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Abstract. 3D eye gaze estimation has emerged as an interesting and
challenging task in recent years. As an attractive alternative to appearance-
based models, 3D model-based gaze estimation methods are powerful
because a general prior of eye anatomy or geometry has been integrated
into the 3D model hence they adapt well under various head poses and il-
lumination conditions. We present a method for constructing an anatom-
ically accurate 3D deformable eye model from the IR images of eyes and
demonstrate its application to 3D gaze estimation. The 3D eye model
consists of a deformable basis capable of representing individual real-
world eyeballs, corneas, irises and kappa angles. To validate the model’s
accuracy, we combine it with a 3D face model (without eyeball) and
perform image-based fitting to obtain eye basis coefficients The fitted
eyeball is then used to compute 3D gaze direction. Evaluation results on
multiple datasets show that the proposed method generalizes well across
datasets and is robust under various head poses.

Keywords: Eyeball modeling · 3DMM · Gaze estimation.

1 Introduction

Eye gaze – an important cue for human behaviour and attention – has been
widely explored in recent years by computer vision researchers. As interactive
applications such as AR/VR, 3D avatar animation and driver behaviour monitor-
ing [7–9,14] gain more popularity, various 3D gaze methods have been proposed
(with much recent emphasis on deep-learning based models). Based on the de-
vices and data they use, 3D gaze estimation methods can be divided into two
categories: (1) appearance-based gaze estimation from images/videos; and (2) 3D
eye model recovery and model-based gaze estimation. Appearance-based meth-
ods usually focus on extracting eye features from web cameras or IR cameras.
Such methods can be sensitive to different head poses and illumination condi-
tions; hence their generalization ability can be limited. 3D model-based methods
takes a different strategy that entails recovering the anatomical structure of a
person’s eyeball. Based on the devices and data they require, 3D model-based
methods can be further divided into two types: (a) personalized 3D eye model
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recovery from IR camera systems and (b) 3D eye shape estimation from image
features using a pre-constructed deformable eye basis.

The first type (2a) usually requires setting up specific devices and using a
complex calculation process to handle light refraction, IR camera calibration, etc.
These methods usually build a geometric eye model to represent the anatomical
eyeball structure including pupil diameter, 3D pupil center and cornea curvature
center. Based on such computation, some wearable devices are offered with a
pre-installed and calibrated camera and illumination system for real-time 3D
gaze estimation. However, the practicality and accessibility of such methods
can be limited. More recently, as 3D morphable face models are successfully
applied in accurate 3D face reconstruction and animation, similar experiments
have been conducted for constructing a deformable eye model from 3D scans.
Wood et al. [32] proposed a 3D deformable eye region model constructed from
high-quality 3D facial scans, in which the eye region and the size of iris are
parameterized using a PCA basis. Ploumpis et al. [23] constructed a large-scale
statistic 3D deformable full head model, including face, ear, eye region and pupil
size. Both [32] and [23] can be applied to eye 3DMM fitting using image feature
points for recovering 3D gaze direction. Such statistic eye models provide a
parameterized linear space for approximating the size of a new subject’s eyeball
and can be directly utilized in image-based fitting for gaze estimation.

This paper presents an accurate 3D deformable eye model constructed from
recovered geometric parameters of multiple subjects. More specifically, we use the
wearable device Tobii pro Glasses2 for data collection and compute individual
geometric eyeball parameters through explicit IR camera calibration, pupil &
iris detection and glint detection. The eyeball geometry is represented as two
intersecting spheres: the eyeball and the cornea, with person-specific parameters
for eyeball radius, cornea radius, iris radius and kappa angle. Based on the
constructed model, we propose a two-phase framework of 3D gaze estimation for
webcam images. In summary, the contributions of this paper include:

– Eye data collection with Tobii pro Glasses2 including 3D gaze direction, 3D
gaze point and IR videos of eye region. Then personal eyeball parameters are
recovered from data, including eyeball radius, cornea radius, iris radius and
kappa angle. PoG (Point of Gaze) error is calculated for evaluating recovered
parameters.

– An accurate parameterized 3D eye model with PCA eye basis that represents
personal variations in 3D eye geometry.

– Integration of the constructed eye model with a sparse 3D face model, yield-
ing a two-phase gaze estimation framework for monocular webcam images.
Experimental results show that our model generalizes well to different bench-
mark datasets for 3D gaze estimation.
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2 Related Works

Our proposed method takes advantage of techniques from 3D eye model recovery
using infrared or RGBD cameras combined with model-based gaze estimation.
We focus on reviewing related works in these two areas.

2.1 3D Eye Modeling

Infrared-camera based 3D eye model recovery systems are usually paired with
pre-calibrated illuminators to generate detectable glints in the IR images [4,
13, 16]. Through glint tracking and solving for the light reflection equations on
cornea surface, the 3D cornea center can be estimated. The 3D pupil center can
be solved by ellipse calibration. The IR camera-light system can achieve good
accuracy and precision for estimating eyeball geometry, but the setup process
is complex. For the convenience of real time gaze estimation, multiple wearable
devices have been developed like [12, 25–27]. Usually a one-time personal cali-
bration is required by these devices before starting gaze tracking, which is used
to recover personal 3D eye model information in advance.

3D eye model recovery methods based on RGB-D-cameras have been pro-
posed as well. Wang et al. [29] recovered subject-dependent 3D eye parameters
including eyeball radius, cornea center to eyeball center offset, eyeball center to
head center offset and kappa angle using a Kinect camera. Zhou et al. [34] re-
covered the 3D eyeball center, eyeball radius and iris center using the geometry
relationship of two eye models with a Kinect camera. More recently, concurrent
with the development of large scale 3D morphable face models [3,11,18,22], re-
searchers are using a similar process to construct a deformable eye region model.
Woods et al. [32] constructed a 3D deformable eye model from large scale 3D fa-
cial scans. Their model contains a deformable shape basis for the iris, eye socket,
eye lid and eye brow. Ploumpis et al. [23] presented a complete 3D deformable
model for the whole human head that incorporates eye and eye region models.
Compared with [32], their eye model uses finer-grained groups of eyeball, cornea
and iris vertices and captures variations in pupil size. We are unaware of prior
work that constructs a detailed eye mesh model that focuses simultaneously on
modeling the variance of eyeball size, cornea size and iris size.

2.2 Model-based 3D Gaze Estimation

3D gaze estimation methods can be divided into two types: appearance-based
methods (which take advantage of image features) and model-based methods,
the former type is not discussed in detail and we focus on model-based methods
in this paper. Model-based gaze estimation methods have two major advantages
over appearance-based methods. First, 3D models are less vulnerable to varia-
tions in illumination because it contains a general geometry prior for the 3D eye
anatomy that can be fit to different images. Second, 3D models can be rotated
arbitrarily by assigning a rotation matrix, making them more robust to head and
eye pose variations. Wang et al. [30] exploit a sparse 3D Face-Eye model that can
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deform in eyeball center position, pupil position and eyeball radius. Based on the
face model, 3D head poses can be solved in advance and then eyeball rotation
and kappa angle are solved by minimizing eye-landmark error and gaze error.
Woods et al. [32] and Ploumpis et al. [23] introduced an “analysis-by-synthesis”
framework to fit their 3D eye model to image features. The 3D head pose and
eye pose are optimized separately, and eye image texture is utilized to fit the eye
pose. They achieved good accuracy in 3D gaze estimation without using gaze
labels.

3 3D Deformable Eye Model

The main objective of data collection is to recover anatomically accurate pa-
rameters that capture individual eyeball structure. To fully utilize existing re-
sources and tools, we choose a reliable eye tracking device, Tobii Pro Glasses2,
which allows us to capture human gaze data in real-world environments in real
time. We collected both infrared eye images and true gaze data from Tobii Pro
Glasses2, where the former are utilized for computing eye model parameters for
each participant and the latter are used as ground-truth to validate our calcula-
tion process. In all, we recruited 15 participants, each of whom were involved in
multiple data collection experiments to ensure that the training and validation
data are both valid. We detail our data collection and processing pipeline in
section 3.1.

3.1 Data Collection and Personal Eye Parameter Recovery

Tobii Pro Glasses2 consists of a head unit, a recording unit and controller soft-
ware. The head unit contains four eye tracking sensors (two for each eye) that
take infrared eye region images from different angles to analyze gaze direction
and one high-resolution scene camera capturing HD videos of what is in front
of the person. Additionally, there are six IR illuminators on each side that gen-
erate glints in the eye images due to corneal reflection. For each participant, a
pre-calibration before recording is required to ensure that the glass is properly
worn and the sensors successfully capture the pupil center of both eyes. We in-
vite each participant to wear the glass and sit in front of a 80cm× 135cm screen
at a distance of 1.5-1.9m. The participant is asked to track a moving dot in a
3 × 7 dot array displayed on the screen. During the recording, the participant
is allowed to adjust their head orientation in case the gaze angle is too large to
be well captured for some corner dots. Each participant is asked to repeat the
recording experiment 2-3 times so that we can collect sufficient valid data for
generating the model and performing validation. After each recording, four IR
eye videos and one scene video as well as a trajectory file documenting 2D and
3D eye gaze information at each time sampling step is saved. We use the eye
videos to recover personal 3D eyeball parameters. The scene video and trajectory
file are utilized for the validation stage, which will be discussed in section 5.2.
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Table 1: 3D Eyeball Parameters

3D parameters Notation
Eyeball center Oe

Eyeball radius re
Cornea center Oc

Cornea radius rc
iris& pupil center Oi

iris radius ri
kappa angle θ = [θ1, θ2]

optical axis no

visual axis nv

Z(optical axis)
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Fig. 1: 3D eye mesh

The personal 3D eye model is defined as a two-sphere system, where the larger
sphere represents a 3D eyeball with center Oe and radius re and the smaller one
represents the cornea with center Oc and radius rc. The intersection of the two
spheres results in a circular plane whose center is defined as iris center Oi. The
pupil is assumed to be a concentric circle with the iris circle; hence the pupil
center overlaps with the iris center. Geometrically, Oe, Oc, Oi are co-linear points
and their connection forms the optical axis. The optical axis can be represented
by horizontal and vertical angles (ϕ, γ):

no(ϕ, γ) =

 cos(ϕ)sin(γ)
sin(ϕ)

−cos(ϕ)cos(γ)


According to eyeball anatomy, the true gaze is defined by a visual axis that

connects the fovea center, cornea center and the target object. We define a 2D
vector θ = [θ1, θ2] to be the Kappa angle representing the calibration term so
that visual axis will be nv = no(ϕ + θ1, γ + θ2). We summarize the geometric
parameters to be recovered in Table. 1 and show defined 3D eyeball mesh in
Fig. 1. We describe the process of recovering 3D eyeball geometry from Tobii
data as below.

3D pupil center We first process eye camera images for pupil ellipse detection,
as depicted in Fig. 2(a). Then the 3D pupil center Oi(relative to the reference
camera) is recovered through stereo rectification.

3D cornea center With pre-calibrated IR illuminators, We first detect glints
g1,1, g1,2 caused by light I1 in two images to calculate the 3D virtual glints v1,
similarly we can obtain another virtual glint v2 caused by light I2.The intersec-
tion of two light rays l1, l2 will be the 3D cornea center Oc. An illustration is
shown in Fig. 2(b).
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Fig. 2: 3D eyeball recovery process

3D eyeball center We assume that a user’s head movement would not cause
any position shift of the glass, hence Oe can be considered as a constant vector
across one whole recording. As the rotating center of the eyeball, Oe can be
estimated by solving for the intersection of OiOc (which is the connecting line
between Oi and Oc) from multiple frames, as shown in Fig. 2(c).

Eyeball, cornea and iris radius By referencing the ellipse reconstruction
method introduced by Kohlbecher et al. [15] and Chen et al. [5], we can recover
the 3D circular function for the iris plane, i.e. the normal vector and iris radius
ri. As in 3D eye geometry we define the iris as the intersection plane of eyeball
sphere and cornea sphere, re, rc can be determined by:

r2c = r2i + d2ci

r2e = r2i + (dci + dec)
2

(1)

where dci and dec are the distance from Oc to Oi and Oe to Oc respectively and
can be obtained from 3.1,3.1,3.1.

Kappa angle According to the accuracy report provided by Tobii Pro Glass2 [12],
we extract 3D gaze direction for valid frames of a recording provided by Tobii
as the ground truth n̂v and optimize for the kappa angle by

θ∗ = argmin
θ

M∑
m=1

arccos(no(ϕ
∗ + θ1, γ

∗ + θ2), n̂v) (2)

In Table 1, only camera-invariant parameters p = [re, rc, ri, θ1, θ2] are selected
to construct a personal 3D eye mesh and we manually define Oe to be the origin
and Oc, Oi are located on the Z-axis.

3.2 3D Deformable Eye Model Construction

We repeat the process in section 3.1 for each participant and we designate these
users as “calibrated users” since their personal eye parameters p5×1 are fully
recovered by means of the Tobii device. The calibrated parameter set P =
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Fig. 3: Overview of our method: including a model construction module and a
model-based 3D gaze estimation module.

[p1, · · · ,p15]
5×15 can be used to construct a linear model that describes variation

in eye parameters:
Meye = (µeye,Ueye) (3)

where µ5×1
eye and U5×5

eye are the average 3D eye parameter and an orthogonal PCA
basis computed from P . For model-based 3D gaze estimation, we reconstruct p
for an “uncalibrated user” by letting p = µeye + α Ueye with the personal
coefficient α, rather than repeating the complex data collection and processing
procedure using the Tobii device.

We define a fixed eye mesh topology for the two-sphere 3D eye model, where
the mesh vertices are divided into different groups, including {Ω1:“eyeball”,
Ω2“cornea”,Ω3:“iris boundary”,Ω4:“pupil center”}. An average 3D eye mesh can
be scaled corresponding to personal eye parameters [re, rc, ri], resulting in the
personal mesh generation process described as: V N×3 = f(re, rc, ri).

4 3D Gaze Estimation

We propose a two-phase framework for single-frame based 3D gaze estimation
using the constructed 3D eye model, as shown in Fig. 3. This framework can be
implemented by an optimization-based fitting or deep-model-based regression
scheme. In this section we will discuss the algorithm for 3D gaze estimation
through model fitting.

In phase1, we solve for a weak-perspective camera viewpoint for the 3D
head by fitting a 3D head model [17] to 68 2D facial landmarks of the face
image. We implement the SNLS algorithm proposed by Bas te al. [1] and obtain
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the optimal 3D head pose R3×3
h , head center position T 2×1

h and a scaling factor
s. Then, in phase2, we use a combination of iris landmark loss, rendering loss
and geometrical constraints for left and right eyeball to optimize the eyeball
center location [Cel,Cer] in the head coordinate system (HCS), the personal eye
coefficient α and the eyeball rotation R3×3

e . Loss terms are as follows, taking
the left eye as an example.

Iris landmark loss: similar to phase1, we obtain 2D iris landmarks x2d
iris

from an iris detector and formulate the projection loss as:

Liris,l = ∥x2d
iris,l − s∗P [ReR

∗
h{Vi, i ∈ Ω3}+R∗

hCel] + s∗T ∗
h ∥2 (4)

where V = f(p(1),p(2),p(3)), and p(α) = µeye +α Ueye.
Rendering loss: Since optimizing all parameters merely using iris landmarks

is an ill-posed problem, we add a texture loss for the sclera and iris regions by
projecting the eye mesh to the image frame, which is defined as:

Limg,l =

∑
m Am,l∥I − Isyn(s

∗,α,Cel,Re)∥2∑
m Am,l

(5)

where Am,l is the binary mask for the left eye region generated by 2D eye land-
marks.

Geometrical constraints: from phase1 we can recover 3D eye landmarks
x3d
eye among the facial landmarks. Since they ought to be very close to the surface

of eyeball sphere, we define a regularization term for the eyeball center and
radius:

Lgeo,l =
∑
i

∥re − |x3d
eye,l,i −Cel|1∥2 (6)

where re = p(1) and p = µeye + α Ueye. Eq. 4, 5, 6 apply to both eyes. We
further constrain the left and right eyeball centers to be symmetric in HCS, i.e.,
Ce = [Cel(1),Cel(2),Cel(3)] = [−Cer(1),Cer(2),Cer(3)]. The resulting overall
cost function is:

arg min
Ce,α,Re

λ1(Liris,l + Liris,r) + λ2(Limg,l + Limg,r)

+ λ3(Lgeo,l + Lgeo,r) + λ4∥α∥2
(7)

the last term is used to avoid unreasonable personal eye shapes.
Kappa angle refinement: analysis of the 3D eye basis Ueye shows that

the kappa angles have very weak correlation with other parameters or, we can
consider θ as independent variable from [re, ri, rc]. Hence, we add an optional
loss term to refine the 3D eye model parameters when gaze labels are available.
The gaze loss is defined as:

Lgaze = arccos ⟨no(ϕo + θ1, γo + θ2 ), n̂v⟩ (8)

where ϕo, γo are function of Re expressed by no =

 cos(ϕ)sin(γ)
sin(ϕ)

−cos(ϕ)cos(γ)

 = ReRh

[
0 0 1

]T .

Our 3D gaze estimation framework is summarized in Algorithm. 1.
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Algorithm 1 3D Gaze Estimation Algorithm
1: phase1: head pose estimation

2: Input:

{
landmarks : x2d

face

Deformable face model : B, B̄

3: Fitting: weak perspective, SNLS algorithm [1].
4: Output: [R∗

h,T
∗
h , s

∗].
5: phase2: 3D Gaze estimation

6: Input:


image, landmarks & eye mask : I,x2d

eye,x
2d
iris, Am

head pose and scaling factor : [R∗
h,T

∗
h , s

∗]

3D deformable eye model : U , ū

7: Initialization: R0
e = Identity(3),α0 = 0,C0

e initialized by face model.
8: Fitting:
9: if gaze label n̂v available then

C∗
e ,R

∗
e,α

∗ = arg min
Ce,α,Re

λ1(Liris,l + Liris,r)

+ λ2(Limg,l + Limg,r) + λ3(Lgeo,l + Lgeo,r)

+ λ4∥α∥2 + λ5Lg

10: else
C∗

e ,R
∗
e,α

∗ = arg min
Ce,α,Re

λ1(Liris,l + Liris,r) + λ4∥α∥2

+ λ2(Limg,l + Limg,r) + λ3(Lgeo,l + Lgeo,r)

11: Output: [C∗
e ,R

∗
e,α

∗]

12: Gaze: optical axis: no(ϕ
∗
o, γ

∗
o ) = R∗

eR
∗
h

[
0 0 1

]T
visual axis: nv(ϕ

∗
o +α∗(4), γ∗

o +α∗(5))

5 Experiments

5.1 Experiment settings

Datasets: We conduct two types of experiments to evaluate the constructed
model:

– Model validation on Tobii recordings. As mentioned in section 3.1, we
collect multiple recordings for each participant and leave one recording out
for validation;

– Benchmark datasets. We select two datasets with full face images avail-
able. Columbia Gaze dataset [24] contains 56 subjects with 21 gaze angles
under 5 head poses. EyeDiap [10] contains 16 subjects with different sessions.

On benchmark datasets, we first perform 2D facial landmark detection using
[2] and 2D iris detection using [20]. We use FaceScape [35] as the 3D face shape
model to perform head pose estimation in phase1.
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Table 2: Average 3D gaze error and PoG error on Tobii recordings of 15 partici-
pants.

azimuth angle error
(in degree)

elevation angle error
(in degree) PoG error/screen size(in cm)

3.32 3.56 7.64/(80*135)

5.2 Evaluation on Tobii recordings

For each “calibrated” participant with fully recovered eye parameters p, we per-
form validation experiments on one of the unused recordings. On the validation
IR video, frame-based 3D model fitting is conducted by minimizing the MSE
between projected 3D iris vertices and detected 2D iris landmarks. After opti-
mizing for eyeball center Oe and eyeball rotation Re, the optical axis can be
represented as no(ϕo, γo) = Re[0, 0, 1]T then visual axis can be calculated by
nv = no(ϕo + θ1, γo + θ2). Since the visual axis is the unit direction vector
connecting cornea center and target object, the point of gaze (PoG) will be the
intersection of the left- and right-eye gaze vectors Oc,l+ l1nv,l and Oc,r+ l2nv,r,
which is computed by solving for l1 and l2. In the trajectory file provided by
Tobii Pro Glass2, we are able to extract the 3D true gaze vector and the de-
tected 3D target. We validate our model construction procedure in section 3.1 by
evaluating angular gaze error and PoG error. Since eyeball is a sphere structure
and can be only rotated along two direction, we decompose the 3D gaze vector
provided by Tobii into two free rotation angles: horizontal angle ϕ̂v and vertical
angle γ̂v, then write the gaze vector as n̂v(ϕ̂v, γ̂v). Comparing the estimated
visual axis n̂v(ϕo + θ1, γ0 + θ2) with the ground truth n̂v(ϕ̂v, γ̂v), the angular
gaze error can be reflected by a horizontal angle error ∆ϕ = |ϕ̂v − (ϕo+ θ1)| and
a vertical angle error ∆(γ) = |γ̂v−(γo+θ2)|. Results are summarized in Table 2.

5.3 Evaluation on benchmark datasets

Evaluations on IR eye videos mentioned in section 5.2 validate that the recov-
ered parameters p = [re, rc, ri, θ1, θ2] fit each participant well and can be taken
as valid data for constructing our deformable 3D eye model. In addition to that,
we evaluated how well the proposed 3D eye model predicts gaze directions for
webcam datasets: Columbia Gaze and EyeDiap. For both datasets, we estimate
3D eyeball parameters [Ce,Re, α]for each subject, under the condition of us-
ing 3D gaze labels or not. When no gaze label is involved, i.e., we use step.10
and step.12 in Algorithm.1 to estimate gaze direction for each image. We can
also use gaze labels and do step.9 in Algorithm.1 to estimate C∗

e and α∗ for a
subset of images of one subject and then use the average result as initialization
for the remained images of this subject. For the second case, we can get more
accurate estimated gaze since C∗

e and α∗ are more consistent in terms of subject
identity. In all, we designed three experiments with no gaze label( 0% column),
5% labels and 10% labels for each subject. We compared our model with SOTA
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Table 3: Average angular error in under 5 different head angles in Columbia Gaze
dataset, H: horizontal gaze angle error, V: vertical gaze angle error.

Gaze error (H,V) Percentage of gaze label used
Head pose 0% 5% 10%

-30◦ (8.18,6.80) (6.80,6.20) (6.54,6.31)
-15◦ (8.20,6.54) (6.54,6.06) (6.42,5.89)
0◦ (7.80,6.50) (6.00,5.87) (6.05,5.64)
15◦ (7.90,6.54) (6.12,5.54) (6.18,5.32)
30◦ (8.24,6.66) (6.28,5.96) (6.17,5.88)

Avg. (8.06,6.61) (6.35,5.93) (6.28,5.81)

Table 4: Comparing with state-of-art models on Columbia Gaze, EyeDiap-VGA
video and EyeDiap-HD video using different percentage of gaze labels.

Datasets [33] [28] [32] [30] Ours(with (·)% labels)
0% 5% 10%

Columbia Gaze 9.7 10.2 8.9 7.1 9.0 6.5 6.1
EyeDiap-VGA 21.2 22.2 9.44/21.5 17.3 11.4/19.6 10.2/16.7 9.6/16.0
EyeDiap-HD 25.2 28.3 11.0/22.2 16.5 10.5/18.1 9.8/15.4 9.6/14.7

3D eye modeling methods,including [28,30,32,33], for evaluating our 3D eyeball
geometry and fitting algorithm. Most appearance-based gaze estimation models
like [6,19,21,31] which usually need full gaze labels and a complex training pro-
cess to extract deep features from eye images and map to human gaze, rather
than estimating 3D geometry and perform 3DMM-fitting. Therefore, we do not
compare our model with these methods in this paper. It’s worth mentioning that
our 3D deformable eye model can be integrated into a deep model framework
and combined with appearance-based methods. We’ll continue with this part in
future research.

The results for Columbia Gaze are shown in Table 3. We use different per-
centages of gaze labels to get refined kappa angles. Comparing results in Table 3
vertically, our model fits well to different head pose angles, although for larger
head angles the gaze estimation accuracy is slightly reduced. From Table 3, it
can be seen that our fitting algorithm’s estimates of personal 3D eye model pa-
rameters and 3D gaze directions improve substantially when the percentage of
gaze labels is raised from 0% to 5%, with the angular error decreasing from 9.0◦

to 6.5◦. Increasing the percentage of gaze labels to 10% has only a marginal
benefit (angular error 6.1◦). Our model outperforms [32] even when we use no
gaze labels, and it outperforms [30] (which uses around 14% gaze labels when
fitting for their 3D eye model) even when we just use 5% or 10% gaze labels.

On EyeDiap we performed the fitting on VGA images and HD images. We
present our results on EyeDiap in the last three columns of Table 4. For fair
comparison, we divide the testing data into (“screen target”) / (“floating target”)
similar to [32] and show the 3D gaze error separately. For [28, 30, 33] we list
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Fitted eye shape:
Eyeball: 13.85mm
Cornea: 9.88mm
Iris: 6.2mm

Fitted eye shape:
Eyeball: 13.44mm
Cornea: 9.36mm
Iris: 6.0mm

(HD)

(VGA)

Fitted eye shape:
Eyeball: 14.25mm
Cornea: 8,89mm
Iris: 6.1mm

Fitted eye shape:
Eyeball: 14.86mm
Cornea: 9.12mm
Iris: 6.3mm

Fig. 4: Example fitting results on EyeDiap [10] and Columbia Gaze [24] datasets.
column 1: input image. column2: projected 3D eyeball vertices(blue), iris ver-
tices (red), eyeball center (yellow) and pupil center (green). Estimated eyeball &
cornea & iris radius are displayed upper left. column3 estimated gaze (white)
and ground-truth gaze direction (red).

the average error on EyeDiap since they do not explicitly split the data. On
EyeDiap-VGA videos, event with no gaze labels our model achieves the best
gaze estimation results (19.6◦) on “floating target” data that exhibit large head
pose angles compared to [32] (21.5◦). Our gaze estimation performances are
further improved when utilizing 10% gaze labels, achieving (9.6◦/16.0◦). On
EyeDiap-HD videos, which have higher resolution than VGA videos, our model
outperforms all of the four methods for both "screen target" video and "floating
target" video. Fitting examples on Columbia dataset and EyeDiap are visualized
in Fig. 4.

To summarize, our 3D model and fitting algorithm achieves state-of-the-art
gaze estimation accuracy even when using a small percentage of subject gaze
labels. Furthermore, the proposed two-phase fitting algorithm is more robust
against large head poses and can still perform well under illumination and image
resolution variations.

6 Conclusion

We propose the first 3D eye model with a deformable basis for eyeball radius,
cornea radius, iris radius and kappa angle. The 3D eye geometry contains a
sphere for eyeball, a smaller sphere for the cornea and the iris plane. The 3D
eye geometry is fully parameterized by the eye model coefficients and can be
used to approximate the variance in 3D eye shape for different person. We use a
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wearable device Tobii Pro Glass2 for data collection and preliminary model vali-
dation. We present a two-phase fitting algorithm for single-image based 3D gaze
estimation using the constructed eye basis. With our 3D eye model and fitting
method, personal eye shape parameters and eyeball rotations can be recovered
from image pixel feature. Evaluations on benchmark datasets show that our
model generalizes well to web-camera images with various head poses, illumina-
tion and resolution. The fitting process introduced in our paper can be further
transplanted into a deep-model based framework. In the future, we pursue to
integrate the 3D eye model into appearance-based deep models for accurate and
generalizable 3D gaze estimation.
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