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Abstract

Human gaze in in-the-wild and outdoor human activities is a continuous and dynamic
process that is driven by the anatomical eye movements such as fixations, saccades and
smooth pursuit. However, learning gaze dynamics in videos remains as a challenging task
as annotating human gaze in videos is labor-expensive. In this paper, we propose a novel
method for dynamic 3D gaze estimation in videos by utilizing the human interaction la-
bels. Our model contains a temporal gaze estimator which is built upon Autoregressive
Transformer structures. Besides, our model learns the spatial relationship of gaze among
multiple subjects, by constructing a Human Interaction Graph from predicted gaze and
update the gaze feature with a structure-aware Transformer. Our model predict future
gaze conditioned on historical gaze and the gaze interactions in an autoregressive manner.
We propose a multi-state training algorithm to alternately update the Interaction module
and dynamic gaze estimation module, when training on a mixture of labeled and unlabeled
sequences. We show significant improvements in both within-domain gaze estimation ac-
curacy and cross-domain generalization on the physically-unconstrained gaze estimation
benchmark.

Keywords: 3D Gaze estimation, Human gaze interaction, Gaze dynamics.

1. Introduction

Eye gaze is an important cue for human behaviour and attention analysis. With the grow-
ing popularity in interactive applications such as AR/VR, 3D avatar animation, human-
computer interaction and driver behaviour monitoring, automatic gaze estimation methods
are proposed to regress 3D gaze directions from eye images. More recently, with the enrich-
ment of large scale gaze datasets Kellnhofer et al. (2019); Zhang et al. (2020); Funes Mora
et al. (2014); Fischer et al. (2018), deep learning models have been fully utilized to regress
gaze from images captured in different environments. Despite the progresses in image-based
gaze estimation, gaze dynamics learning has not yet been fully explored. First, it is diffi-
cult to capture eye movement dynamics accurately in videos when the subject has frequent
body or head movement, which may cause blur or occlusion in the eye region. Second, the
dynamic eyeball movement in a video dataset may be elicited by specific tasks or scenarios,
so it’s questionable if such models can well generalize to other dataset. Finally, annotat-
ing gaze frame-by-frame for videos can be time consuming and labour-intensive and deep
learning models may suffer from inadequate training labels.

Several methods have been proposed in previous researches to model eyeball movement
or gaze dynamics in videos. A recurrent CNN is proposed by Palmero et al. (2018) to model
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the temporal dependency of 3D gaze in a sequence, which predict the gaze direction only
in the last frame. Other recurrent modules have been considered, such as GRU (Park et al.
(2020)) and LSTM (Kellnhofer et al. (2019),Palmero Cantarino et al. (2020)). Besides,
Nonaka et al. (2022) proposes a dynamic framework, by formulating probabilistic gaze
estimation given temporal estimation of head and body orientation. The idea of using head
& body orientation likelihoods to model the temporal prior of gaze in (Nonaka et al. (2022))
reveals the advantage of dynamic gaze estimation, which is to reasonably infer the gaze even
when the eye region is invisible due to occlusion or low image resolution.
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Figure 1: Spatial and Temporal relationships among gaze directions and human interaction
classes.

Due to the difficulties in creating fully-annotated video datasets for gaze estimation,
researchers seek for “secondary” labels which are easier to acquire to refine the gaze esti-
mator. For example, Park et al. (2020); Wang et al. (2019) both incorporate point of gaze
(PoG) estimation in a gaze estimation framework, where the subject conducts natural eye
movements following a moving target in a video. The eye gaze estimation is refined jointly
with the PoG estimation process through learning temporal relationships, without requiring
ground-truth gaze annotations. In addition to PoG labels, Kothari et al. (2021) proposes
a novel weakly-supervised framework for learning 3D gaze from videos, where people are
“Looking At Each Other” (LAEO). The LAEO labels are formulated as geometric gaze
constraints to supervise the training process. Kothari et al. (2021) successfully proved that
utilizing the human interaction information in social scenarios can significantly improve the
within-domain accuracy and cross-domain generalization ability. However, Kothari et al.
(2021) only utilize the specific human interaction type (i.e., looking at each other or not),
and fail to consider the variety of human interaction activities. The temporal relationships
learned from LAEO labels can be too weak to represent the gaze dynamics in a social
scenario.

In this work, we propose a novel model to enhance the dynamic 3D gaze estimation in
videos by learning the state and dynamic transitions of various human gaze interaction ac-
tivities. We refer to the atomic-level and event level gaze communication activities defined
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by Fan et al. (2019) and model the dynamic transitions among six types of gaze communica-
tion activities, including {single, mutual, avert, refer, follow, share}. We use the predicted
gaze direction and subject location information to construct a Human Interaction Graph
and utilize the historical state to infer the current state. We first train our gaze estimator
on Gaze360 (Kellnhofer et al. (2019)), then jointly optimize the dynamic gaze estimator
and the interaction learning module on VACATION dataset (Fan et al. (2019)), without
using additional gaze annotations, as shown in Fig. 1. Our contribution includes:

• We propose a dynamic 3D gaze estimation framework for learning 3D gaze from human
interaction videos. Compared to previous work which only explore LAEO cases, we
consider a variety of human interactions and the transitions between two interaction
states. To our knowledge, this is the first attempt to use multiple human interaction
activities to enhance dynamic 3D gaze learning.

• To effectively model the interaction between subjects with gaze, we propose a spatio-
temporal model through combining Human-Interaction Graph with a Transformer-
based spatial and temporal module, to jointly capture the spatial and temporal rela-
tionships of human gaze movement.

• We use predicted gaze to construct the Human Interaction Graph and interaction
classification loss and develop a multi-stage training algorithm to alternately update
the interaction module and gaze module. The results of within- and cross-domain
evaluation shows that the human interaction learning can effectively enhance the gaze
estimator.

2. Related Works

2.1. Dynamic 3D Gaze Estimation

Fully supervised learning based gaze estimation methods have achieved impressive within-
domain performances on static images, such as Cheng et al. (2020); Chen and Shi (2018);
Fischer et al. (2018); Zhang et al. (2017). However, dynamic gaze estimation has not
been extensively explored due to lack of fully-annotated gaze videos. With the sequence-
based gaze labels from recently-published dataset EyeDiap Funes Mora et al. (2014) or
Gaze360 Kellnhofer et al. (2019), a few temporal gaze estimation models have been proposed
to predict eye gaze direction from a image sequence. Palmero et al. (2018) proposed a
multimodal recurrent CNN framework that feed the concatenated static feature of each
frame into a recurrent module for predicting the 3D gaze direction of the last frame in the
sequence. Similarly, Kellnhofer et al. (2019) have proposed to use a bidirectional LSTM
to encode the contextual information in temporal domain and predict gaze for the central
frame. Such fully-supervised models may fail to generalize to different datasets under various
environments. In the meantime, multiple researches have been conducted to explore other
sources of labels that can help refine or provide weak supervision to the gaze model. Wang
et al. (2019) collected a dataset which records human eye images and the ground-truth gaze
positions on a screen while subjects are browsing websites or watching videos. A dynamic
gaze transition network is proposed to capture the transitions of different eye movements in
temporal domain, then refine the static gaze predictions with learned dynamics. Park et al.
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(2020) constructed a large-scale video-based eye tracking dataset with ground-truth Point
of Gaze (PoG) on a screen, followed by a recurrent module that performs PoG refinement
task on video data. Utilizing auxiliary information from body or head pose have been
used for unconstrained gaze estimation. Nonaka et al. (2022) formulated a Bayesian gaze
estimation framework given temporal estimates of 3D head and body orientations, which
can be reliably estimated from a far distance. The above mentioned methods encode eye
gaze dynamics based on the motion prior for a single subject. As far as we know, learning
eye movement dynamics from multi-subject interaction videos are not fully explored.

2.2. Gaze Target Estimation and Human Gaze Interaction

Eye gaze is an essential non-verbal clue for human activity, intention and communication
analysis. Compared to the time-consuming 3D gaze direction annotation process, labeling
gaze targets in a image/video is more straightforward to undertake. Recasens et al. (2015)
first defined the gaze following task, which is to predict the location that each person in a
scene is looking at from a single image. Chong et al. (2018) addressed a more challenging
problem of estimating general human visual attention, which handles special cases such
as out-of-frame gaze targets and looking-at-camera gaze. These datasets and techniques
have been extended to video domain using temporal networks, such as the video-based
gaze following framework proposed by Recasens et al. (2017) and video-based visual targets
analysis proposed by Chong et al. (2020). Fang et al. (2021) enhance the gaze target
estimation model by exploiting 3D scene context, including the 3D gaze direction, 3D head
pose and scene depth. Estimating gaze target is useful in analyzing human visual attention
but does not provide direct information about 3D gaze direction.

Human gaze interaction provide weak supervision to gaze direction learning when there
exists multiple people in the scene. One type of useful weak supervision is mutual gaze,
where two people are looking at each other (LAEO). Marin-Jimenez et al. (2014, 2019)
formulated detecting LAEO between human as a binary classification task. Fan et al. (2019)
extended the scope to multi-agent gaze communication behaviours in realistic social scene
and distinguished six types of atomic-level gaze interactions. Compared to LAEO cases, Fan
et al. (2019) further considered long-term gaze interaction dynamics and divided temporal
compositions of atomic gazes into five classes of events, including {Non-Communicative,
Mutual Gaze, Gaze Aversion, Gaze Following, Joint Attention}.

Kothari et al. (2021) creatively utilized LAEO labels from a web-video dataset for weakly
supervised 3D gaze learning. The LAEO labels between a pair of subjects provide a strong
geometric constraint that their gaze should be in opposite direction. Based on the LAEO
constraint, Kothari et al. (2021) formulated pseudo gaze labels on LAEO pairs, which
can guide the gaze model learning when one subject is face away from camera and the
face/eye region is not visible. However, as we know, human interactions are usually dynamic
activities, focusing on LAEO cases will largely ignore eye movement dynamics. To our
knowledge, multi-class human interaction labels scene have not been used in supervising
gaze estimation models. Besides, we are also the first work to learn temporal dependency
of 3D gaze direction from interaction transitions.
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3. Method

3.1. Problem Formulation
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Figure 2: Problem formulation for Interaction-Aware dynamic gaze estimation.

We target at dynamic 3D gaze estimation in videos by modeling both temporal and
spatial gaze relationships, as shown in Fig. 2. For a given image sequence I = {I1, · · · , IT }
that contains gaze communications among two or more people, we want to predict the gaze
g and their interaction category a for each frame, by modeling the spatio-temporal gaze
relationships. Assuming that the human gaze interactions can be fully inferred from gaze
and can affect future gaze direction, the problem is formulated as:

P (g1:T ,a1:T |I1:T ) = P (g1|I1) P (a1|g1)
T−1∏
t=1

{P (gt+1|gt,at, It+1) P (at+1|gt+1)} (1)

The gaze gt ∈ RNt×3 contains multiple unit gaze vectors for Nt subjects in frame t, i.e.,
gt = [gt,1, · · · , gt,Nt ]. The gaze interaction variable at ∈ ZNt×6 represents the one-hot
interaction category vector for six types of interactions, including {single, mutual, avert,
refer, follow, share} and at = [at,1, · · · , at,Nt ]. In Eq. 1, we model P (at|gt) with learning a
Human Interaction Graph Gt from gt; then we model P (gt+1|gt,at, It+1) with a Structure-
aware Transformer and an Autoregressive Temporal Transformer.

3.2. Method Overview

We show the overview of the proposed framework in Fig. 3. Given a sequence of subject head
images I = {I1, · · · , IT }, our network is defined as F(·) and contains five sets of network pa-
rameters, including the ResNet-18 feature extractor FΘ1 , the Structure-aware Transformer
layer FΘ2 for updating the gaze feature with multi-subject interaction information, a tem-
poral model FΘ3 built with Autoregressive Transformer Layers, a Fully-Connected (FC)
layer FΘ4 for regressing the gaze vector and an interaction classifier FΘ5 for distinguishing
the interaction category from gaze.

The prediction is run in an autoregressive manner, as formulated in Eq. 1. The predicted
gaze gt at time t will be used to construct the edges of a Human-Interaction graph Gt, then
we use s Structure-aware Transformer and a Temporal Transformer to model the distribution
of future gaze, given the historical gaze and the gaze interaction. In the Human-Interaction
Module, we first construct a human-interaction graph Gt = (Vt, Et) using gaze and position
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Figure 3: Overview of our method.

information for each frame t. Then we update the gaze representations in both spatial and
temporal scale. The updated gaze feature are feed into prediction head and predict human
interaction categories for each subject.

In Section 3.3, we show details about building the Human-Interaction Graph from pre-
dicted gaze. In Section 3.4, we describe the structure-aware transformer for learning the
gaze interaction relationships. In Section 3.5, we describe the temporal module for predict-
ing future gaze. In Section 3.6, we define a interaction classifier using the updated gaze
features. We propose a multi-state training strategy to refine the dynamic estimate module.
We define the loss function for training in Section 3.7 and describe the training algorithm
in Section 3.8.

3.3. Human Interaction Graph

We use human interaction videos and labels from VACATION Fan et al. (2019) dataset to
perform joint learning of 3D gaze dynamics and gaze interaction dynamics. The bounding
boxes of all subjects and objects involved in the communication scene are provided. With
the predicted gaze and bounding box locations, we propose to construct a human-interaction
graph Gt = (Vt,Et) for every frame t, where the nodes Vt can be further split into subjects
nodes V s

t and objects nodes V o
t . There can be a directed edge e(ij) ∈ Et from node vi to

node vj , indicating the subject i is looking at another subject or an object.
At frame t, given the predicted gaze direction gt = {gt,i}Ni=1 and gaze uncertainty σt =

{σt,i}Ni=1, we calculate the inter-activeness score for each subject-subject and subject-object
pair, defined as below. For subject i, we first generate a 2D gaze attention map Mi by
calculating the angular difference θ between the gaze vector and the vector from one image
pixel to the head center position [di,x, di,y], formulated as

θi(x, y) = arccos(
x− di,x, y − di,y · (gx, gy)

∥(x− di,x, y − di,y)∥2 · ∥gx, gy∥2
) and Mi(x, y) = max(1− θx,y

ασi
, 0) (2)
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Figure 4: Visualization of the gaze view field based on the predicted gaze. First row: the
predicted gaze direction. Second row: the 2D gaze field map generated based
on the 2D gaze direction and the depth information in Eq. 2. Third row: the
optimized gaze field map after applying depth rebasing by adding depth threshold
on the gaze target region.

where α > 1 is a hyperparameter, deciding the scope of gaze view field. Then we follow the
depth rebasing method in Fang et al. (2021) to optimize the gaze field using the relative
depth information. Examples of the initial gaze view field and optimized ones are shown
in Fig. 4. At last, we calculate the interaction score ci from subject i to other subjects or
objects as:

cij = mean([Mi(x, y)], ∀(x, y) in bboxj) (3)

The interaction score cij ≤ 1 represents the probability of the edge connectivity. When the
ground truth edge connectivity egtij ∈ {0, 1} is given, we can compute a graph structure loss
to refine the gaze direction, which is defined below.

LG,t =
1

|V s
t |(|V s

t |+ |V 0
t |)

|V s
t |∑
i

|V s
t +V 0

t |∑
j

−egtij log cij − (1− egtij )log(1− cij)

LG =
1

T

T∑
t

LG,t

(4)

3.4. Structure-aware Transformer

To model the distribution of P (gt+1|gt,at, It+1), we propose to build a sequential model
consists of a structure-aware Transformer and an autoregressive transformer that can gen-
erate gaze prediction conditioned on previous gaze, human interaction and image feature.
The ”structure-aware” transformer integrates gaze interaction information for generating
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Figure 5: Detailed network structure of the Spatial and Temporal Transformer.

interaction-aware gaze embedding. As shown in Fig. 5, given the extracted image feature
ht in a frame for N subjects, we project the feature vector to gaze feature embedding space
to generate image tokens. From the human interaction graph Gt, we find the gaze target
with the highest interaction score and feed the bounding box coordinates into the ”bbox
embedding” layer to generate target position tokens. The image token and target position
tokens are concatenated as the input of transformer layers. The processing steps of the
transformer model are described below.

Input: image feature ht+1, Interaction Graph: Gt−1

tokens: qt+1,k = [MLP(ht+1,k);MLP(bboxt,k)], k = 1, · · · , N

self-attn: q
(l)
t+1 = LN(MHS(Qq

(l−1)
t+1 ,Kql−1 , V q

(l−1)
t+1 ) + q

(l−1)
t+1 )

FFN: q
(l)
t+1 = FFN(q

(l)
t+1), l = 1, · · · , Nd

Output: h̃t+1 = q
(Nd)
t

(5)

The output h̃t+1 is the updated gaze feature embedding at frame t+ 1, which will be used
as input of the Temporal model. We introduce the details in next section.

3.5. Autoregressive Transformer for Temporal Relationship Learning

In stead of only predicting gaze direction for the central frame in a sequence like (Kellnhofer
et al. (2019); Kothari et al. (2021)), our gaze module predicts gaze for each frame in the
sequence as we will need gaze direction to learn human interaction dynamics. A shown in
Fig. 3, the concatenated feature sequences are feed into the Temporal Module, which is for
capturing the temporal dependencies of gaze directions.

Gaze Embedding Given the predicted gaze gt at time t, we project gt to a d-dimension
vector st through a linear projection function, defined as:

st =

{
W s · gt + bs, t ≥ 1

bz, t = 0
(6)
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where t = 0 represents the begin token and W s ∈ Rd×3 and bs ∈ Rd×1 represent the weight
matrix and bias.

Periodic Positional Encoding Consider that the gaze direction could be quite consis-
tent in a sequence, we refer to the method from Fan et al. (2022) to add a Periodic Positional
Encoding (PPE) to the gaze embedding vectors, indicating the temporal order. The PPE
is expressed by the function below.

PPE(t,2i) = sin((t mod P )/(10000)2t/d)

PPE(t,2i+1) = cos((t mod P )/(10000)2t/d)
(7)

where the i is the dimension index and P is a hyper-parameter defining the period. The gaze
embedding vector st will be added to the PPE before feeding them to the Autoregressive
Transformer layer, expressed as:

ŝt = st + PPE(j), t = 1, · · · , T (8)

Autoregressive Transformer To model the temporal dependency of gaze movement
under certain human interactions, we refer to the transformer decoder architecture used in
the GPT models and design an module that autoregressively predict the gaze in one future
step. Given the updated feature h̃t+1 from spatial model and predicted gaze direction gt
at previous time step, we model the distribution P (gt+1|gt, h̃t+1) with the devised Autore-
gressive Transformer FΘ3 . In each layer of the autoregressive model, there is a Multi-Head
self-attention layer (MHS) and a Multi-Head cross-attention (MHC) layer, inserted with
residual connections and layer normalization(LN). The processing of our temporal model
can be written as:

self-attn: ŝ
(1)
l = LN(MHS(Qŝl−1 ,K ŝl−1 , V ŝl−1) + ŝl−1)

cross-attn: ŝ
(2)
l = LN(MHC(Qŝ

(′)
l ,Kh̃

(1)
l , V h̃

(1)
l ) + ŝ

(1)
l )

FFN: ŝl = FFN(ŝ
(2)
l ), l = 1, · · · , Nd

Output:
˜̃
ht = ŝNd,t

(9)

where l is the layer index and we can concatenate Nd layers in total.

Regressing Gaze and Uncertainty The output of the Autoregressive Transformer
˜̃
ht are feed into the FC layer to regress for a probabilistic gaze prediction, described
as (γ, ϕ, σ), where γ, ϕ is the gaze direction in sphere coordinate system and σ repre-
sents for the gaze concentration, which reflects the gaze uncertainty. The angular for-
mulation γ, ϕ can be converted to a unit 3D gaze vector g = [gx, gy, gz] by solving {
gx
gz

= −tan(γ); gy = sin(ϕ); g2x + g2y + g2z = 1}. Given
˜̃
ht, the FC layer generate gaze

prediction for t+ 1, written as:

gt+1, σt+1 = FΘ4(
˜̃
ht) (10)
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3.6. Human Interaction Classifier

As we are also interested in the human interaction states in the video, we build a classifier

FΘ5(·) to generate human interaction predictions, utilizing the gaze feature
˜̃
ht from Eq. 9

combined with the target for every subject. The predicted interaction category is expressed
as:

at = softmax(FΘ5([
˜̃
ht; bboxt])) (11)

When the ground-truth gaze interaction labels are given, we define a interaction loss:

LInteraction =
1

NT

T∑
t

N∑
i

−agt
t,i logat,i − (1− agt

t,i)log(1− at,i) (12)

3.7. Loss Function

The overall training loss function for our model is :

Loss = λ1Lgaze + λ2Lsmooth + λ3LG + λ4Linteraction (13)

where LG and LInteraction are gaze interaction graph loss and interaction classification loss,
as defined in Eq. 4 and Eq. 12. We define Lgaze and Lsmooth below.
We compute the negative log-likehood loss with the predicted gaze angle gt = [γ,ϕ] and
uncertainty σt, when the ground-truth gaze labels are given. The gaze loss Lgaze is defined
as:

Lgaze =
1

T

T∑
t

(log(σt) +
1

σt
∥gt − ggt

t ∥2) (14)

We also impose a smoothness constraint along the temporal axis, to minimize the difference
between the predicted gaze in two consecutive frames, which is formulated as:

Lsmooth =
1

T − 1

T−1∑
t=1

∥gt − gt+1∥2 (15)

3.8. Training Algorithm

As gaze benchmark dataset and human gaze interaction dataset do not have intersecting
labels, we propose a multi-state algorithm to train the full model.

• Stage 1: temporal model pre-training (the blue part in Fig. 3). We use the gaze bench-
mark datset that contains image sequences/videos and frame-by-frame gaze annota-
tions to pre-train the feature extractor and the temporal model (FΘ1(·),FΘ3(·),FΘ4(·));

• Stage 2: Freeze FΘ3(·) and train spatial model (the orange part in Fig. 3). We use
human interaction dataset that contains image sequences/videos and frame-by-frame
interaction annotation to train the feature extractor, structure-aware Transformer and
the interaction classifier, i.e., (FΘ1(·),FΘ2(·),FΘ4(·),FΘ5(·));

• Stage 3: Full model training on mixture data.

We show the training algorithm in Algorithm. 1.
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Algorithm 1 Multi-Stage Training Process

1: Stage1: pre-training temporal model with Gaze annotation
2: Input: I1:T ; Labels: ggt

1:T

3: Parameters to learn: FΘ1(·),FΘ3(·),FΘ4(·)
4: Training Loss: L1 = λ1Lgaze + λ2Lsmooth

5: Stage2: interaction-aware training with gaze to interaction graph
6: Input: I1:T ; Labels: {gaze interaction category agt

1:T , bbox1:T ,Graph edges egtij }
7: Parameters to learn: FΘ1(·),FΘ2(·),FΘ4(·),FΘ5(·)
8: Training Loss: L2 = λ2Lsmooth + λ3LG + λ4Linteraction

9: Stage3: full model training
10: Input: mixture of gaze benchmark sequences and gaze interaction sequences (semi-

supervised)
11: Parameters to learn: FΘ1(·),FΘ2(·),FΘ3(·),FΘ4(·),FΘ5(·)
12: Training Loss: L3 = λ1Lgaze + λ2Lsmooth + λ3LG + λ4Linteraction

Methods Gaze360 (frontal) Gaze360 (full)
RT-Gene Fischer et al. (2018) 12.26 -

Dilated-Net Chen and Shi (2018) 13.73 -
CA-Net Cheng et al. (2020) 12.26 -

Gaze360 Kellnhofer et al. (2019) 11.1 13.5
LAEO Kothari et al. (2021) 10.1 13.2

L2CS Abdelrahman et al. (2022) 10.41 -
Dyn-Gaze(ours) 10.03 *11.27

Table 1: Within-dataset evaluation on Gaze360 dataset.

4. Experiments

Datasets. We investigate model performance on three sequence-based benchmark datasets:
Gaze360Kellnhofer et al. (2019) , EyeDiap Funes Mora et al. (2014) and VACATION Fan
et al. (2019). 1) Gaze360 contains in-the-wild human images captured by a 360◦ camera
with a wide range of horizontal gaze direction. Large amount of images in Gaze360 is quite
blurred or self-occluded due to large head pose, hence making it a challenging dataset for
detecting eye gaze direction. Only one subject appears in the scene for every sequence.
2) EyeDiap is a video-based dataset recording a participant head and eye movement when
tracking a static or a moving target. Only one subject appears in the scene for every
video. 3) VACATION is a video dataset that covers diverse social scenes and complete gaze
communication annotations. For every video, there can be multiple people communicating
with each other or looking at different objects. The bounding box for the subjects/objects
appeared in the scene are given.

Implementation Details We set the sequence length T = 7 and sample short sequences
by sliding window on a video. The number of transformer layers Nd = 2. The hyperparam-
eter α = 4 in Eq. (2), the training weights are set as λ1 = 5, λ2 = 0.10, λ3 = 1, λ4 = 2. We
train 80 epoches in Stage 1, 50 epoches in Stage 2 and 50 epoches in Stage 3.
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Figure 6: Visualization of predicted gaze direction and gaze interaction probability. Three
people “Potter”, “Hermione”, “Ron” are interacting in the scene. Row-a: the
predicted gaze from the pre-trained gaze estimator (without involving interaction
information in training). Row-b: predicted gaze from fine-tuned gaze estimator
with interaction labels. Row-c: the Human Interaction Graph constructed from
the predicted gaze. Row-d: the predicted probability of interaction class for
Node H.

4.1. Within-Dataset Evaluation

Gaze estimation To prove that our proposed geometric constraints improve gaze es-
timation performance, we first perform within-dataset evaluation on Gaze360 and Eye-
Diap, as shown in Table 1. We compare our method, the Gaze-Geo and UGaze-Geo,
with SOTA learning-based methods, including RT-Gene (Fischer et al. (2018)), Dilated-
Net (Chen and Shi (2018)), CA-Net (Cheng et al. (2020)), Gaze360 (Kellnhofer et al.
(2019)), LAEO (Kothari et al. (2021)) and L2CS Abdelrahman et al. (2022). On Gaze360
we use the official train-val-test set division and present the evaluation results on different
ranges of gaze directions, including frontal faces (column 2 in Table 1) and all faces (col-
umn 3 in Table 1). As we know, LAEO Kothari et al. (2021) only consider the ”looking
at each other” constraints, which is one type of the gaze interactions. Our model considers
multiple types of gaze communication activities and the dynamic state transitions among
them. Our method outperforms other methods on Gaze360, especially on the full range of
evaluation set Gaze360(full), our model reduces the gaze angular error by 14.6% compar-
ing with LAEO (Kothari et al.). Our dynamic gaze estimation model also improves the
performance on frontal poses slightly compared to Kothari et al. (2021).

Gaze Interaction Classification We also perform an evaluation of the gaze interaction
classification accuracy, compared with Fan et al. (2019). For the six types of gaze com-
munications, we calculate the precision and F1 score. As shown in Fig. 2, our model has
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Task single mutual avert refer follow share Avg.

Fan et al. (2019) 26.17 98.60 74.28 53.16 18.05 46.61 55.02
Dyn-Gaze (Ours) 38.12 90.27 68.79 55.67 40.12 54.50 57.92

Table 2: F1-score of gaze communication prediction on VACATION dataset.

bettwe performance on the task of classifying gaze interactions between two subjects. In
terms of F1 score, our dynamic gaze model improves the prediction accuracy by 2.8% on
average compared to Fan et al. (2019). In addition, we can also observe the advantages of
utilizing gaze direction directly for analyzing specific gaze interactions, such as “single” ((↑
11.95%) ), “follow” (↑ 22.07%) , and “share” (↑ 7.89%) . In Fig. 6, we show an example of
gaze & interaction prediction on a test video of VACATION dataset. We compare the gaze
direction before & after applying the interaction-based fine-tuning and we can see evident
improvement in the qualitative results. We also show the constructed Human Interaction
Graph using the gaze direction, as described in Eq. 3.

4.2. Cross-Dataset Evaluation

We also conduct a cross-dataset experiment to elaborate that, by modeling the spatial
gaze relationships and temporal dependency, our gaze estimator is robust and have better
generalization ability under large data difference. Following the cross-data settings adopted
in existing works PureGaze Cheng et al. (2022) and RAT Bao et al. (2022), we train our
model on Gaze360 and ETH-XGaze and then evaluate on EyeDiap. In Table 3 we compare
the performance of our model with SOTA gaze estimation methods, including RT-Gene,
Dilated-Net, CA-Net, FullFace, Gaze360, PureGaze and RAT.

As shown in Table 3, our model can achieve SOTA cross-dataset performance when
testing on new video dataset. Compared to the dynamic model Gaze360 (Kellnhofer et al.
(2019)) that only predicts the gaze for the central frame, our model can significantly reduce
the gaze error on EyeDiap dataset by 57.8%. Compared to the 2D data augmentation
method Bao et al. (2022), our gaze model benefit from the spatial constraints constructed
based on the subject interactions, especially when one subject is fully occluded due to large
head pose. Our model outperforms Bao et al. (2022) by reducing the cross-dataset gaze
error by 5.9%.

4.3. Ablation Study

We perform an ablation study to validate the effectiveness of our training algorithm for each
stage for gaze estimation. In Table. 4, we analyze the within- and cross-dataset performances
with different combinations of spatial and temporal modules. We explore five different
combinations listed as below.

• Static Model: ResNet feature extractor (FΘ1) + FC layer(FΘ4), trained on gaze
images.

• Static + Interaction: ResNet feature extractor (FΘ1) + Structure-aware Transformer(FΘ2)
+ Interaction classifier(FΘ5) + FC layer(FΘ4), trained on gaze images and gaze in-
teraction images.
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Methods Gaze360 −→ EyeDiap

FullFace Zhang et al. (2017) 14.42
RT-Gene Fischer et al. (2018) 38.60

Dilated-Net Chen and Shi (2018) 23.88
Gaze360 Kellnhofer et al. (2019) 11.86

CA-Net Cheng et al. (2020) 31.41
PureGaze Cheng et al. (2022) 9.32

Res-Net18+RAT Bao et al. (2022) 7.10

Dyn-Gaze (ours) 6.68

Table 3: Cross-dataset evaluation from Gaze360 to EyeDiap and comparision with SOTA
learning-based methods

Models
Within-data Cross-data

Gaze360 (frontal) Gaze360 (full) EyeDiap Gaze360 −→ EyeDiap

Static Model 10.54 13.55 4.89 7.23
Static + Interaction 10.25 12.18 4.86 7.31
Interaction only 28.8 30.12 15.15 -

Temporal 10.24 12.98 4.44 6.60
Temporal + Interaction (Full) 10.03 11.27 4.25 6.68

Table 4: Ablation study of gaze angular errors when applying different constraints and w/o
uncertainty modeling during training. The last two rows are corresponding to
Gaze-Geo and UGaze-Geo.

• Interaction only: ResNet feature extractor (FΘ1) + Structure-aware Transformer(FΘ2)
+ Interaction classifier(FΘ5) + FC layer(FΘ4), trained on gaze interaction images
(weakly supervised training).

• Temporal: ResNet feature extractor (FΘ1) + Autoregressive Transformer(FΘ3) + FC
layer(FΘ4), trained on gaze sequences.

• Temporal + Interaction: our final model, trained on gaze sequences and gaze interac-
tion sequences.

The Static model is the baseline model trained with full-supervision on gaze benchmark
dataset, without considering the spatial interaction or temporal dependency. By comparing
Static Model with Static + Interaction model, we show that utilizing multi-subject gaze
interaction can help to refine the gaze estimator, especially for the full pose cases. However,
only using gaze interaction labels (without any gaze label supervision) will fail to gener-
ate reliable gaze estimation results. By comparing the Static Model with the Temporal
Model, we show the effectiveness to consider the temporal dependency of gaze movement,
as we can observe significant performance improvement on both within- and cross-dataset
experiments. Our final model that learns interaction dependency and temporal depen-
dency achieves the best within dataset performances on both Gaze360 and EyeDiap with
significant improvement compared to the Static Model.
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4.4. Conclusion

In this paper we propose a framework to perform interaction-aware dynamic gaze estimation
in videos, which utilize the gaze communication labels among multiple subjects/objects and
the temporal dependency of gaze movement to refine the gaze estimator. Specifically, we
define a direct mapping from predicted 3D gaze direction to human gaze interaction types
and construct a Human Interaction Graph based on gaze and bounding box locations. We
perform the dynamic gaze prediction in an auto-regressive manner, by modeling the future
gaze distribution conditioned on current gaze and human interaction graph structure. Our
model fully utilize the dataset without gaze annotations and propose a multi-stage training
algorithm to alternately updating the temporal gaze prediction module and gaze interaction
module. In terms of performances, we proved that by introducing the interaction constraints
and temporal constraints, our model can be significantly improved compared to the static
model on video dataset.
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