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Abstract

Knowledge graphs (KGs) are of great importance to many
real world applications, but they generally suffer from incom-
plete information in the form of missing relations between
entities. Knowledge graph completion (also known as rela-
tion prediction) is the task of inferring missing facts given
existing ones. Most of the existing work is proposed by max-
imizing the likelihood of observed instance-level triples. Not
much attention, however, is paid to the ontological infor-
mation, such as type information of entities and relations.
In this work, we propose a type-augmented relation predic-
tion (TaRP) method, where we apply both the type informa-
tion and instance-level information for relation prediction.
In particular, type information and instance-level informa-
tion are encoded as prior probabilities and likelihoods of re-
lations respectively, and are combined by following Bayes’
rule. Our proposed TaRP method achieves significantly bet-
ter performance than state-of-the-art methods on four bench-
mark datasets: FB15K, FB15K-237, YAGO26K-906, and
DB111K-174. In addition, we show that TaRP achieves sig-
nificantly improved data efficiency. More importantly, the
type information extracted from a specific dataset can gener-
alize well to other datasets through the proposed TaRP model.

1 Introduction
Knowledge graphs (KGs) have gained significant popular-
ity due to successful applications to many different AI tasks
such as question answering (Huang et al. 2019), recommen-
dation (Wang et al. 2019a), dialogue generation (Xu, Bao,
and Zhang 2020), and natural language inference (Wang
et al. 2019b; Kapanipathi et al. 2020). However, KGs are
generally incomplete and suffer from missing relations be-
tween entities (Socher et al. 2013; West et al. 2014). The
task of knowledge graph completion or relation prediction
is aimed at tackling this issue, i.e., inferring missing facts
given existing ones. For example, in Figure 1, given two en-
tities, e.g., Helen Mirren and The Queen, the relation
prediction task predicts if those entities are connected by any
of the existing relations in the KG, e.g., actor.

Relation prediction methodologies are mostly based on
KG embeddings, and can primarily be categorized based
on the two kinds of information they use from KGs: (i)
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Figure 1: An example in a knowledge graph (KG).

Instance-level information, i.e., existing triples connect-
ing entities through relations, such as Helen Mirren
→ place of birth → Chiswick; and (ii) Ontolog-
ical information, i.e., meta information about entities and
relations, such as the type information of entities e.g.,
Helen Mirren is of types {actor, award winner, per-
son}. The majority of existing methods use merely instance-
level information for learning the embeddings (Sun et al.
2019; Zhang et al. 2019), while a few other models use both
instance-level information and ontological information (Hao
et al. 2019; Garg et al. 2019; Xie et al. 2016). Ontological
information such as type information can intuitively help re-
lation prediction, as most relations may connect two distinct
types of entities as domain and range. For example, the re-
lation place of birth always connects entities of type
person to entities of type location. Integrating such type in-
formation into instance-level training triples can benefit the
relation prediction task, in particular when there is a lack of
sufficient training data for learning embeddings.

A few existing embedding based models with such type
information integrated have shown success (Guo et al. 2015;
Xie, Liu, and Sun 2016; Ma et al. 2017; Jain et al. 2018;
Garg et al. 2019; Hao et al. 2019). However, these mod-
els integrate the ontological information through the model
training procedure for better learning the embeddings, and
are hence prone to the following drawbacks: (i) the type in-
formation is not explicitly differentiated from the instance-



level information, and a single set of model parameters are
learned by considering two kinds of information jointly; (ii)
the type information is tightly encoded into the objective
function, making the integration highly reliant on the train-
ing procedure and hence less flexible in augmenting new
embedding techniques. We refer to such integration proce-
dures as feature-level integration. Instead, we proposed an
effective decision-level integration: given the type informa-
tion and instance-level information encoded as prior proba-
bilities and likelihoods respectively, the proposed decision-
level integration combines the two kinds of information by
following Bayes’ rule.

In this paper, we propose a simple but effective framework
to augment existing embedding based models with type in-
formation. The contributions of our work are as follows:
• The proposed decision-level integration framework is

independent of the embedding based model, and can
be flexibly applied for augmenting different embedding
based models without additional training.

• The proposed type-augmented relation prediction (TaRP)
method achieves better relation prediction performance
than state-of-the-art models on three benchmark datasets.
Furthermore, we show that by incorporating the type in-
formation, TaRP has less dependency on training data,
and thus is more data efficient.

• We empirically demonstrate that the type information ex-
tracted from a specific dataset can generalize well to other,
different datasets through the proposed TaRP model.

2 Related Work
KG embedding based methods have been widely explored
for the KG completion task. The general methodology of
the embedding based method is to define a score function
for triples within a continuous embedding space. The score
function usually takes the form fr(eh, et), where eh, et are
head and tail entity embeddings. The score function mea-
sures the salience of a candidate triple (eh, r, et), and em-
beddings of entities and relations are learned by optimiz-
ing the score function. TransE (Bordes et al. 2013) repre-
sents entities and relations in d-dimensional vector space,
i.e., eh, er, r ∈ Rd and learns the embeddings by assuming
the translation principle eh+ r ≈ et with the proposed score
function fr(eh, et) = −||eh + r − et||. Along the lines of
the translation-based methods (first introduced by TransE),
many more advanced methods have been proposed, such
as TransH (Wang et al. 2014) and TransD (Ji et al. 2015).
More recently, RotatE (Sun et al. 2019) and QuatE (Zhang
et al. 2019) have been proposed by representing the entities
and relations using complex vectors. In addition, neural net-
works have also been introduced to learn robust embedding
based models, such as ConvE (Dettmers et al. 2018) and Hy-
pER (Balažević, Allen, and Hospedales 2019). These meth-
ods learn embeddings based on instance-level information
observed from existing triples, without considering the rich
ontological information that exists.

There are existing embedding based methods that explore
the usage of the ontological information. DistMult (Yang
et al. 2014) considered semantic similarity and associated

related entities using Hadamard product of embeddings.
Guo et al. (2015) proposed semantically smooth embedding,
where the type information is encoded as smoothness con-
straints. Ma et al. (2017) measured the type-based seman-
tic similarity between entities and relations, and that seman-
tic similarity served as the prior probability. Besides seman-
tic types of entities, underlying hierarchy structures among
types are also considered. Xie, Liu, and Sun (2016) pro-
posed type-specific entity projections by applying hierar-
chical type information, and devised type-embodied knowl-
edge representation learning (TKRL). Hao et al. (2019) in-
troduced instance-view KG and ontology-view KG, and the
hierarchy structures among types are explicitly represented
within the ontology-view KG. Universal embeddings are
then learned by considering the two types of KGs jointly.
Zhang et al. (2020b) proposed hierarchy-aware KG embed-
ding for link prediction. In addition, hierarchical type infor-
mation is extracted as logical propositions for the quantum
embeddings (Garg et al. 2019), and symbolic KGs are repre-
sented with embedding vectors in a logic structure preserv-
ing manner. Jain et al. (2018) considered type information
for entity prediction without explicit supervision. Besides
the type information, other ontological information is also
explored. DKRL (Xie et al. 2016) applies entity descrip-
tions. SSP (Xiao et al. 2017) uses the topic distribution of
entity descriptions to construct semantic hyperplanes. All
of these models integrate the ontological information into
the instance-level information at the feature-level in order to
learn the embeddings better.

Besides embedding based methods, path based methods
have also been proposed for the KG completion task (Lao,
Mitchell, and Cohen 2011; Das et al. 2016; Chen et al. 2018;
Zhang et al. 2020a). Lei et al. (2019) utilizes type semantics
from the relation to obtain attention that constrains the se-
mantics of the entity. Path based methods suffer from high
computational cost because of the path finding procedure; in
this paper, we focus on embedding based approaches.

3 TaRP: Type-augmented
Relation Prediction Model

In this section, we present our type-augmented relation pre-
diction (TaRP) framework, which augments existing em-
bedding models with type information from the knowledge
graph. Our framework consists of two components: (a) a
prior model where we encode the type information as prior
probabilities, detailed in Section 3.1; and (b) a likelihood
model based on existing instance-level information. Any ex-
isting embedding-based model can be applied as the likeli-
hood model, and we briefly describe three embedding-based
models used for our experiments in Section 3.2. The frame-
work integrates information from the prior and likelihood
models using Bayes’ rule (detailed in Section 3.3).

3.1 Type Information Encoding
In this section, we detail our approach to encoding the type
information as prior probabilities. We denote a knowledge
graph as G = {E ,R, T }, where E , R and T are the entity
set, the relation set, and the type set respectively. We first



define hierarchy-based type weights for each type of entities
e ∈ E and relations r ∈ R. For each triple (eh, r, et) in G,
we then define the type-based prior probability of relation
r conditioned on the entity pair (eh, et) by measuring the
semantic similarity, which is calculated based on the corre-
lation between the type sets of entities and relations.
Hierarchy-based type weights Type sets in most KGs have
an underlying hierarchy, such as the structure among types
{actor, award winner, person} in Figure 1. Such hierar-
chy can reflect the abstractness of a type. We hypothesize
that more specific types, e.g., actor, are more useful than
abstract types, e.g., person. In order to capture this intu-
ition and leverage a hierarchical structure, we use the no-
tion of hierarchy-based type weights. Given an entity e,
its type set is denoted as Te ⊂ T . A hierarchical struc-
ture among a subset of the possible types is of the format
H = /t1/t2/..../tk/.../tK

1, where tk ∈ Te, K is the total
number of hierarchy levels, tK is the most specific semantic
type, and t1 is the most abstract semantic type. Instead of
treating the types in the hierarchy H equally, we weight the
types based on their positions in the hierarchy. The weight
of type tk in relation to its position in the hierarchy H of
entity e is defined as:

wH
e (tk) =

exp(k − 1)∑K−1
j=0 exp(j)

(1)

Multiple hierarchical structures can exist for a given en-
tity, with each hierarchy including a subset of the possible
types. For example, in Figure 1, entity e = Helen Mirren
has three possible hierarchical structures among its types:
H1 = /person/actor, H2 = /person/award winner, and
H3 = /person. Type person is included in all three hi-
erarchies. Following Eq.1, we have wHi

e (person) = 0.27,
i = {1, 2}, and wH3

e (person) = 1. For each type t ∈
Te, we calculate its hierarchy-based weight as we(t) =
min(wH1

e (t), wH2
e (t), ..., wHN

e (t)), where N is the total
number of hierarchies containing type t. In the example
above, we thus have we(person) = 0.27, we(actor) = 0.73,
and we(award winner) = 0.73. For the type sets of rela-
tions, we consider both the head type set Tr,head and tail
type set Tr,tail, defined as:

Tr,head = ∪e∈Head(r)Te

Tr,tail = ∪e∈Tail(r)Te
(2)

where Head(r) = {eh|(eh, r, et) ∈ G,∀et ∈ E} indi-
cates the set of head entities of relation r; and Tail(r) =
{et|(eh, r, et) ∈ G,∀eh ∈ E} indicates the set of tail entities
of relation r. We then calculate the type weights as:

wr,head(t) =
∑

e∈Head(r)

we(t), for t ∈ Tr,head

wr,tail(t) =
∑

e∈Tail(r)

we(t), for t ∈ Tr,tail
(3)

Type-based prior probability Given a triple (eh, r, et) ∈
G, we measure the semantic similarity between entities and

1For each dataset, we process the hierarchy into such a format if needed (see Appendix B for the
details of the pre-processing))

relations based on the correlation between their type sets.
The similarity score s(·, ·) is calculated as

s(eh, r) =

∑
t∈Tr,head∩Teh

wr,head(t)∑
t∈Tr,head

wr,head(t)

s(et, r) =

∑
t∈Tr,tail∩Tet

wr,tail(t)∑
t∈Tr,tail

wr,tail(t)

(4)

where Tr,head ∩ Teh = {t|t ∈ Tr,head and t ∈ Teh} and
Tr,tail∩Tet = {t|t ∈ Tr,tail and t ∈ Tet}, and 0 ≤ s(·, ·) ≤
1. The prior probability p(r|T (eh, er,R)) is then defined
based on similarity scores as,

p(r|T (eh, et,R)) ,
s(eh, r)s(et, r)∑

r′∈R s(eh, r
′)s(et, r′)

(5)

where T (eh, et,R) denotes the type information related to
the entity pair (eh, et) and the relation set R. To obtain a
valid prior probability, for ∀r ∈ R, both the head type
set Tr,head and the tail type set Tr,tail are required to be
non-empty. For the cases where the type set of an entity
e is empty (e can be either head entity eh or the tail en-
tity et), i.e., Te = ∅, we assign uniform similarity scores,
i.e., s(e, r′) = 1,∀r′ ∈ R. Different from the existing
work (Ma et al. 2017) that measures semantic similarity by
treating each type equally, our type-based prior probabil-
ity with hierarchy-based type weights encodes not only the
type information, but also the underlying hierarchies among
types.
|Tr,head| or |Tr,tail| of relation r can be large containing

noisy types, which may weaken the relation prediction per-
formance of the prior model. To remove noisy types, we in-
troduce a threshold η. Type t ∈ Tr,∗ will be kept if

wr,∗(t) ≥Wmin
r,∗ + η × (Wmax

r,∗ −Wmin
r,∗ ) (6)

where Wmax
r,∗ and Wmin

r,∗ are the maximum and the min-
imum weight of the type set Tr,∗ respectively. If wr,∗(t)
is not sufficiently high (i.e., Eq.6 is not satisfied), type t
will be removed from Tr,∗ without further consideration.
∗ = {head, tail}. Threshold η varies across datasets, and is
chosen based on performance on the validation set.

3.2 Embedding Based Models
Embedding based models represent relations and entities in
a continuous embedding space. We denote the embedding
of the head and tail entities as eh and et respectively. The
embedding of relation r is r. A score function fr(eh, et) is
usually defined as a measurement of the salience of a triple
(eh, r, et). Embeddings are then learned by optimizing the
score function based on instance-level triples. We consider
three embedding based models:
• TransE (Bordes et al. 2013):

fr(eh, et) = −||eh · r− et|| (7)

where eh, er ∈ Rd and r ∈ Rd.
• RotatE (Sun et al. 2019):

fr(eh, et) = −||eh ◦ r− et|| (8)

where eh, er ∈ Cd and r ∈ Cd.



• QuatE (Zhang et al. 2019):

fr(eh, et) = −||eh ⊗
r
|r|
− et|| (9)

where eh, er ∈ Hd and r ∈ Hd.
The learned embeddings for the entities and relations from
these models therefore contain only instance-level informa-
tion without the type information. For each triple (eh, r, et),
we define the likelihood of relation based on their corre-
sponding embeddings as

p(eh, et|r) , exp(fr(eh, et)) (10)

It is intuitive that the likelihood of relation will be small with
a low score fr(eh, et).

3.3 Type Information Integration
The final step is to integrate the type information with
the instance-level information at the decision-level. Given
a triple (eh, r, et), we obtain the prior probability of rela-
tion r based on the type information, i.e., p(r|T (eh, et,R))
as described in Section 3.1. Next, we obtain the likelihood
of relation based on embeddings-based model that learns
from instance-level, i.e., p(eh, et|r) (Section 3.2). Combin-
ing them together, we obtain the posterior probability of re-
lation r by following the Bayes’ rule, i.e.,

p(r|eh, et, T (eh, et,R)) ∝ p(eh, et|r)p(r|T (eh, et,R))
(11)

The posterior probability p(r|eh, et, T (eh, et,R)) thus con-
tains both the type information and the instance-level infor-
mation. Our proposed decision-level integration is indepen-
dent of the embedding techniques. This is the prominent dif-
ferentiating factor compared to the existing works, e.g.,(Ma
et al. 2017; Xie, Liu, and Sun 2016), that tightly integrates
the type information at the feature-level (integrated in the
objective function) making it less flexible to evolving em-
bedding techniques.

4 Experiments
To evaluate the performance of our type-augmented relation
prediction (TaRP) approach, we first perform ablation stud-
ies on the prior model; and then evaluate the performance
of the TaRP model. We demonstrate the effectiveness of the
TaRP model by comparing it to three baseline embedding
based models: TransE, RotatE, and QuatE. In addition, we
show that by incorporating type information, TaRP is much
more data efficient than existing methods. Furthermore, we
demonstrate the generalization ability of type information.
In the end, we compare our approach to state-of-the-art mod-
els that also apply ontological information.

Datasets We consider three benchmark datasets for the
relation prediction task: FB15K (Bordes et al. 2013),
YAGO26K-906 (Hao et al. 2019) and DB111K-74 (Hao
et al. 2019). FB15K is a popular benchmark dataset for the
KG completion task, and its type information has been ex-
plored by most of the prior work, such as (Ma et al. 2017;
Guo et al. 2015; Xie, Liu, and Sun 2016). YAGO26K-906

and DB111K-906 are two very recent datasets containing
explicit ontological information, and have not been widely
considered by related work.

FB15K consists of triples extracted from the FreeBase
knowledge graph (Bollacker et al. 2008). The same type
information is applied as introduced in (Xie, Liu, and Sun
2016) for FB15K2. Both YAGO26K-906 and DB111K-
174 contain two types of KGs: instance KG and ontol-
ogy KG, which are connected to each other through type
links. The instance KGs of YAGO26K-906 and DB111K-
174 consist of triples extracted from the YAGO knowledge
graph (Rebele et al. 2016) and the DBpedia knowledge
graph (Lehmann et al. 2015) respectively; and are applied
for the relation prediction task. Type links and ontology KGs
are collected as type information (see Appendix B for the de-
tails of the pre-processing). Statistical information about the
three datasets is shown in Table 1.

Table 1: Statistics of dataset.

Dataset #Rel. #Ent. #Types #Train #Valid #Test
FB15K 1,345 14,951 663 483,142 50,000 59,071

YAGO26K-906 34 26,078 226 351,664 – 39,074
DB111K-174 298 98,336 242 592,654 – 65,851

On all three datasets, for each relation, the obtained head
type set and tail type set are non-empty. For each entity
from FB15K and DB111K-74, the type set is non-empty.
On YAGO26K-906, only 8,948 entities have non-empty type
sets. As a result, 4, 149(10.6%) testing triples have type in-
formation for both head and tail entities; 30, 839(78.9%)
triples have type information for only head entity or only
tail entity; and 4, 086(10.5%) triples don’t have type infor-
mation for both head and tail entities. For the cases where
the type set of entity e is empty (e can be either head entity
eh or tail entity et), we assign uniform similarity scores, i.e.,
s(e, r′) = 1,∀r′ ∈ R.
Evaluation protocol For each triple (eh, r, et) in the
testing set, we replace the relation r with every rela-
tion r′ ∈ R. We calculate the posterior probabilities
p(r′|eh, et, T (eh, et,R)) of all replacement triples and rank
these probabilities in descending order. We apply the filter
setting (Ma et al. 2017). Two standard measures are consid-
ered as evaluation matrices: mean rank (MR) and Hits@N .
A higher Hits@N and a lower MR mean better performance.
In all the experiments, we report both Hits@1 and Hits@10.
Experimental Settings TaRP has one hyper-parameter
threshold η. On each dataset, we select the threshold η from
{0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9} that achieves the best relation
prediction performance (Hits@1) on the validation set (See
Appendix A for detailed analysis of η). On FB15K and
YAGO26K-906, η = 0.1. On DB111K-174, η = 0. We re-
port the averaged size of type set over all the entities or re-
lations as shown in Table 23. For baseline embedding based
models, we directly reuse the best configurations provided
by previous studies (Sun et al. 2019; Zhang et al. 2019).

2The hierarchical type /common/topic is removed as this is applied to every entity.
3|Tr,head| and |Tr,tail| are calculated with optimal thresholds applied



Table 2: Averaged size of the type set.

Dataset Entity Relation
|Te| |Tr,head| |Tr,tail|

FB15K 12 20 19
YAGO26K-906 9 6 5
DB111K-174 2 7 12

4.1 Ablation Studies on the Prior Model
We perform ablation studies to show the effectiveness of: 1)
the hierarchy-based type weights; 2) the type information.

Effectiveness of hierarchy-based type weights To demon-
strate the effectiveness of the proposed hierarchy-based type
weights, we consider uniform weights for comparison, and
calculate the prior probabilities based on types with uni-
form weights. We compare the relation prediction perfor-
mance of the prior model with hierarchy-based weights to
the performance of the prior model with uniform weights.
Results are shown in Table 3 where the prior model with
hierarchy-based weights achieves much better performance
than the prior model with uniform weights, particularly on
FB15K and DB111K-174 datasets. These results empiri-
cally demonstrate the effectiveness of the hierarchy-based
type weights.

Table 3: Effectiveness of the hierarchy-based type weights.

Type weights FB15K YAGO26K-906
MR Hits@1 Hits@10 MR Hits@1 Hits@10

Uniform 26 4.95 43.88 3.92 71.85 88.75
Hierarchy-based 2.9 64.10 97.10 3.34 79.60 88.60

Type weights DB111K-174
MR Hits@1 Hits@10

Uniform 13.67 19.62 63.61
Hierarchy-based 2.6 55.00 96.60

Effectiveness of type information To study the effective-
ness of the type information, we evaluate the relation predic-
tion performance of the prior model by considering the type
information of 1) only head entity (H); 2) only tail entity
(T); 3) both head and tail entities (H+T). For YAGO26K-
906, only a subset of triples contain type information for
both head and tail entities (4, 149 triples), and hence we per-
form the evaluation on this subset for fair comparison. Re-

Table 4: Effectiveness of the type information.

Type Info. FB15K YAGO26K-906
MR Hits@1 Hits@10 MR Hits@1 Hits@10

H 23.2 8.00 46.90 4.2 56.20 86.30
T 20.3 9.00 50.20 2.5 65.20 95.70

H+T 2.9 64.10 97.10 1.7 71.40 99.40

Type Info. DB111K-174
MR Hits@1 Hits@10

H 8.9 7.00 70.80
T 12.5 19.70 62.10

H+T 2.6 55.00 96.60

sults in Table 4 shows that considering the type information
of head and tail entities jointly, the prior model achieves the

best performance. These results depict that both the type in-
formation of head and tail entities are effective in relation
prediction.

4.2 Evaluation of the TaRP Model
We evaluate the TaRP model by first comparing it to three
baseline embedding based models. In addition, we show the
data efficiency of the proposed TaRP model by reducing
the number of training triples. More importantly, we per-
form cross-dataset evaluation and empirically demonstrate
the generalization ability of the type information.

Comparisons to baseline models As introduced in Sec-
tion 3, we consider three baseline embedding based models:
TransE, RotatE, and QuatE. The embeddings of entities and
relations are obtained by directly running baseline models
with reported best hyper-parameter settings45. In addition, to
demonstrate the effectiveness of the proposed decision-level
integration, we enrich the existing training sets by adding
type information as addition training triples; and train the
embedding based models on enriched training sets for com-
parison. On YAGO26K-906 and DB111K-174, triples from
ontology KG and type links can be directly used as addi-
tional training triples. On FB15K, given an entity e and its
hierarchical type /t1/t2/.../tK , we collect type triples as
(e, r1, tK) with r1 = type and {(tk, r2, tk−1)}Kk=2 with
r2 = is a. The embedding based models trained on en-
riched training sets can thus learn embeddings based on both
existing triples and the type information. In other words, the
type information is fused with instance-level information at
the feature-level. We denote the embedding based models
learned from enriched training sets as: TransE(w/Type), Ro-
tatE(w/Type) and QuatE(w/Type). By combining the prior
model with three embedding based models separately, we
obtain three TaRP models: TaRP-T, TaRP-R, and TaRP-Q.
The results are shown in Table 5 (see Appendix C for addi-
tional results and analysis).

From Table 5, we can see that all three TaRP models
achieve performance improvement on all three benchmark
datasets compared to the corresponding baseline embedding
based models. In particular, on FB15K and DB111K-174,
the improvement is significant. For instance, TaRP-R ob-
tains 92.91% for Hits@1 on FB15K, achieving 12.71% im-
provement compared to RotatE. On the other hand, on both
YAGO26K-906 and DB111K-174, embedding based mod-
els trained on enriched training sets achieve improved per-
formance compared to baseline embedding based models.
However, for most of the embedding based models trained
on enriched training sets, the achieved performance im-
provement is not as significant as the improvement achieved
by the proposed TaRP model. TaRP models achieve over-
all better performance than the embedding based models
trained on enriched training sets. For example, on DB111K-
174, QuatE(w/Type) obtains 60.49% for Hits@1; though
higher than the 58.60% obtained by QuatE, this is still sig-
nificantly worse than the 76.60% obtained by TaRP-Q. In
addition, on FB15K, the embedding-based models trained

4https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
5https://github.com/cheungdaven/QuatE



Table 5: Evaluation of the Type-augmented Relation Prediction(TaRP) model

Method FB15K YAGO26K-906 DB111K-174
MR Hits@1 Hits@10 MR Hits@1 Hits@10 MR Hits@1 Hits@10

TransE 3.64 76.50 92.30 1.12 90.70 99.92 4.76 66.60 86.70
RotatE 2.38 80.20 97.80 1.10 92.84 99.90 4.53 65.90 93.80
QuatE 4.01 82.20 94.90 1.33 91.65 98.96 8.56 58.60 88.90

TransE(w/Type) 3.32 79.37 91.56 1.12 90.70 99.93 4.16 67.64 91.91
RotatE(w/Type) 3.67 73.63 96.44 1.08 93.31 99.93 3.47 70.08 96.42
QuatE(w/Type) 3.98 80.82 92.97 1.32 91.98 99.09 7.63 60.49 89.14

TaRP-T 1.84 88.90 99.00 1.10 90.80 99.98 1.61 74.80 99.40
TaRP-R 1.16 92.91 99.84 1.08 92.84 99.98 1.52 76.50 99.50
TaRP-Q 1.64 91.60 99.50 1.14 92.93 99.79 1.56 76.60 99.40

with type triples perform worse than the embedding-based
models trained without type triples. The reason may be that
type triples collected from FB15K can contain errors6 which
leads to decreased performance. Our proposed prior model
directly applies the type information, and hence errors intro-
duced by type triples do not affect the TaRP models.

These results show that by incorporating the type in-
formation, the TaRP model can always achieve better per-
formance with different baseline embedding based models.
More importantly, the TaRP models achieve overall better
performance than the embedding based models trained with
type triples, indicating that the proposed decision-level in-
tegration procedure is a more effective integration. In addi-
tion, through the proposed integration approach, the type in-
formation can be directly combined with embedding based
models without additional training.

Data efficiency of the TaRP model We consider the embed-
dings that are learned from a small subset of training triples.
Given insufficient training data, the quality of the learned
embeddings will be lower. We compare the TaRP model
where embeddings are learned from only a subset of training
triples to the embedding based model that is trained on com-
plete training sets. We perform this evaluation on FB15K
and DB111K-174. RotatE is applied as the baseline embed-
ding based model. We extract the subset of training triples
with respect to each relation individually. Results are shown
in Table 6. As shown, on FB15K, by integrating the type in-

Table 6: Data efficiency of the TaRP model(D:training data)

Method FB15K DB111K-174
MR Hits@1 Hits@10 MR Hits@1 Hits@10

RotatE(100% D) 2.38 80.20 97.80 4.53 65.90 93.80
TaRP-R(20% D) 1.90 83.20 99.20 2.17 63.40 97.60
TaRP-R(40% D) 1.74 85.90 99.60 1.78 70.90 98.70
TaRP-R(60% D) 1.73 84.90 99.70 1.62 74.80 99.10
TaRP-R(80% D) 1.71 85.50 99.70 1.55 76.00 99.40

formation, TaRP-R achieves better performance than RotatE
with only 20% of the training data. On DB111K-174, TaRP-
R achieves better performance with 40% of the training data.
These results show that TaRP achieves better performance
than the embedding-based model using much lesser train-
ing data. By leveraging type information, TaRP has lesser
dependency on the data, i.e., is more data efficient.

6For example, for type /book/author, the collected type triple (author, is a, book) is not true.

Cross-dataset evaluation of the TaRP model To demon-
strate the generalization ability of the type information, we
perform cross-dataset evaluation. In particular, the type in-
formation is collected from outside of the dataset. Given
two knowledge graphs G1 = {E1,R1, T 1} and G2 =
{E2,R2, T 2}, for each entity e ∈ E1, we perform ex-
act string matching to find if there exists a matched entity
e ∈ E2. If so, we collect the type information for e ∈ E1
as Te = {tk}Kk=1, where tk ∈ T 2 and K is the total num-
ber of types for entity e. For each dataset, we transfer the
type information from the other two datasets individually.
Given the transferred type information, we collect the re-
lations whose head type set and tail type set are both non-
empty in order to perform valid type information encoding.
Only the testing triples that contain such relations are con-
sidered for the evaluation. In the end, on the FB15K dataset,
785 qualified relations are obtained resulting in 55, 804 test-
ing triples. On the YAGO26K-906 dataset, 32 qualified rela-
tions are obtained resulting in 37, 401 testing triples. On the
DB111K-27 dataset, 134 qualified relations are obtained re-
sulting in 55, 037 testing triples. For comparison, we extract
the type information from within-dataset. The prior models
with type information extracted from FB15K, YAGO26K-
906, and DB111K-174 are denoted as FB prior, YG prior,
and DB prior respectively. In addition, for each dataset, we
consider a union prior where we combine the type sets of
each entity extracted from the other two datasets with the ex-
isting type set collected from within-dataset. The embedding
based models are directly trained on the training triples from
within-dataset. RotatE is applied as the baseline embedding
based model. For each dataset, we combine the baseline em-
bedding based model with four different prior models indi-
vidually, resulting in four TaRP models: TaRP-R(FB prior),
TaRP-R(YG prior), TaRP-R(DB prior) and TaRP-R(Union
prior). Results are shown in Table 7. As we can see from the
Table 7, TaRP-R with type information collected from cross-
datasets can still achieve performance improvement com-
pared to the baseline embedding based model. For exam-
ple, on FB15K, 3.3% improvement is achieved with the type
information transferred from YAGO26K-906. Furthermore,
the TaRP-R with union-prior achieves better performance
than the TaRP-R with type information collected within-
datasets by leveraging additional type information collected
from cross-datasets. From these results, we can see that the
type information extracted from a specific dataset can gen-



Table 7: Cross-dataset evaluation of the TaRP model

Method FB15K YAGO26K-906 DB111K-174
MR Hits@1 Hits@10 MR Hits@1 Hits@10 MR Hits@1 Hits@10

RotatE 1.76 82.47 98.59 1.09 92.55 99.92 2.59 79.42 97.21
TaRP-R(FB prior) 1.37 92.88 99.79 1.06 94.29 99.98 2.06 80.55 97.88
TaRP-R(YG prior) 1.74 85.77 98.97 1.05 95.75 99.99 2.22 79.90 97.62
TaRP-R(DB prior) 5.99 84.95 98.25 1.06 94.62 99.99 1.39 86.20 99.22

TaRP-R(Union prior) 1.19 92.90 99.83 1.04 95.81 99.99 1.34 86.57 99.40

eralize well to different datasets. In addition, through the
proposed decision-level integration, the embedding based
model can be easily combined with different type informa-
tion without additional training.

4.3 Comparisons to State-Of-The-Art Methods
We compare TaRP to additional SoTA models that also ap-
ply ontological information. In particular, on FB15K, we
compared to DKRL (Xie et al. 2016), TKRL (Xie, Liu, and
Sun 2016), SSP (Xiao et al. 2017), and TransT (Ma et al.
2017). TKRL and TransT apply type information. DKRL
and SSP apply contextual information like descriptions of
entities. The results are shown in Table 8. ∗ indicates the re-
ported performance. On YAGO26K-906 and DB111K-174,
we compare to the state-of-the-art model, JOIE (Hao et al.
2019)7. We train JOIE on two datasets with its reported best
hyper-parameter configurations, and the results are shown in
Table 9. From Table 8 and Table 9, we can see that TaRP-R
achieves the best performance, in particular for Hits@10. By
integrating type information, the ranks of triples are concen-
trated within rank1- rank10 (see Appendix C for the visual-
izations). Hence, TaRP-R achieves very high Hits@10 and
significantly outperforms SoTA on all three datasets.

Table 8: Comparisons with SOTA on FB15k

Methods MR Hits@1 Hits@10
DKRL(CNN)+TransE (Xie et al. 2016) 2.03∗ - 90.8∗

TKRL(RHE) (Xie, Liu, and Sun 2016) 1.73∗ 92.8∗ -
SSP(Std.) (Xiao et al. 2017) 1.22∗ - 89.2∗

SSP(Joint) (Xiao et al. 2017) 1.47∗ - 90.9∗

TransT (Ma et al. 2017) 1.19∗ - 94.1∗

TaRP-R 1.16 92.9 99.8

Table 9: Comparisons with SOTA on YAGO26K-906 and
DB111K-174

Method YAGO26K-906 DB111K-174
MR Hits@1 Hits@10 MR Hits@1 Hits@10

JOIE (Hao et al. 2019) 1.47 90.1 97.1 2.22 71.8 89.6
TaRP-R 1.08 92.8 99.9 1.52 76.5 99.5

5 Discussion
Though majority of the related works that are aligned
well with our proposed method performed evaluations on
FB15K(as shown in Table 8), FB15K contains several short-
comings, such as data leakage problem. To address the po-
tential concerns on the evaluation regarding to the problems

7https://github.com/JunhengH/joie-kdd19

within the FB15K, we consider the FB15K-237 (Dettmers
et al. 2018), which is an improved version of FB15K. We
perform two evaluations on FB15K-237: 1) compare the
proposed TaRP model to the baseline models; 2) com-
pare to the SOTA method. We firstly evaluate the effec-
tiveness the proposed approach on FB15K-237 by compar-
ing to baseline models. As we can see from Table 10, all

Table 10: Evaluation of the TaRP model on FB15K-237

MR Hits@1 Hits@10
TransE 1.51 93.18 98.27
RotatE 1.88 93.89 99.18
QuatE 1.65 90.83 98.58

TaRP-T 1.17 94.64 99.76
TaRP-R 1.19 94.25 99.79
TaRP-Q 1.24 92.51 99.73

three TaRP models achieve performance improvement on
FB15K-237 compared to the corresponding baseline embed-
ding based models. Particularly, MR is reduced significantly
from 1.88 to 1.19 by augmenting the RotatE with type infor-
mation through the proposed framework. We then compare
the TaRP model to the SOTA model: HAKE (Zhang et al.
2020b)8. We train HAKE with its reported hyper-parameter
settings. From Table 11, we can see that the TaRP-R signifi-
cantly outperforms the HAKE model.

Table 11: Comparisons with SOTA on FB15K-237

MR Hits@1 Hits@10
HAKE (Zhang et al. 2020b) 1.85 92.85 99.13

TaRP-R 1.19 94.25 99.79

6 Conclusion
In this paper, we propose an effective type-augmented rela-
tion prediction (TaRP) method, where we apply both type
information and instance-level information for relation pre-
diction in knowledge graphs. The type information and
instance-level information are encoded as prior probabili-
ties and likelihoods of relations respectively, and are com-
bined at the decision-level. Our approach significantly out-
performs state-of-the-art methods. Additionally, by leverag-
ing type information, the TaRP model is able to be more data
efficient than existing models. Furthermore, type informa-
tion extracted from a specific dataset is shown to generalize
well to other datasets.

8https://github.com/MIRALab-USTC/KGE-HAKE
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