sets of indices, κj
i > 0 and γj

i > 0 are (possibly uncertain)
production and degradation rate parameters, and rj

i : X → [0, 1] are continu-
ous, PMA functions, called regulation functions (see [8] for their precise syntax).
PMA functions arise from products of ramp functions r+ and r− (Figure 1(a))
used for representing complex gene regulations or protein degradations (Fig-
ure 5(b), Eq. 4). With the additional assumption that rj

i does not depend on xi

for j ∈ Di,3 it holds that f = (f1, . . . , fn) : X ×P → Rn is a (non-smooth) con-
tinuous function of x and p, a piecewise-multiaffine function of x and a piecewise-
affine function of p. Note that production and degradation rate parameters may
be uncertain, but regulation functions (with their threshold parameters) should
be known. Finally, Equation (1) is easily extended to account for constant inputs
u by considering u as a new variable satisfying u̇ = 0.

A number of dynamical properties of gene networks can be specified in tem-
poral logic by LTL formulas over atomic propositions of type xi < λ or xi > λ,
where λ ∈ R≥0 is a constant. We denote by Π the set of all such atomic propo-
sitions. A PMA system Σ is then defined by a piecewise-multiaffine function f
defined as above and a set of atomic propositions Π: Σ = (f, Π).

Consider the cross-inhibition network represented in Figure 1(b). This system
can be represented by the PMA differential equations given in Figure 1(c). For
example, the first equation states that protein A synthesis is inhibited by protein
B (r− function) and that its degradation is not regulated. Parameter values
are given in Figure 1(d). Synthesis parameters are unknown: (κa, κb) ∈ P =
[0, 40]× [0, 20]. For illustrating our purpose, we also consider p1 ∈ P with p1 =
(36, 17). This network is known to be bistable: it has two stable equilibrium
states, corresponding to protein A and B concentrations being respectively high
and low, or low and high. This property can be expressed in LTL by the property
φ1 (Figure 1(e)). For example, the first part of the property expresses that if the
concentrations of protein A and B are respectively low (xa < θ1

a) and high (xb >
θ2

b ), then the system will always (G) remain in such a state. We refer the reader
to [10] for a discussion of the use of invariants to express stability in biology.

PMA models of gene networks were proposed in [11] (see [12] for a related,
piecewise-continuous formalism). The models considered here are also related to

3 This assumption requires that a protein does not regulate its own degradation. In
practice, this assumption is generally satisfied.
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Fig. 1. (a) Ramp functions r+ and r−. θi and θ′i are threshold parameters. (b) Gene
network comprising two genes, a and b, coding for two repressor proteins, A and B.
Each protein represses the expression of the other gene, forming a cross-inhibition
network. (c) PMA model of the network in (b). Because of its simplicity, this model
is actually piecewise-affine. (d) Known and uncertain parameter values. (e) Bistability
property expressed in LTL.

the piecewise-affine (PA) models proposed in [13] (see also [9]). However, contrary
to the step functions used in PA models, ramp functions capture the graded
response of gene expression to continuous changes in effector concentrations.

3.2 Embedding transition systems

The specific form of the PMA functions f suggests a division of the state space
X into hyperrectangular regions (Figure 2(a) for our example). For every i ∈
{1, . . . , n}, let Λi = {λj

i}j∈{1,...,li} be the ordered set of all threshold constants in
f , and of all atomic proposition constants in Π, associated with gene i, together
with 0 and maxxi . The cardinality of Λi is li. Then, we define R as the following
set of n-dimensional hyperrectangular polytopes R ⊆ X , simply called rectangles:

R = {Rc | c = (c1, . . . , cn) and ∀i ∈ {1, . . . , n} : ci ∈ {1, . . . , li − 1}},
where

Rc = {x ∈ X | ∀i ∈ {1, . . . , n} : λci
i < xi < λci+1

i }.
c is the coordinate of the rectangle Rc. The union of all rectangles in X is denoted
by XR: XR = ∪R∈RR. Note that XR 6= X . Notably, threshold hyperplanes are
not included in XR. Two rectangles R and R′, are said adjacent, denoted R m R′,
if they share a facet. coord : R → ∏n

i=1{1, . . . , li−1}maps every rectangle R ∈ R
to its coordinate, and rect : XR →R maps every point x in XR to the rectangle
R such that x ∈ R. For the cross-inhibition network, the set R = {R11, . . . , R33}
of all rectangles is represented in Figure 2(b). R11 and R21 are adjacent, whereas
R11 and R22 are not.

Formally, the semantics of a PMA system Σ is defined by means of an em-
bedding transition system.



Definition 1 (Embedding transition system) Let p ∈ P. The embedding
transition system associated with the PMA system Σ = (f, Π) is TX (p) =
(XR,→X ,p,Π, |=X ) defined such that:

– →X ,p⊆ XR×XR is the transition relation defined by (x, x′) ∈→X ,p iff there
exists a solution ξ of (1) and τ ∈ R>0 such that ξ(0) = x, ξ(τ) = x′, ∀t ∈ [0, τ ],
ξ(t) ∈ rect(x) ∪ rect(x′), and either rect(x) = rect(x′) or rect(x) m rect(x′),

– |=X⊆ XR × Π is the satisfaction relation defined by (x, π) ∈ |=X iff x =
(x1, . . . , xn) satisfies the proposition π (of type xi < λ or xi > λ) with the
usual semantics.

Remark. Not all solution trajectories of (1) are represented by executions of the em-

bedding. First, due to our restricted notion of adjacency (m), solution trajectories of

(1) that go from a rectangle to another by passing through a face of low (<n−1) di-

mension are not represented in the embedding. Second, the dynamics of the system

in X \ XR (including the threshold hyperplanes) is not described by the embedding.

However, since the vector field is continuous everywhere, trajectories originating in full-

dimensional rectangles can not “disappear” in a facet by sliding along the supporting

hyperplane. Consequently, the embedding describes almost all solution trajectories of

(1), which is satisfying for all practical purposes.

xa

xb

xa

xb

R13

θ1
a θ2

a

θ1
b

θ2
b

R31

R32R22

R23 R33

R11 R21

R12

R23

R11

R13

R21

R33

R31

R22

R12 R32

(a) (b)

Fig. 2. (a) Continuous dynamics in the state space of the cross-inhibition network for
parameter p1 = (κa, κb) = (36, 17). (b) Discrete abstraction of the dynamics in (a).
Dots denote self transitions.

A PMA system Σ satisfies an LTL formula φ for a given parameter p ∈ P if
TX (p) |= φ, that is, if every execution of TX (p) satisfies φ. Then, valid parameter
sets are defined as follows.

Definition 2 Let Σ be a PMA system and φ an LTL formula. A parameter set
P ⊆ P is valid for φ iff Σ satisfies φ for almost all p ∈ P .

Again, the use of almost all is motivated by the fact that this criteria is sufficient
for all practical purposes. Finally, we consider the following problems.

Problem Let Σ be a PMA system, P an hyperrectangular parameter space, and
φ an LTL formula.
1. Robustness analysis: Check whether P is valid for φ.
2. Synthesis: Find a set P ⊆ P such that P is valid for φ.



4 Analysis of PMA system with parameter uncertainty

4.1 Discrete abstraction

We use discrete abstractions [6] to obtain finite transition systems preserving
dynamical properties of TX (p) and amenable to algorithmic verification [7]. Let
∼R⊆ XR × XR be the (proposition-preserving) equivalence relation defined by
the surjective map rect : x ∼R x′ iff rect(x) = rect(x′). R is the set of equivalence
classes. Then, the discrete abstraction of TX (p) is the quotient of TX (p) given
the equivalence relation ∼R.

Definition 3 Let p ∈ P. The discrete abstraction of TX (p) is TR(p) = (R,→R,p

,Π, |=R), the quotient of TX (p) given the equivalence relation ∼R.

For our example network, TR(p1) is represented in Figure 2(b). By definition
of quotient transition systems, TR(p) simulates TX (p).

For every p ∈ P, TX (p) ¹ TR(p). (2)

In words, the discrete transition system TR(p) is a conservative approxi-
mation of the continuous dynamics of the PMA system described by TX (p).
Because simulation relations weakly preserve LTL, we have for any LTL formula
φ: if TR(p) |= φ then TX (p) |= φ. The converse does not necessarily hold.

By exploiting specific properties of multiaffine functions defined over hyper-
rectangular polytopes [5], we provide the following characterization.

Proposition 1 Let p ∈ P. TR(p) = (R,→R,p, Π, |=R), where

– →R,p⊆ R×R is such that (R,R′) ∈→R,p iff R = R′, or R m R′ and there
exists v ∈ VR ∩ VR′ such that

fi(v, p)(c′i − ci) > 0,

with c = coord(R), c′ = coord(R′) and i ∈ {1, . . . , n} such that ci 6= c′i.
– |=R⊆ R×Π is such that (R, π) ∈|=R iff for every x ∈ R, (x, π) ∈|=X .

Proof. Let R, R′ ∈ R. By Definition 1 and 3, it is clear that if neither R = R′ nor
R m R′, there can not exist a transition from R to R′. If R = R′, then since it exists
a solution of (1) that remains in R on [0, τ ] for some τ > 0, there exists a (self)
transition from R to R′ (Definition 1 and 3). The last case is when R m R′. Then, let
c = coord(R), c′ = coord(R′) and i ∈ {1, . . . , n} such that ci 6= c′i and let F be the
facet shared by R and R′. We assume without loss of generality that c′i − ci = 1, the
other case (= −1) being symmetrical.
⇒ (by contradiction): Suppose that for every v ∈ VR ∩ VR′ = VF , fi(v, p) ≤ 0. Using
Theorem 1, it holds that for every x ∈ F , fi(x, p) ≤ 0. Consequently, no solution can
enter R′ from R and (R, R′) /∈→R,p.
⇐: Assume that there exists v ∈ VF such that fi(v, p) > 0. By continuity of f , there
exists a ball Bv,ε of center v and radius ε such that ∀x ∈ Bv,ε, fi(x, p) > 0. In particular,
there exist xf ∈ F , xf 6= v, such that fi(xf , p) > 0. Then, there exists a solution
entering R′ from R without leaving R∪R′, and by Definition 1 and 3, (R, R′) ∈→R,p.

The characterization of |=R follows immediately from the fact that the equivalence
relation ∼R preserves the atomic propositions in Π. ut



Informally, Proposition 1 simply states that there is a transition between
two adjacent rectangles if and only if there exists at least one common vertex at
which the direction of the vector field (fi(v, p)) is in agreement with the relative
position of the two rectangles (c′i− ci). Similar rules have been proposed in [14].
Consider the two rectangles R11 and R21 in Figure 2(a). They share two vertices:
v1 = (θ1

a, 0) and v2 = (θ1
a, θ1

b ). From Proposition 1, there is a transition from
R11 to R21, because fa(v1, p1) > 0, and there is no transition from R21 to R11,
because neither fa(v1, p1) < 0 nor fa(v2, p1) < 0 (check with Figure 2(b)).

For known parameters, Proposition 1 provides a means to compute the re-
lation →R,p by evaluating f at all the vertices. The computation of the set of
states R and of the relation |=R are trivial. So TR(p) can be computed and one
can use model checking for testing whether TR(p) |= φ. If the abstract system
TR(p) satisfies φ, then so does the original system TX (p) (Property (2)), and p is
valid for φ. Conversely, if TR(p) does not satisfy φ, no conclusion on the validity
of p can be obtained. If some parameters are unknown, we will use Proposition 1
to define an equivalence relation on parameters.

4.2 Parameter equivalence classes

Consider a vertex v ∈ VR, R ∈ R. Because f is a piecewise-affine and continuous
function of p, fi(v, p) is an affine expression in p: fi(v, p) = aT p+b, with a ∈ Rm

and b ∈ R. Let Ψ be the set of all such non-constant (a 6= 0) affine expressions:

Ψ = {fi(v, p) = aT
i,v p + bi,v | i ∈ {1, . . . , n}, v ∈ VR, R ∈ R and ai,v 6= 0}.

After having removed repeated elements, we denote by nΨ the cardinality of Ψ
and order the elements in Ψ : Ψ = {ψ1, . . . , ψnΨ

}. For our example network, with
uncertain parameters κa and κb, out of the 32 affine expressions only 4 different
non-constant expressions exist: nΨ = 4 (Figure 3(a)).

Ψ = {ψ1, ψ2, ψ3, ψ4}, with
ψ1(p) = κa − 24,
ψ2(p) = κb − 12,
ψ3(p) = κb − 8,
ψ4(p) = κa − 16.

(a)

0

8

12

16 24

P 1 P 2 P 3

P 4 P 5 P 6

40

20
p1

P 9

κa

κb

P 7 P 8

(b)

Fig. 3. (a) Set of affine expressions for the cross-inhibition network with unknown
parameters κa and κb. (b) Parameter space in the dimensions of κa and κb. p1 = (36, 17)
is represented. The shaded region is the set of all valid parameters for property φ1.

The affine predicates ψi(p) = 0, ψi ∈ Ψ , divide the parameter space into poly-
hedral regions (Figure 3(b))4. These regions can be represented by a Boolean
4 Note that, in general, the partition of the parameter space is not hyperrectangular



encoding. Let Bl be the set of Boolean numbers of length l: Bl = {0, 1}l. We de-
note by ε the Boolean of length 0. Then, to every Boolean b ∈ Bl, l ∈ {0, . . . , nΨ},
we associate the parameter set Pb such that Pε = P and, if b 6= ε,

Pb = {p ∈ P | ∀i ∈ {1, . . . , l} : ψi(p) <0, if bi =0, and ψi(p) >0, if bi =1}.
The sets Pb are subsets of P obtained by adding constraints of type ψi(p) < 0

or ψi(p) > 0, with ψi ∈ Ψ . If b is a prefix of b′, then Pb′ ⊆ Pb. The hierarchy
between the sets Pb induced by the set-inclusion partial-order is represented in
Figure 4 for the cross-inhibition network (see [15, 16] for similar ideas in the
context of predicate abstraction).

P1001

= P 2 = P 3 = P 3= P 4
P0001 P0011 P0111 P1011 P1111

= P 5 = P 7 = P 8 = P 6= P 6= P 1 = ∅ = ∅ = ∅= ∅ = P 9= P 9

Pε
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P00 P10

> 0

< 0

< 0

< 0

< 0 < 0

< 0 < 0

< 0 > 0

> 0

> 0< 0< 0< 0 > 0> 0> 0> 0< 0

< 0 > 0 > 0

> 0

> 0

> 0

P01

P000 P001 P011 P101 P111P010 P100 P110

P0000 P1000 P1010P0010 P0110 P1110P0100 P0101 P1100 P1101

P1

ψ2 =κb − 12 :

ψ3 =κb − 8 :

ψ1 =κa − 24 :

P11 = P 9

ψ4 =κa − 16 :

T ∀
R(P10) 6|= φ1

T ∀
R(P0) 6|= φ1

T ∃
R(P11) |= φ1

Fig. 4. Hierarchy between the parameter sets Pb, represented as a binary tree. Arrows
indicate set inclusion: P → P ′ means P ′ ⊆ P . Leaves (dark gray) correspond to
parameter equivalence classes. P 1, . . . , P 9 refer to regions in Figure 3. The fragment
of the tree actually computed during hierarchical parameter space exploration for the
analysis of property φ1 is emphasized. Model checking results used for backtracking
are shown at the nodes where the recursive search stops.

We say that two parameters p and p′ are equivalent if their associated discrete
transition systems TR(p) and TR(p′) are isomorphic. A similar definition is used
in [17, 9]. Naturally, a PMA system satisfies the same LTL properties for two
equivalent parameters.

Definition 4 Let ∼P⊆ P ×P be the equivalence relation defined by p ∼P p′ iff
TR(p) = TR(p′).

Proposition 2 Let bΨ ∈ BnΨ . For every p, p′ ∈ PbΨ
, p ∼P p′.

Proof. Let bΨ ∈ BnΨ and p, p′ ∈ PbΨ . Then, ∀i ∈ {1, . . . , n}, R ∈ R and v ∈ VR,
fi(v, p)#0 iff fi(v, p′)#0, with # ∈ {<, >}. So, by Proposition 1, TR(p) = TR(p′) and
p ∼P p′.



The above proposition states that the set of all predicates ψi(p) = 0, ψi ∈ Ψ ,
divide the parameter space in equivalence classes. Consequently, with bΨ ∈ BnΨ ,
if for some p ∈ PbΨ

, TR(p) |= φ, then using Propositions 2 and Property (2),
it holds that for all p ∈ PbΨ , TX (p) |= φ: PbΨ is a valid parameter set. Since
we can compute TR(p) for any given p (Proposition 1), solutions to Problem 1
and 2 can be obtained by testing for every equivalence class PbΨ

⊆ P whether
TR(p) |= φ for some (randomly chosen) p ∈ PbΨ

. Note however that if TR(p) 6|=
φ, no conclusion can be obtained on PbΨ

. On our example network, only two
equivalence classes, P1110 and P1111, both corresponding to P 9, are found to
be valid for the bistability property φ1 (Figure 4 and 3). However, this naive
approach is impractical since the number of equivalence classes (i.e. the leaves of
the tree in Figure 4) increases exponentially with the number of affine predicates,
the latter increasing exponentially with the number of variables and uncertain
parameters. A more efficient approach is proposed in the next section.

4.3 Hierarchical parameter space exploration

Our goal is to describe the behavior of the network for sets of parameters P ⊆ P.
To do so, we introduce two transition systems, T ∃R(P ) and T ∀R(P ).

Definition 5 Let P ⊆ P. Then T ∃R(P ) = (R,→∃
R,P ,Π, |=R) and T ∀R(P ) =

(R,→∀
R,P , Π, |=R), where

– (R,R′) ∈→∃
R,P iff ∃p ∈ P such that (R, R′) ∈→R,p in TR(p), and

– (R,R′) ∈→∀
R,P iff ∀p ∈ P, (R, R′) ∈→R,p in TR(p).

In words, T ∃R(P ) contains all the transitions present in at least one transi-
tion system TR(p) and T ∀R(P ) contains only the transitions present in all the
transition systems TR(p). For every p ∈ P , T ∃R(P ) simulates TR(p), which simu-
lates T ∀R(P ). This follows immediately from the definition of simulation between
transition systems, using the fact that →∀

R,P⊆→R,p⊆→∃
R,P . Informally, T ∃R(P )

and T ∀R(P ) can be respectively considered as over- and under-approximations of
the possible behaviors of TR(p), when p varies.

Proposition 3 For every p ∈ P , T ∀R(P ) ¹ TR(p) ¹ T ∃R(P ).

Using Proposition 3 and Property (2), it holds that for any P ∈ P, if
T ∃R(P ) |= φ then ∀p ∈ P , TX (p) |= φ: P is a valid parameter set. Alternatively,
using Proposition 3, it also holds that if T ∀R(P ) 6|= φ, then ∀p ∈ P , TR(p) 6|= φ: no
valid parameter can be found in P using our approach, either because P contains
no valid parameter, or because the discrete abstraction is overly conservative.
Otherwise (T ∃R(P ) 6|= φ and T ∀R(P ) |= φ), it is worth inspecting subsets of P ,
that may contain valid parameter sets. Accordingly, we propose an algorithm,
detailed in [8], that explores P in a hierarchical manner by considering parame-
ter sets Pb associated with Booleans of increasing length, starting from Pε. This
amounts to explore recursively the tree represented in Figure 4 for our example,
using Proposition 3 as explained above to stop the search as soon as possible



(either because T ∃R(Pb) |= φ, or because T ∀R(Pb) 6|= φ). For the leaves (i.e. the
equivalence classes), T ∃R(Pb) = T ∀R(Pb) and the search necessarily terminates.
Note that although T ∀R(P ) does not provide information on the original system
TX (p) (no relation exist between T ∀R(P ) and TX (p)), it makes it possible to iden-
tify large regions of the parameter space in which no valid parameter set can be
found. Consequently, it plays a key role when exploring large parameter spaces
where only small regions are valid sets. The fragment of the tree actually com-
puted for the analysis of property φ1 is represented in Figure 4. The same result
is obtained as previously (P 9 is a valid parameter set), but in much fewer tests.

We have not yet explained how T ∀R(P ) and T ∃R(P ) can be computed.

Proposition 4 (Computation of T ∃R(P ) and T ∀R(P )) Let P ⊆ P.
– (R, R′) ∈→∃

R,P iff either R = R′, or R m R′ and P ∩ g(R,R′) 6= ∅,
– (R, R′) ∈→∀

R,P iff either R = R′, or R m R′ and P ⊆ g(R, R′),
where g(R, R′) = {p ∈ P | ∃v ∈ VR ∩ VR′ such that fi(v, p)(c′i − ci) > 0}, with
c = coord(R), c′ = coord(R′) and i ∈ {1, . . . , n} such that ci 6= c′i.

Proof. Let P ⊆ P and R, R′ ∈ R be such that R m R′ (the other cases being trivial).
From Proposition 1, it is easy to see that g(R, R′) is the set of parameters p ∈ P for
which there is a transition from R to R′ in TR(p). Then, the result follows from the
definition of the transition relations →∃

R,P and →∀
R,P (Definition 5).

Given that fi(v, p) is an affine expression in p, the sets g(R, R′) correspond to
unions of polytopes in P. Consequently, for polyhedral sets P , the computation of
the transition systems T ∃R(P ) and T ∀R(P ) using Proposition 4 simply amounts to
compute intersections and inclusions of unions of polytopes, which are standard
polyhedral operations efficiently implemented in toolboxes. This method has
been implemented in a freely-available tool for Robust Verification of Gene Net-
works (RoVerGeNe, see http://iasi.bu.edu/∼batt/rovergene/rovergene.htm).
It is written in Matlab on top of several other tools (MPT, MatlabBGL, NuSMV).
Because the efficiency of the computations may significantly depend on the or-
der in which the affine predicates ψi(p) = 0, ψi ∈ Ψ , are considered during the
search, we implemented a simple heuristic that orders first the predicates split-
ting the parameter space the more evenly (i.e. yielding two polytopes of sim-
ilar volumes). Additionally, RoVerGeNe supports an extension of the method
presented here, dealing with problems specifically encountered when verifying
liveness properties, and described in [8, 18].

5 Tuning of a transcriptional cascade

The method presented in the previous section is applied to the analysis of the
steady-state input/output (I/O) behavior of a synthetic transcriptional cascade
build and analyzed in [19] (Figure 5(a)). We have developed a PMA model of
this system, represented in Figure 5(b). Parameter values were estimated based
on experimental data available in [19].
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Fig. 5. (a) Synthetic transcriptional cascade made of four genes. tetR inhibits lacI ,
lacI inhibits cI , and cI inhibits eyfp. The input aTc relieves the inhibition of lacI by
TetR. The fluorescence of the protein EYFP is the output. (b) PMA model. Equation
(4) states that lacI is repressed when the protein TetR is present and aTc absent.
(c) I/O response of the cascade at steady state (zoomed in (d)). Measured (red dots),
predicted (red line) and expected (region delimited by dashed lines) behaviors of the
actual network. Predicted (magenta) behaviors for different parameters in the set P1.

The cascade is ultrasensitive: the steady-state I/O behavior is such that the
output (EYFP) undergoes a dramatic change for a moderate change of the input
(aTc) in a transition region. The cascade is expected to present at least a 1000-
fold increase of the output value for a two-fold increase of the input value. Using
FGp (“eventually, p will be always true”) to express that property p holds at
equilibrium, the specifications in Figure 5(c) can be translated in LTL as follows.

φ2 = uaTc < 100 → FG(xeyfp > 2.5 102 ∧ xeyfp < 5 102)
∧ 100 < uaTc < 200 → FG(xeyfp > 2.5 102 ∧ xeyfp < 106)
∧ uaTc > 200 → FG(xeyfp > 5 105 ∧ xeyfp < 106).



The actual network does not meet its specifications. So, we tried to tune it
by finding valid parameter sets for property φ2 (Problem 2). Using RoVerGeNe,
we found a valid set, P1, by tuning three production rate parameters:

P1 : 1832.43 < κlacI < 3350.62, 393.46 < κcI and 6495.42 < κeyfp < 12995.42

In order to evaluate the significance of these constraints, we computed by nu-
merical simulation the steady-state I/O behavior of the system for different pa-
rameters in P1, notably using extreme values (Figure 5(c)). This clearly reveals
that relevant constraints on the parameters have been identified by our method.

With a partition of the state space having 1500 rectangles, 18 affine pred-
icates on parameters were found, defining > 200 000 equivalence classes. The
computation lasted < 2 hours (PC, 3.4GHz processor, 1 Gb RAM) and only 350
different parameter sets were analyzed. This computational time can be consid-
ered as very reasonable, given the difficulty of the problem: we systematically
explore a 3-dimensional parameter space, testing a non-trivial dynamical prop-
erty for any initial condition in a 5-dimensional (1 input and 4 state variables)
state-space. As explained elsewhere [8, 18], we have also been able to assess the
robustness of the network with 11 uncertain parameters.

6 Discussion

We have presented a method for the analysis of genetic regulatory networks with
parameter uncertainty. Given a PMA model, a property expressed in LTL over
rectangular predicates and a polyhedral parameter set, the proposed approach
can be used to test whether the property is satisfied for every parameter in
the parameter set -the set is then called valid-, or to find valid subsets of the
given parameter set. To do so, we use a discrete abstraction TR(p) of an em-
bedding continuous transition system TX (p) to define an equivalence relation on
parameters p, in the sense that two equivalent parameters are associated to the
same discrete abstraction. Then we define discrete transition systems, T ∃R(P )
and T ∀R(P ), that over- and under-approximate TR(p) with parameter p in a set
P , and show how they can be used to search the parameter space efficiently. The
proposed approach is conservative: if a parameter set is found, it is guaranteed
to be valid. However, not all valid parameter sets are guaranteed to be found.
The method is implemented in a publicly-available tool called RoVerGeNe, and
its practical applicability and biological relevance is demonstrated on the tuning
of a synthetic network build in E. coli. Network tuning is a central problem in
synthetic biology, since most initial attempts at constructing gene networks do
not result in a system exhibiting the desired behavior [2].

Other approaches have been proposed for the verification of continuous or
hybrid systems with parameter uncertainties. In most approaches, unknown pa-
rameters are represented as symbolic constants, and symbolic operations are
used to manipulate sets of states and compute (approximations of) sets of pre-
decessors or successors[17, 20–23]. A major limitation is that the computational
techniques supporting these symbolic operations currently apply only to sys-
tems having rather simple continuous dynamics, such as timed automaton [20,



21], linear hybrid automaton [22], piecewise-affine systems [17], or affine hy-
brid automaton [23]. Alternatively, numerical approaches have been proposed in
which parameter uncertainties are captured by means of differential inclusions
(e.g. ẋ ∈ hull({f(x, p) | p ∈ P})) [24]. For large parameter sets, these approaches
can be very conservative. In this paper, we propose an approach which is suc-
cessively symbolic (parameter constraint synthesis) and numerical (transition
systems computation). The results of the first step are used to refine the para-
meter set considered in the second step, in order to limit (though not eliminate)
overconservatism, while preserving efficiency.

In the field of systems biology, several approaches use formal verification to
analyze uncertain models, often with a focus on parameter identification. In [25,
26], solution trajectories are computed by numerical simulation for parameter
values chosen in specified intervals. Model checking is used to select trajectories
satisfying the expected properties. This approach applies to very general classes
of models, but can not provide guaranties for dense sets of parameters. Alter-
natively, exhaustive search or symbolic computations have been used to obtain
constraints on parameters of discrete models having finite parameter spaces [26,
27], or of piecewise-affine models having dense parameter spaces [23]. However,
these models do not capture complex genetic regulations with graded responses,
as in the transcriptional cascade example.

Motivated by applications in synthetic biology, we view two directions for
further work. A first improvement would be to deal also with uncertain threshold
parameters. A second desirable extension would be to allow for the verification
of the frequently-encountered properties involving timing constraints.
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9. de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qual-
itative simulation of genetic regulatory networks using piecewise-linear models.
Bull. Math. Biol. 66(2) (2004) 301–340



10. Abate, A., Tiwari, A.: Box invariance of hybrid and switched systems. In: Proc.
ADHS’06. (2006)

11. Belta, C., Habets, L.C.G.J.M., Kumar, V.: Control of multi-affine systems on
rectangles with applications to hybrid biomolecular networks. In: Proc. CDC’02.
(2002)

12. Mestl, T., Plahte, E., Omholt, S.: A mathematical framework for describing and
analysing gene regulatory networks. J. Theor. Biol. 176 (1995) 291–300

13. Glass, L., Kauffman, S.: The logical analysis of continuous non-linear biochemical
control networks. J. Theor. Biol. 39(1) (1973) 103–129

14. Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In Hespanha,
J., Tiwari, A., eds.: Proc. HSCC’06. LNCS 3927, Springer (2006) 348–362

15. Alur, R., Dang, T., Ivancic, F.: Progress on reachability analysis of hybrid systems
using predicate abstraction. In Pnueli, A., Maler, O., eds.: Proc. HSCC’03. LNCS
2623, Springer (2003) 4–19

16. Koutsoukos, X., Antsaklis, P.J.: Safety and reachability of piecewise linear hybrid
dynamical systems based on discrete abstractions. J. Discrete Event Dynamic
Systems 13(3) (2003) 203–243

17. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schnei-
der, D.: Validation of qualitative models of genetic regulatory networks by model
checking : Analysis of the nutritional stress response in E. coli. Bioinformatics
21(Suppl.1) (2005) i19–i28

18. Batt, G., Belta, C., Weiss, R.: Model checking liveness properties of genetic regu-
latory networks. Submitted. http://iasi.bu.edu/∼batt/ (2006)

19. Hooshangi, S., Thiberge, S., Weiss, R.: Ultrasensitivity and noise propagation in
a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. USA 102(10) (2005)
3581–3586

20. Annichini, A., Asarin, E., Bouajjani, A.: Symbolic techniques for parametric rea-
soning about counter and clock systems. In Emerson, E., Sistla, A., eds.: Proc.
CAV’00. LNCS 1855, Springer (2000) 419–434

21. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-
like data-structures. IEEE Trans. Softw. Eng. 31(1) (2005) 38–51

22. Henzinger, T., Ho, P.-H., Wong-Toi, H.: HYTECH: A model checker for hybrid
systems. Software Tools Technology Transfer 1(1-2) (1997) 110–122

23. Ghosh, R., Tomlin, C.J: Symbolic reachable set computation of piecewise affine
hybrid automata and its application to biological modelling: Delta-Notch protein
signalling. IEE Proc. Syst. Biol. 1(1) (2004) 170–183

24. Lin, H., Antsaklis, P.J.: Robust regulation of polytopic uncertain linear hybrid
systems with networked control system applications. In Antsaklis, P., Liu, D., eds.:
Stability and Control of Dynamical Systems with Applications. Birkhauser (2003)

25. Antoniotti, M., Piazza, C., Policriti, A., Simeoni, M., Mishra, B.: Taming the
complexity of biochemical models through bisimulation and collapsing: Theory
and practice. Theor. Comput. Sci. 325(1) (2004) 45–67

26. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochem-
ical networks from temporal logic properties. Trans. Comput. Syst. Biol. (2006)
In press.

27. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal meth-
ods to biological regulatory networks: Extending Thomas’ asynchronous logical
approach with temporal logic. J. Theor. Biol. 229(3) (2004) 339–347


