STOCHASTIC CHEMICAL KINETICS

Dan Gillespie
Dan T Gillespie Consulting
GillespieDT@mailaps.org

Current Support: University of California at Santa Barbara (DOE)
Caltech (Beckman Institute / BNMC)
Caltech (NIGMS)

Past Support: Molecular Sciences Institute (Sandia / DOE)
Caltech (DARPA / AFOSR)
ONR

Rethinking Chemical Kinetics

A Chemically Reacting System consists of …

- Molecules of \(N \) chemical species \(S_1, \ldots, S_N \).
 - Inside a volume \(\Omega \), at some temperature \(T \).
- \(M \) “elemental” reaction channels \(R_1, \ldots, R_M \).
 - \(R_j \) describes a single instantaneous physical event, which changes the population of at least one species.
 - “Elemental” means that \(R_j \) is one of two types:
 \[S_i \rightarrow \text{something else (unimolecular),} \]
 or
 \[S_i + S_r \rightarrow \text{something else (bimolecular).} \]
 - All other types (trimolecular, reversible, etc.) are made up of a series of two or more elemental reactions.
How does a chemically reacting system evolve in time?

The traditional answer, for spatially homogeneous systems:

“According to the reaction rate equation (RRE).”

- A set of coupled, first-order ODEs.
- Derived using ad hoc, phenomenological reasoning.
 - Is more than the “mass action equations” of thermodynamics, which apply only to systems in equilibrium.
- Implies the system evolves continuously and deterministically, even though molecules come in integer numbers and react stochastically.
- Is empirically accurate for large (test tube size) systems.
- But is often not adequate for very small (cell-size) systems.

* * *

Let’s take a fresh look at this question.

Doing it “right”: Molecular Dynamics

- The most exact way of describing the system’s evolution.
- The “motion picture” approach: Tracks the position and velocity of every molecule in the system.
- Simulates every collision, non-reactive as well as reactive.
- Shows changes in species populations and their spatial distributions.
- But . . . it’s unfeasibly slow for nearly all realistic systems.
A great simplification occurs if successive reactive collisions tend to be separated in time by very many non-reactive collisions.

- The overall effect of the non-reactive collisions is to randomize:
 - the velocities of the molecules (Maxwell-Boltzmann distribution).
 - the positions of the molecules (spatially uniform or well-stirred),
- Then, instead of having to describe the system’s state as the position, velocity and species of each molecule, we need only give
 \[X(t) \triangleq (X_1(t), \ldots, X_N(t)), \]
 \[X_i(t) \triangleq \text{the number of } S_i \text{ molecules at time } t. \]

But this well-stirred simplification, which . . .
 - ignores the non-reactive collisions,
 - truncates the definition of the system’s state,
 . . . comes at a price:

 \[X(t) \text{ must now be viewed as a stochastic process.} \]

- But in fact, the system was never deterministic to begin with.
 Even if molecules moved according to classical mechanics . . .
 - Unimolecular reactions always involve randomness (QM).
 - Bimolecular reactions usually do too.
 - A system of many colliding molecules is so sensitive to initial conditions that, for all practical purposes, it evolves “randomly”.
 - The system is not isolated. It’s in a heat bath, which keeps it “at temperature \(T \)” – via essentially random interactions.
For well-stirred systems, each R_j is completely characterized by …

- a **propensity function** $a_j(x)$: Given the system is in state x, $a_j(x)dt \equiv \text{probability}$ that one R_j event will occur in the next dt.
 - The **existence and form** of $a_j(x)$ follow from molecular physics.

- a **state change vector** $v_j \equiv (v_{ij}, \ldots, v_{nj})$:
 - $v_{ij} \equiv \text{the change in } X_i \text{ caused by one } R_j \text{ event}$. R_j induces $x \rightarrow x + v_j$. \{v_{ij}\} = \text{the “stoichiometric matrix.”}

Examples:

$$S_1 + S_2 \xrightarrow{c_2} 2S_1 : \begin{cases} a_1(x) = c_1 x_1 x_2, & \nu_1 = (+1, -1, 0, \ldots, 0) \\ a_2(x) = c_2 \frac{x_1(x_1 - 1)}{2}, & \nu_2 = (-1, +1, 0, \ldots, 0) \end{cases}$$

$$\text{Prob -collision in } \frac{(\pi r_{12}^2)(v_{12}dt)}{\Omega} \times \{v_{12}\} \times x_1 x_2 = \left(\frac{\pi r_{12}^2}{\Omega} \frac{(v_{12}p_j(v_{12}))_{\nu_{12}}}{c_j}\right) x_1 x_2 dt = \frac{8k_B T}{\pi m_{12}} \frac{E_f}{k_B T} \exp \left(-\frac{E_f}{k_B T} \right) \text{Arrhenius}$$
Two exact, rigorously derivable consequences . . .

1. The chemical master equation (CME):

\[
\frac{\partial P(x,t|x_0,t_0)}{\partial t} = \sum_{j=1}^{M} [a_j(x - \nu_j)P(x - \nu_j,t|x_0,t_0) - a_j(x)P(x,t|x_0,t_0)].
\]

- \(P(x,t|x_0,t_0) \triangleq \text{Prob}\{X(t) = x, \text{given} X(t_0) = x_0\} \) for \(t \geq t_0 \).
- Follows from the probability statement

\[
P(x,t+dt|x_0,t_0) = P(x,t|x_0,t_0) \times \left[1 - \sum_{j=1}^{M} (a_j(x)dt) \right] + \sum_{j=1}^{M} P(x-\nu_j,t|x_0,t_0) \times (a_j(x-\nu_j)dt).
\]

- But the CME is usually too hard to solve.

- Averages:

\[
\langle f(X(t)) \rangle \triangleq \sum_{x} f(x)P(x,t|x_0,t_0).
\]

If we multiply the CME through by \(x \) and then sum over \(x \), we find

\[
\frac{d\langle X(t) \rangle}{dt} = \sum_{j=1}^{M} \nu_j \langle a_j(X(t)) \rangle.
\]

- If there were no fluctuations,

\[
\langle a_j(X(t)) \rangle = a_j(\langle X(t) \rangle) = a_j(X(t)),
\]

and the above would reduce to:

\[
\frac{dX(t)}{dt} = \sum_{j=1}^{M} \nu_j a_j(X(t)).
\]

- This is the reaction-rate equation (RRE).
- It’s usually written in terms of the concentration \(Z(t) \triangleq X(t)/\Omega \).

- But as yet, we have no justification for ignoring fluctuations.
2. The **stochastic simulation algorithm** (SSA):

A procedure for constructing **sample paths or realizations** of \(X(t) \).

Idea: Generate properly distributed random numbers for
- the time \(\tau \) to the next reaction,
- the index \(j \) of that reaction.

- \(p(\tau, j|\mathbf{x}, t)d\tau \triangleq \text{probability, given } X(t) = \mathbf{x}, \text{ that the next reaction} \]
 \[
 \text{will occur in } [t+\tau, t+\tau+d\tau), \text{ and will be } R_j.
 \]
 \[
 = P_0(\tau)\times a_j(\mathbf{x})d\tau, \quad P_0(\tau) \triangleq \Pr(\text{no reactions in time } \tau).
 \]

\[
P_0(\tau + d\tau) = P_0(\tau)\times(1-a_0(\mathbf{x})d\tau), \quad \text{where } a_0(\mathbf{x}) \triangleq \sum_{j=1}^{M} a_j(\mathbf{x}).
\]

Implies \[\frac{dP_0(\tau)}{d\tau} = -a_0(\mathbf{x})P_0(\tau). \quad \text{Solution: } P_0(\tau) = e^{-a_0(\mathbf{x})\tau}. \]

\[
\therefore p(\tau, j|\mathbf{x}, t) = e^{-a_0(\mathbf{x})\tau} a_j(\mathbf{x}) = a_0(\mathbf{x}) \frac{e^{-a_0(\mathbf{x})\tau}}{a_0(\mathbf{x})} \times \frac{a_j(\mathbf{x})}{a_0(\mathbf{x})}.
\]

Thus,
- \(\tau \) is an exponential random variable with mean \(1/a_0(\mathbf{x}), \)
- \(j \) is an integer random variable with probabilities \(a_j(\mathbf{x})/a_0(\mathbf{x}). \)

The “Direct” Version of the SSA

1. In state \(\mathbf{x} \) at time \(t \), evaluate \(a_1(\mathbf{x}), \ldots, a_M(\mathbf{x}) \), and \(a_0(\mathbf{x}) \equiv \sum_{j=1}^{M} a_j(\mathbf{x}). \)

2. Draw two unit-interval uniform random numbers \(r_1 \) and \(r_2 \), and compute \(\tau \) and \(j \) according to

 - \(\tau = \frac{1}{a_0(\mathbf{x})} \ln \left(\frac{1}{r_1} \right), \)
 - \(j \) is the smallest integer satisfying \(\sum_{k=1}^{j} a_k(\mathbf{x}) > r_2 a_0(\mathbf{x}). \)

3. Replace \(t \leftarrow t + \tau \) and \(\mathbf{x} \leftarrow \mathbf{x} + \nu_j. \)

4. Record \((\mathbf{x}, t) \). Return to Step 1, or else end the simulation.
A Simple Example: $S_i \rightarrow 0$.

$a_i(x_i) = c_i x_i, \quad v_i = -1$. Take $X_i(0) = x_i^0$.

RRE: $\frac{dX_i(t)}{dt} = -c_i X_i(t)$. Solution is $X_i(t) = x_i^0 e^{-c_it}$.

CME: $\frac{\partial P(x_i,t|x_i^0,0)}{\partial t} = c_i \left[(x_i + 1)P(x_i + 1,t|x_i^0,0) - x_i P(x_i,t|x_i^0,0) \right]$.

Solution: $P(x_i,t|x_i^0,0) = \frac{x_i^0!}{x_i^0(x_i^0 - x_i)!} e^{-c_i t} \left(1 - e^{-c_i t} \right)^{x_i^0 - x_i} (x_i = 0, 1, \ldots, x_i^0)$

which implies $\{X_i(t)\} = x_i^0 e^{-c_i t}, \quad \text{sdev} \{X_i(t)\} = \sqrt{x_i^0 e^{-c_i t} \left(1 - e^{-c_i t} \right)}$.

SSA: Given $X_i(t) = x_i$, generate $\tau = \frac{1}{c_i x_i} \ln \left(\frac{1}{r} \right)$, then update:

$t \leftarrow t + \tau, \quad x_i \leftarrow x_i - 1.$
The SSA . . .

- Is exact.
- Does not entail approximating “df” by “$Δf$”.
- Is logically on par with the CME (but is not a method for numerically solving the CME).
- Is procedurally simple, even when the CME is intractable.
- Comes in a variety of implementations …
 - Direct Method (Gillespie, 1976)
 - First Reaction Method (Gillespie, 1976)
 - Next Reaction Method (Gibson & Bruck, 2000)
 - First Family Method (Lok, 2003)
 - Modified Direct Method (Cao, Li & Petzold, 2004)
 - Sorting Direct Method (McCollum, et al. 2006)

- Remains too slow for most practical problems: Simulating every reaction event one at a time just takes too much time if any reactants are present in very large numbers.
We would be willing to sacrifice a little exactness . . .
. . . if that would buy us a faster simulation.

Tau-Leaping

- **Approximately** advances the process by a _pre-selected_ time \(\tau \), which may encompass _more than one_ reaction event.

- **Key:** The definition of “the Poisson random variable with mean \(a \tau \)”:
 \[\mathcal{P}(a \tau) \triangleq \text{the number of events} \] that will occur in a time \(\tau \), _given_ that the probability of an event in any \(dt \) is \(adt \) where \(a \) can be any positive _constant_.

- With \(X(t) = x \), let us choose \(\tau \) _small enough_ to satisfy the _Leap Condition:_ Each \(a_j(x) \approx \text{constant} \) in \([t, t+\tau]\).

- Then: The number of \(R_j \) firings in \([t, t+\tau]\) \(\approx \mathcal{P}(a_j(x)\tau) \).

\[
X(t + \tau) \approx x + \sum_{j=1}^{M} \mathcal{P}(a_j(x)\tau) v_j
\]

Practical Implementation of Tau-Leaping

- We have _two control parameters_, \(\epsilon \) and \(n_c \):
 - **To satisfy the Leap Condition**, restrict \(\tau \) so that \(|A_j a_j|/a_j \leq \epsilon, \forall j \).
 - **To avoid populations <0**, allow only one firing of all _critical_ reactions (\(\triangleq \) reactions that are within \(n_c \) firings of exhausting any reactant).

- We take \(\tau = \min(\tau', \tau^*) \), where:
 - \(\tau' \) maximally satisfies the Leap Condition for firings of the _non-critical_ reactions. (We have a fairly efficient way to estimate \(\tau' \).)
 - \(\tau^* \) is the time to the _next critical_ reaction. (Generate \(\tau^* \) by applying the SSA to the _critical_ reactions.)

- **For each non-critical** \(R_j \), generate \(k_j \) as a sample of \(\mathcal{P}(a_j(x)\tau) \).

- **If** \(\tau' < \tau^* \): Set the \(k_j \)'s for all the _critical_ \(R_j \)'s to 0.
 - **If** \(\tau^* \leq \tau' \): Use the SSA to determine which critical reaction fires, set its \(k_j \) to 1, and set all other critical \(k_j \)'s to 0.

- **Leap:** \(t \leftarrow t + \tau \) and \(x \leftarrow x + \sum_{j=1}^{M} k_j v_j \).
 - **Becomes the SSA if all reactions are critical** \((n_c \to \infty) \).
monomer X1, unstable dimer X2, stable dimer X3

- Exact SSA Run.
- Initially: X1=100,000; X2=X3=0.
- 500 reactions per plotted dot
- 517,067 reactions total.

Explicit Tau Leaping Run
- $\epsilon = 0.04$; $n_c = 10$.
- 1 leap per plotted dot.
- 905 leaps total.
- Run time speedup over SSA > 10X.
\[a_j(x) \, dt \triangleq \text{Prob that } R_j \text{ will fire in next } dt \]

\[\{ a_j(x) \approx \text{const over } \tau, \forall j \} \]

CME \quad SSA \quad Tau-Leaping \quad Discrete & Stochastic

Speeding up Tau-Leaping: The Langevin Equation

- Two math facts:
 - If \(m \gg 1 \), then \(P(m) \approx N(m,m) \).
 - \(N(m,\sigma^2) = m + \sigma N(0,1) \).
- So, with \(X(t) = x \), suppose we can choose \(\tau \) small enough to satisfy the Leap Condition, yet also large enough that \(a_j(x) \, \tau \gg 1, \forall j \).

Then . . .

\[X(t+\tau) \doteq x + \sum_{j=1}^{M} p_j \left(a_j(x) \tau \right) \nu_j \]

\[\doteq x + \sum_{j=1}^{M} N_j \left(a_j(x) \tau, a_j(x) \tau \right) \nu_j \]

\[\doteq x + \sum_{j=1}^{M} \left[a_j(x) \tau + \sqrt{a_j(x) \tau} N_j(0,1) \right] \nu_j \]

\[\text{✓ } X(t+\tau) \doteq x + \sum_{j=1}^{M} \nu_j a_j(x) \tau + \sum_{j=1}^{M} \nu_j \sqrt{a_j(x)} \, N_j(0,1) \sqrt{\tau} . \]
\[\mathbf{X}(t + \tau) \approx \mathbf{x} + \sum_{j=1}^{M} \nu_j a_j(\mathbf{x}) \tau + \sum_{j=1}^{M} \nu_j \sqrt{a_j(\mathbf{x})} \mathcal{N}(0,1) \sqrt{\tau} \]

- This is the **Langevin leaping formula**.
- It’s faster than the ordinary tau-leaping formula, because
 - \(a_j(\mathbf{x}) \tau \gg 1 \) means *lots* of reaction events get leapt over in \(\tau \);
 - *normal* random numbers can be generated faster than Poissons.
- It directly implies, and is entirely equivalent to, a SDE called the **chemical Langevin equation** (CLE):

\[
\frac{d\mathbf{X}(t)}{dt} \Delta \sum_{j=1}^{M} \nu_j a_j(\mathbf{X}(t)) + \sum_{j=1}^{M} \nu_j \sqrt{a_j(\mathbf{X}(t))} \Gamma_j(t) .
\]

- *Gaussian white noise*: \(\Gamma(t) \Delta \lim_{dt \to 0^+} \frac{\mathcal{N}(0,1)}{\sqrt{dt}} \equiv \lim_{dt \to 0^+} \mathcal{N} \left(0, \frac{1}{dt} \right) .
\)
- Satisfies \(\langle \Gamma_j(t) \Gamma_j(t') \rangle = \delta_{jj} \delta(t-t') \).

- Our *discrete stochastic* process \(\mathbf{X}(t) \) has now been *approximated* as a *continuous stochastic* process.

\[\textit{a}_j(\mathbf{x}) \text{dt} \equiv \text{Prob that } R_j \text{ will fire in next } \text{dt} \]

\[\{ \textit{a}_j(\mathbf{x}) \approx \text{const over } \tau, \forall j \} \]

\[\{ \textit{a}_j(\mathbf{x}) \tau \gg 1, \forall j \} \]

\[\{ \text{CFPE} \rightarrow \text{CLE} \} \]

\[\{ \text{CME, SSA, Tau-Leaping } \rightarrow \text{Discrete & Stochastic} \} \]

\[\{ \text{CFPE, CLE } \rightarrow \text{Continuous & Stochastic} \} \]

\[\star \rightarrow \text{J. Chem. Phys. } 113:297 \text{ (2000)} \]
\[\star \rightarrow \text{Am. J. Phys. } 64:1246 \text{ (1996)} \]
\[\star \rightarrow \text{J. Phys. Chem. A } 106:5063 \text{ (2002)} \]
The Thermodynamic Limit

Def: All $X_i \to \infty$, and $\Omega \to \infty$, with X_i/Ω constants.

- $a_j = c_j x_1 - x_1$
- $a_j = c_j x_1 x_2 - \Omega^{-1} x_1 x_2 - x_2$

In the thermodynamic limit, all a_j's grow like (system size).

- In the thermodynamic limit, we see that in the CLE

\[
\frac{dX(t)}{dt} = \sum_{j=1}^{M} \nu_j a_j(X(t)) + \sum_{j=1}^{M} \nu_j \sqrt{a_j(X(t))} \Gamma_j(t),
\]

- the deterministic term grows like (system size),
- the stochastic term grows like (system size)$^{1/2}$.

- **Rule of Thumb:** Relative fluctuations die off as (system size)$^{-1/2}$.
- **At the thermodynamic limit** the stochastic term disappears, leaving

\[
\frac{dX(t)}{dt} = \sum_{j=1}^{M} \nu_j a_j(X(t)) \quad \text{the RRE \ldots derived!}
\]

$X(t)$ has now become a **continuous deterministic** process.

- $a_j(x) dt \triangleq \text{Prob that } R_j \text{ will fire in next } dt$

\[
\{a_j(x) \approx \text{const over } \tau, \forall j\}
\]

- $a_j(x) \tau \gg 1, \forall j$

\[
\{CME, SSA, \tau\text{-Leaping}\}
\]

- $\{\text{Discrete & Stochastic}\}$

\[
\{\text{CLE}\}
\]

- $\{\text{Continuous & Stochastic}\}$

\[
\{\text{RRE}\}
\]

- $\{\text{Continuous & Deterministic}\}$

- $\{X_i \to \infty, \ \Omega \to \infty\}$

- $\{X_i/\Omega = \text{const}_i, \forall i\}$
Complications from “Stiffness”

- Some R_j may be very fast, others very slow.
- Some X_i may be very fast, others very slow.
- “Fast” and “slow” are interconnected – not easy to separate.
- Often manifests as dynamical stiffness, a known ODE problem.
- SSA still works, and is exact. But it’s agonizingly slow.
- Tau-leaping remains accurate, but the Leap Condition restricts τ to the shortest (fastest) time scale of the system. Still very slow.

- **One approach:** Implicit Tau-Leaping
 - A stochastic adaptation of the implicit Euler method for ODEs.
- **Another approach:** The Slow-Scale Stochastic Simulation Algorithm
 - skips over the fast reactions and simulates only the slow reactions, using specially modified propensity functions. An adaptation of the partial equilibrium / quasi steady-state method for RREs.

Collaborators and Associates

Linda Petzold (UCSB)
John Doyle (Caltech)
Michael Hucka (Caltech & Beckman BNMC)
Muruhan Rathinam (UMBC)
Yang Cao (Virginia Tech)
Sotiria Lampoudi (UCSB)
Hong Li (UCSB)