Type-augmented Relation Prediction in Knowledge Graphs

Zijun Cui (*cuiz3@rpi.edu*) Rensselaer Polytechnic Institute

Pavan Kapanipathi (kapanipa@us.ibm.com) IBM reserach

Motivation

Leverage prior type information to improve relation prediction performance

Relation Prediction in Knowledge Graphs: o (Helen Mirren, ?, Chiswick)

Prior Knowledge: type information of entities/relations o Helen Mirren is a *person/award_winner/actor/* o (*Person*, place of birth, *Location*)

Overview

Figure: Overview of the proposed TaRP model

Kartik Talamadupula (krtalamad@us.ibm.com) IBM research

Tian Gao (tgao@us.ibm.com) IBM research

Type Information Encoding

- □ We encode the type information as prior probabilities by considering hierarchical structures among types
- □ Type sets usually have an underlying hierarchy, such as the structure among types {*actor, award_winner, person*} :

 $H_1 = /person/actor$ H₂ = /person/award_winner $H_3 = /person$

□ <u>Hierarchy-based type weights</u>

- We define hierarchy-based type weights to assign different weigh types based on their locations in the hierarchy
- We hypothesis that types of more specific semantic meaning are i helpful, and higher weights are automatically assigned to these ty
- For example, given three hierarchies H_1 , H_2 and H_3 , we have type weights:

 $w_e(person) = \min\{0.27, 0.27, 1\} = 0.27$ $w_{\rho}(actor) = 0.73$

 $w_e(award_winner) = 0.73$

Type-based prior probability

- Given a triple $(e_h, r, e_t) \in \mathcal{G}$, we define two similarity score $s(e_h, r)$ and $s(e_t, r)$ based on the correlation between type sets
- The prior probability $p(r|\mathcal{T}(e_h, e_t, \mathcal{R}))$ is then defined as

$$p(r|\mathcal{T}(e_h, e_t, \mathcal{R})) = \frac{s(e_h, r)s(e_t, r)}{\sum_{r' \in \mathcal{R}} s(e_h, r')s(e_t, r')}$$

where $\mathcal{T}(e_h, e_t, \mathcal{R})$ is the type information for entity pair (e_h, e_t) and the relation set \mathcal{R}

• The higher the correlation between type sets, the higher the prior probability of the relation

Embedding-based Models

- Embedding-based models learn representations of relations and entities by minimizing the distance $f_r(e_h, e_t)$ in a continuous embedding space
- Given the learned embeddings, we compute the likelihood by taking the exponential

 $p(e_h, e_t | r) = \exp(f_r(e_h, e_t))$

□ The lower the distance, the lower the likelihood

Qiang Ji (jiq@rpi.edu) Rensselaer Polytechnic Institute

Type Information Integration

Type Information Integration is performed based on probabilities \Box For each pair of entities (e_h, e_t) , the posterior probability is $p(r|e_h, e_t, \mathcal{T}(e_h, e_t, \mathcal{R})) \propto p(e_h, e_t|r)p(r|\mathcal{T}(e_h, e_t, \mathcal{R}))$

Experiments

Evaluation of the TaRP model

Baseline 1: embedding-based model trained on observed triples Baseline 2: embedding-based model trained on (observed triples + type triples)

	Models		FB15K			YAGO26K-906			DB111K-174		
ts to			MR	Hits@1	Hits@10	MR	Hits@1	Hits@10	MR	Hits@1	Hits@10
	Embedding- based model	TransE	3.64	76.50	92.30	1.12	90.70	99.92	4.76	66.60	86.70
nore		RotatE	2.38	80.20	97.80	1.10	92.84	99.90	4.53	65.90	93.80
/pes		QuatE	4.01	82.20	94.90	1.33	91.65	98.96	8.56	58.60	88.90
	Embedding- based model	TransE(w/Type)	3.32	79.37	91.56	1.12	90.70	99.93	4.16	67.64	91.91
е	(trained with type triples)	RotatE(w/Type)	3.67	73.63	96.44	1.08	93.31	99.93	3.47	70.08	96.42
		QuatE(w/Type)	3.98	80.82	92.97	1.32	91.98	99.09	7.63	60.49	89.14
	TaRP	TaRP-T	1.84	88.90	99.00	1.10	90.80	99.98	1.61	74.80	99.40
		TaRP-R	1.16	92.91	99.84	1.08	92.84	99.98	1.52	76.50	99.50
		TaRP-Q	1.64	91.60	99.50	1.14	92.93	99.79	1.56	76.60	99.40

Compare to SoTAs

FB15K	MR	Hits@1	Hits@10
DKRL(CNN)+TransE (Xie et al. 2016)	2.03*		90.8*
TKRL(RHE) (Xie, Liu and Sun 2016)	1.73*	92.8*	
SSP(Std.) (Xiao et al. 2017)	1.22*		89.2*
SSP(Joint) (Xiao et al. 2017)	1.47*		90.9*
TransT (Ma et al. 2017)	1.19*		94.1*
TaRP-R	1.16	92.9	99.8

FB15K-237	MR	Hits@1	Hits@10	
HAKE(Zhang et al. 2020)	1.85	92.85	99.13	
TaRP-R	1.19	94.25	99.79	
YAGO26K-906	MR	Hits@1	Hits@10	
JOIE(Hao et al. 2019)	1.47	90.1	97.1	
TaRP-R	1.08	92.8	99.9	
DB111K-174	MR	Hits@1	Hits@10	
JOIE(Hao et al. 2019)	2.22	71.8	89.6	
TaRP-R	1.52	76.5	99.5	

Conclusions

- We achieve significantly better performance by leveraging type information compared to SoTAs on four benchmark datasets
- Our proposed approach is effective in integrating type information
- In the paper, we also show that our method is more data efficient. Through cross-dataset evaluation, we show that type information extracted from a specific dataset can generalize well to different datasets

hhh