Knowledge Augmented Deep Neural Networks for Joint Facial Expression and Action Unit Recognition

Introduction

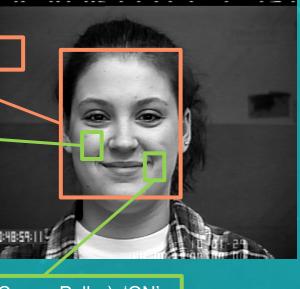
Tasks:

- Facial Expression Recognition(FER)
- Action Unit(AU) Detection

□ Motivations:

Expression: 'HAPPY'

AU6(Cheek Raiser): 'ON'



AU12(Lip Corner Puller): 'ON'

Figure: An example from CK+ dataset[1]

- Facial expression and AUs are strongly correlated
- Generic knowledge on expression-AUs relationships is available

Contributions:

- A *knowledge model* encoding the generic knowledge systematically
- A deep learning framework for *joint* facial expression and AU recognition

Generic Knowledge as Probabilities

-- on expression-AUs probabilistic relationships

□ Notation:

- Expression $X^e = \{1, 2, ..., E\}$ E is the total number of expressions
- AUs $X_m^{au} = \{X_1^{au}, X_2^{au}, \dots, X_M^{au}\}$ M is the total number of AUs and $X_m^{au} = \{0,1\}$

Expression-dependent single AU probabilities

• AU4 is a primary AU given Anger expression

$$p(X_4^{au} = 1 | X^e = Anger) > p(X_4^{au} = 0 | X^e = Anger)$$

Expression-dependent joint AU probabilities

• AU6 and AU12 are positively correlated given Happy expression $p(X_6^{au} = 1 | X_{12}^{au} = 1, X^e = Happy) > p(X_6^{au} = 0 | X_{12}^{au} = 1, X^e = Happy)$ $p(X_6^{au} = 1 | X_{12}^{au} = 1, X^e = Happy) > p(X_6^{au} = 1 | X_{12}^{au} = 0, X^e = Happy)$

Expression-independent joint AU probabilities

• AU1 and AU2 are positively correlated $p(X_1^{au} = 1 | X_2^{au} = 1) > p(X_1^{au} = 0 | X_2^{au} = 1)$ $p(X_1^{au} = 1 | X_2^{au} = 1) > p(X_1^{au} = 1 | X_2^{au} = 0)$

Zijun Cui (cuiz3@rpi.edu) Rensselaer Polytechnic Institute

Yuru Wang

Northeast Normal University

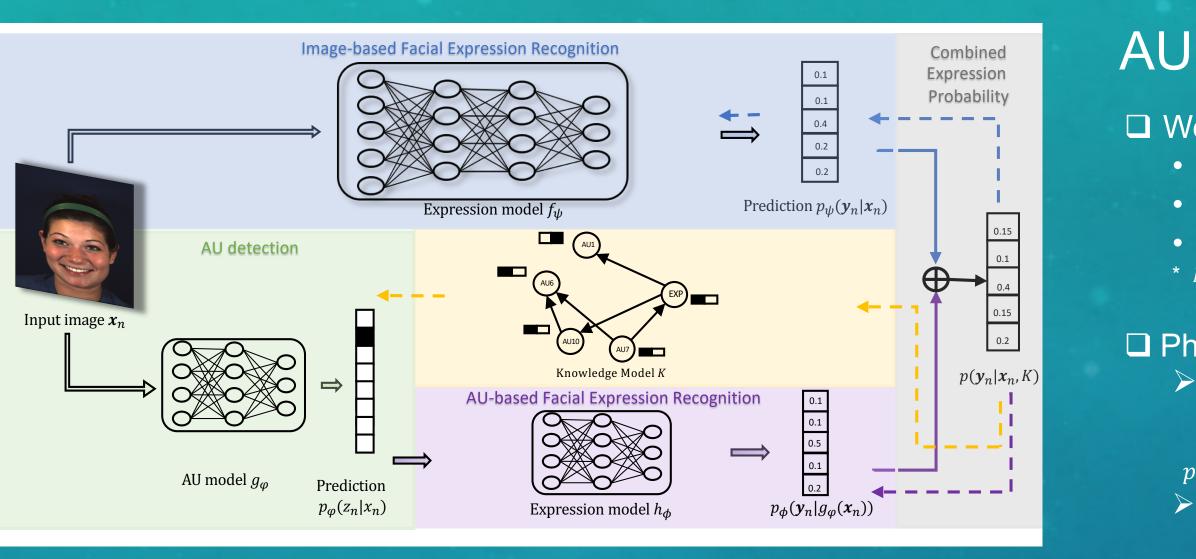


Figure: Overview of the proposed framework

Encoding of the Generic Knowledge -- Bayesian Network(BN) Learning with Probability Constraints

Definitions of the Bayesian Network

• Conditional probabilities are parameterized with the regression equations

 $p(X_{i} = k | \pi(X_{i})) = \sigma_{M}(\sum_{j=1}^{J} w_{ijk} \pi_{j}(X_{i}) + b_{ik})$

where weights $w = \{w_{ijk}\}$ and bias $b = \{b_{ik}\}$ are to be learned

• A(w) is the weighted adjacency matrix defining the structure[2]: $A_{ij} = \sum_{k=1}^{K} ||w_{ijk}||_2^2$ • The constraint of Directed Acyclic Graph(DAG)[3]: $tr(e^{A(w) \circ A(w)}) - N = 0$

Probability constraints derived from the generic knowledge

• Strictly inequality constraints: $\{g_i(w, b) < 0\}_{i=1}^G$ To better handle g_i , we define positive margin with additional variable s_i

The strictly inequality constraints become equality constraints: $g_i(\mathbf{w}, \mathbf{b}) + e^{s_i} = 0, i = 1, ..., G$

• Inequality constraints: $\{l_i(\boldsymbol{w}, \boldsymbol{b}) \leq 0\}_{i=1}^L$

Equality constraints: $\{h_k(\boldsymbol{w}, \boldsymbol{b}) = 0\}_{k=1}^H$

• For example:

 $g_i(\mathbf{w}, \mathbf{b}) = p(X_1^{au} = 0 | X_2^{au} = 1; \mathbf{w}, \mathbf{b}) - p(X_1^{au} = 1 | X_2^{au} = 1; \mathbf{w}, \mathbf{b}) < 0$

\Box A penalty function f(w, b; s) measures the violation of constraint

$$F(\mathbf{w}, \mathbf{b}; \mathbf{s}) = \frac{1}{G} \sum_{i=1}^{G} \log((g_i(\mathbf{w}, \mathbf{b}) + e^{s_i})^2 + 1)$$

$$+\frac{1}{L}\sum_{j=1}^{L}\log(\left(l_{j}^{+}(\boldsymbol{w},\boldsymbol{b})\right)^{2}+1)+\frac{1}{K}\sum_{k=1}^{K}\log(\left(h_{i}(\boldsymbol{w},\boldsymbol{b})\right)^{2}+1)$$

with weights w, bias b and current margins e^s . And $l_i^+ = \max\{0, l_i\}$ • f(w, b; s) = 0 if and only if all the constraints are satisfied

A Constrained Optimization Approach for BN learning

$$w^*, b^*, s^* = \arg\min_{w,b,s} f(w, b; s) + \gamma ||w||_1 - \mu ||s||_2^2$$

s.t.tr $(e^{A(w) \circ A(w)}) - N = 0$

where $||w||_1$ penalizes the density of the structure, and $||s||_2^2$ encourages the bigger positive margins

□ The learned Bayesian Network serves as our knowledge model K

[1] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews. The extended cohn-kanadedataset (ck+): A complete dataset for action unit and emotion-specified expression. CVPR 2010 [2] Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric Xing Learning sparse nonparametricdags. InInternational Conference on Artificial Intelligence and Statistics, 2020 [3] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing Dags with no tears: Continuousoptimization for structure learning. InAdvances in Neural Information Processing Systems, 2018

Tengfei Song Southeast University

Qiang Ji (jiq@rpi.edu) Rensselaer Polytechnic Institute

AU detection model and FER models

□ We learn AU detection model and FER models with:

• The training images x_n , n = 1, ..., N

• The GT expression labels y_n^{GT} , n = 1, ..., N

• The knowledge model *K*

* *N* is the total number of training samples

□ Phase 1: Initialization of AU detection and FER models \succ Weakly supervised AU detection model g_{ω}

 $\varphi^* = \operatorname{argmin}_{\varphi} \frac{1}{N} \sum_{n=1}^{N} E_{p(\boldsymbol{z}_n | y_n^{GT}, K)} l(\boldsymbol{z}_n, g_{\varphi}(\boldsymbol{x}_n))$

 $p(\mathbf{z}_n|y_n^{GT}, K)$ is the probability of AU configuration \mathbf{z}_n computed from the BN model and the y_n^{GT} Facial Expression Recognition(FER) Models

- Image-based FER model f_{ψ} : $\psi^* = \operatorname{argmin}_{\psi} \frac{1}{N} \sum_{n=1}^{N} l(y_n^{GT}, f_{\psi}(\boldsymbol{x}_n))$
- AU-based FER model h_{ϕ} : $\phi^* = \operatorname{argmin}_{\phi} \frac{1}{N} \sum_{n=1}^{N} l(y_n^{GT}, h_{\phi}(g_{\phi}(\boldsymbol{x}_n)))$

where $g_{\varphi}(x_n)$ is the output of the AU model g_{φ} * *l* is the cross-entropy loss

□Phase 2: Integration among AU and Expression Models \succ The combined expression probability

 $p(\mathbf{y}_n | \mathbf{x}_n, K) = w_1 p_{\psi}(\mathbf{y}_n | \mathbf{x}_n) + w_2 p_{\phi}(\mathbf{y}_n | g_{\varphi}(\mathbf{x}_n), K)$ $p_{\psi}(\mathbf{y}_n | \mathbf{x}_n)$ is the output of f_{ψ} and p_{ϕ} is the output of h_{ϕ} . w_1 , w_2 are the weights

> Expression-augmented AU detection model

 $\varphi^* = \operatorname{argmin}_{\varphi} \frac{1}{N} \sum_{n=1}^{N} E_{p(\boldsymbol{z}_n | \boldsymbol{y}_n^{GT}, K)} l(\boldsymbol{z}_n, \boldsymbol{g}_{\varphi}(\boldsymbol{x}_n)) + \lambda_1 E_{p(\boldsymbol{y}_n | \boldsymbol{x}_n, K)} E_{p(\boldsymbol{z}_n | \boldsymbol{y}_n, K)} l(\boldsymbol{z}_n, \boldsymbol{g}_{\varphi}(\boldsymbol{x}_n))$

Knowledge-augmented image-based FER model

 $\psi^* = \operatorname{argmin}_{\psi} \frac{1}{N} \sum_{n=1}^{N} l(y_n^{GT}, f_{\psi}(\boldsymbol{x}_n)) + \lambda_2 E_{p(\boldsymbol{y}_n | \boldsymbol{x}_n, K)} l(\boldsymbol{y}_n, f_{\psi}(\boldsymbol{x}_n))$

* *l* is the cross-entropy loss. λ_1 , λ_2 are the hyper-parameters to be tuned

Experiments

-- comparisons with state-of-the-art models

Table 6: Comparison to the SoAs on AU detection

Action Unit Detection

Supervision	Method	BP4D	CK+	MMI
Supervised	HRBM[47]	.67	.79	.56
Supervised	MC-LVM ^[8]	-	.80*	-
Supervised	JPML[56]	.68*	.78*	-
	AU R-CNN[30]	.63*	-	-
	HTL[40]	.50	.66	.42
Weakly-supervised	LP-SM[54]	.55	.72*	.50
	TCAE ²²	.56*	-	-
	AUD-BN(baseline)	.56	.69	.47
	AUD-EA(gBN)	.57	.74	.58

Table 8: Comparison with SoA FER methods

Methods	BP4D	CK+	MMI	EmotioNet
STM-Explet ^[27]	-	94.19*	75.12*	-
DTAGN(Joint)[12]	-	97.25*	70.24*	-
DeRL[50]	-	97.30*	73.23*	-
ILCNN[3]	-	94.35*	70.67*	-
DAM-CNN[49]	-	95.88*	-	-
FMPN-FER[4]	60.16	96.53	82.74*	84.88
DeepEmotion[32]	79.54	95.23	72.66	81.51
FER-I(baseline)	61.68	94.29	67.35	80.85
FER-IK(gBN)	83.82	97.59	84.90	95.55

• Facial Expression Recognition(FER)