Label Error Correction and Label Generation Through Label Relationships

Zijun Cui¹, Yong Zhang², Qiang Ji¹

¹Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, ²Tencent AL Lab ¹{cuiz3, jiq}@rpi.edu, ²zhangyong201303@gmail.com

Overview

- This work is aimed at improving the quality of the label annotations for multi-label supervised learning
- We propose to capture and leverage label relationships at different levels to improve annotation quality and to generate new labels
- A Bayesian Network(BN) is learned to capture the relationships. A MAP inference is then performed for error correction and label generation
- Experimental results demonstrate the effectiveness in improving data annotation and in generating new labels

Backgrounds

Experiments

- Two levels of labels, including object-level labels and property-level labels are considered
 - Object-level labels: characterize overall appearance of the object
 - Property-level labels: describe specific local object properties

- Probabilistic Relationships among expressions and facial action units

Figure 1: Illustration of labels of different levels. Image is from CK+.

• Label error is defined as the discrepancy between the actual labels and the assigned labels

- Factors contribute to incorrect annotations:
 - Imperfect evidence
 - Confusion among similar patterns
 - Perceptual errors, in particular for fine grain level annotations

Figure 2: Instances of AU24(Lip Pressor). (a) A positive template of AU24 defined in FACS. (b) A positive instance Of AU24 in CK+. (c) A negative instance of AU24 in CK+. (c) is a label error.

Label Relationship Modeling and Inference

Bayesian Network(BN): A Bayesian Network(BN) is a direct acyclic graph(DAG) G = (V, E), where V denotes nodes and E for edges. The parameters of BN are used to represent the conditional probability distribution of each node given its parents.

Figure 3: (a) Structure of the learned BN on CK+; (b) Structure of the learned BN on BP4D

Property-level Label Classification

Facial Action Unit Recognition

Method		AU1	AU2	AU6	AU7	AU9	AU12
	NLB	0.936	0.912	0.787	0.480	0.908	0.897
LR	MAPLB	0.936	0.911	0.804	0.701	0.923	0.913
	NLB	0.935	0.890	0.787	0.450	0.899	0.891
SVM	MAPLB	0.932	0.899	0.803	0.674	0.899	0.910
Method		AU17	AU23	AU24	AU25	MEAN	
LR	NLB	0.873	0.585	0.525	0.947	0.785	
	MAPLB	0.866	0.613	0.681	0.948	0.830	
SVM	NLB	0.877	0.611	0.386	0.950	0.767	
	MAPLB	0.881	0.629	0.649	0.946	0.822	

Table 1: Comparison of the improved and the original labels for AU recognition performance on CK+

• Attribute Prediction

Method	NLB	MAPLB
MMI	0.743	0.753

Table 2: Cross-database annotation generation

Evaluation Without GT Annotations

Prediction Uncertainly

Data	aset	AU1	AU2	AU6	AU7	AU9	AU10	AU12
	NLB	0.181	0.181	0.313	0.317	0.085	-	0.130
CK+	MAPLB	0.136	0.147	0.074	0.116	0.081	-	0.074
	NLB	0.300	0.298	0.303	0.284	-	0.299	0.221
BP4D	MAPLB	0.235	0.212	0.132	0.102	-	0.132	0.132
Data	aset	AU14	AU15	AU17	AU23	AU24	AU25	MEAN
CK+	NLB	-	-	0.257	0.126	0.151	0.196	0.194
	MAPLB	-	-	0.131	0.109	0.109	0.124	0.110
BP4D	NLB	0.446	0.279	0.329	0.293	0.232	-	0.299
	MAPLB	0.119	0.213	0.246	0.246	0.205	-	0.179

rnin

ŬC

Let $Y = [Y_1, Y_2, ..., Y_N]$ and Z denote the property-level labels and the object-level label respectively. We want to learn a BN G to capture dependencies between Y and Z as well as relationships among Ys.

Structure Learning: apply the Bayesian Information Criterion(BIC) score function $Score(G:D) = \log P(D|\theta,G) - \frac{d(\theta)}{2}\log N$

where G denotes the direct acyclic graph, and θ denotes probability parameters. The Branch and Bound algorithm is adopted to search for the optimal structure G^* that maximized the BIC score.

Parameter Learning: the Bayesian method is employed

 $\theta^* = E_{P(\theta|G,D,\alpha)}[\theta] = \int \theta P(\theta|G,D,\alpha) d\theta$

with an analytical closed-form solution.

We propose a constrained MAP inference to obtain the largest subset of property-level labels, whose relationships are most consistent and stable for a given object-level label Z

Constrained Maximize A Posterior(MAP) inference:

 $Y_Z'^* = \underset{Y'_{max} \subseteq Y}{\operatorname{argmax}} P(Y_{max}' | Z, G^*, \theta^*) \ge \eta$

where Y'_{max} represents the maximum subset of **Y**. $P(Y'_{max}|Z, G^*, \theta^*)$ is the probability of the property-level labels Y', given the object-level label Z, the BN structure G* and the parameter θ^* . η is a pre-defined confidence level.

The constrained MAP inference is performed for each value of the property-level label Z, yielding Y'_{z} , i.e., the optimal property-level label relationships for each object level label value. Table 3: Comparison of the improved and the original labels for AU recognition uncertainty

• Surrogate task through expression recognition

Met	hod	LR	SVM	
	NLB	0.820	0.825	
CK+	MAPLB	0.885	0.886	
	NLB	0.425	0.426	
BP4D	MAPLB	0.457	0.465	

Table 4: Evaluation through expression recognition

• We learn the BN structure and parameters on the CK+ database

• The learned BN is used to generate AU labels for MMI database given expressions

Met	hod	LR	SVM	
	NLB	0.465	0.482	
MMI	MAPLB	0.514	0.532	

Table 5: Cross-database annotation generation

Contribution of object-level labels

Label Correction and Generation

- $Y_Z^{\prime*}$ represents the most stable and consistent property-level label relationships. • For a dataset with existing annotations, correction is performed if sample labels
- are inconsistent with $Y_Z^{\prime*}$.
- For a dataset with missing property-level annotations, we apply $Y_Z^{\prime*}$ to produce property-level labels for each sample, given its object-level label value z.
- We compare the performance with • original noisy labels • improved labels by using relationships among AUs and expressions • Improved labels by using relationships among AUs only • Object-level labels are important for effective label correction

*The work is supported in part by DARPA grant FA, and in part by the US National Science Foundation award CNS #1629856