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Causal Discovery
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o Causal relations among variables are captured by a

Smoke
directed acyclic graph (DAG)
o A direct link from node X fo node Y indicates the cause-effect @
relation between cause variable X and effect variable Y
> Causal discovery is to learn a DAG capturing cause-effect g Cancer

relationships among a set of random variables from
observational data

o Causal discovery under insufficient data is of great importance

o Existing methods are focused on learning a DAG with high confidence
under sufficient data

o However, in many domains, the availability of data is very limited

Example structure is revised based on ASIA dataset in Bnlearn Repository
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Constraint-based Causal Discovery
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o Constraint-based causal discovery methods apply independence tests to #0308

determine a DAG from observational data

o |t can be performed globally or locally

Global approaches aim at learning cause-effect
relationships among all random variables

/‘\ Target Variable

Causal Markov Blanket
of the target variable

Lung Cancer

Local approaches aim at identifying the direct
causes and effects of a target variable,
represented by a causal Markov blanket

Example structure is revised based on ASIA dataset in Bnlearn Repository



Bayesian Approaches for Independence Tests

o For both global and local approaches, the main challenge of the constraint-based

causal discovery is that its performance highly depends on the accuracy of the
independence test

o We propose two Bayesian-augmented frequentist independence tests

o Bayesian approach is adopted to reliably estimate independence test statistics with limited
data by considering the entire parameter space instead of using a point estimate one

o The Bayesian statistics are then used by frequentist independence tests

o Specifically, we infroduce Bayesian approach for two types of independence tests
o mutual Information based independence test
o statistical testing based independence test
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Independence Test AN
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o Mutual information based independence test #9308
o The mutual information (MI) of two discrete random variables X and Y is defined as

K,y oK 0ij
MI(X;Y) =X, jzleijln?;j

Ig,érgrr}?elférsdeno’re the total number of possible states of X and Y. 6; = p(x;), 8; = p(y;) and 6;; = p(x;,y;) are probability distribution

o |f MI(X;Y) < Threshold, X and Y are declared to be independent; Otherwise, X and Y are dependent.

o

Statistical testing based independence test
o G-test is a standard likelihood ratio test. Its stafistics g asymptomatically follows the Xczif=(Kx—1)(Ky—1) distribution and is defined as

_ o vKe vKy 0:6;

o |If p-value is smaller than the significance level (default 5%), the null hypothesis is rejected and the alternative hypothesis is
accepted. Thus, X and Y are declared to be dependent; Otherwise, X and Y are declared to be independent.

o Independence Test Accuracy under insufficient data
o Existing methods perform a Maximum Likelihood estimation (MLE) of the parameters 0 directly from data D, i.e.,
6 = argmax P(D|0)
o The MLE estimates are inaccurate when D is insufficient. As a result, independence tests are subject to errors under limited data



Bayesian Approach for ‘YM
Mutual Information based Independence Test R
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o Full Bayesian Ml is based on estimating expected Ml over data D :

MIFB(X;Y|D) = ffMI (X;Y|0)p(0,a|D)dOda = jJMI (X;Y|0)p(O|a,D)p(a|D)dOda

o The integration over a is approximated by maximizing it out as
MIB(X;Y|D) = j j MI (X;Y|0)p(8,a|D)dO0da = j MI (X;Y|0)p(8|a*,D)dO
with a* = argmax p(a|D) = argmax p(D|a)p(a). Assuming p(a) follows the uniform distribution, we have a* = argmax
p(D|a) and can be solved through a fixed-point update
o Given the a*, we in the end have

nl-j+a*
N+a*K

MIB(X;Y|D) = (N +a*K +1) = ¥;; [W(n +a*K, + 1) +p(n; + a’ Ky + 1) —p(ng; + a* + 1)]

where Y (x) is the digamma function. n; and n; are the number of samples for X = i and Y = j respectively, and
n;; is the number of samples for (X,Y) = (i, j)



Bayesian Approach for
Statistical Testing based Independence Test

o A Bayesian estimate of hypothesis likelihood is considered as

_ P(DIHo@p) _ [ P(D|6, Ho)P(O|Ho, ao)a6
P(D|Hpa;) [ P(D|6,H,)P(B|Hy, @1)de
a, and a, are the respective hyper-parameters under null and alternative hypothesis

BF

o To apply BF for a statistical testing, like G test, we approximate it as

~ Kx ghi Ky g™
5F — POIHD) _ IT;5 6, " 11,2, 6;
P(D|H4,8) Ky grij

i=1,j=1 Yij
a*ny+b*a
a*N+b*Ka

with 6, = and A = (g) are unknown coefficients that can be solved analytically

o The statistic BF,.,;, IN the end is computed as

Ky ..
Jj=1 ) eij

In 28

BFpiz = —2InBF = —2 3%

BF_,i, asymptomatically follows the distribution X§f=(Kx—1)(Ky—1)' We set 5% as the default significance level
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Local Causal Discovery
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o We consider the causal Markov blanket (CMB) for comparison

o ¢I®8 denotes the CMB with empirical Bayesian Ml estimation; ¢BF,,;, denotes the CMB with BF,;,
independence test

SHD #Independence Test
Dataset Size cleP c¢BF 1o CMB cI’?  ¢BF.,» CMB
L 100 | 2004028 2.6510.40 50410065 | 1008 1154 16869
300 | 2.614026 2.64+0.59 6.95+0.63 | 1709 1926 14578 -
500 | 2294031 2244084 4524058 | 2524 4751 13873 o e _ :
MEAN 2.60 2.51 5.80 1747 2610 15107 Both cI and CBFC’UZ ou’rperform CMB in
Be [00 | 3.89£0.34 3.98£039 7.18£0.66 | 1261 1363 22168 terms of both accuracy (SHD) and
300 | 3.474021 3.2440.12  7.59+0.57 | 1541 2977 18043 . .
500 | 3.114£021 2.98+0.13 7.2040.67 | 1477 3949 14881 efficiency (# Independence Test)
MEAN [349 340 T32] | 1426 2763 18364
ALARM 100 2.69F0.07 2.59=0.1Y 5.20F0.71 1424 1109 27492
300 | 2.5040.19  2.2740.15 4.36+0.83 | 2398 3885 14900
500 | 2.4040.11 2.2640.19 3.5340.62 | 2807 4766 11328 )
MEAN | 253 231 436 | [2210 3253 17907 | o Comparing the performance between
500 | 3.33+0.02 42240.04 7.90+0.11 | 676 1923 183350
LIRS N teey el e T 2145 169705 fhe two proposed methods
1000 | 3.56+0.09 4.4540.08 7.1040.11 | 1924 2621 119815 .
NN S i - i e o cBF_,;, achieves overall better accuracy
CHILD3 500 2.464+0.23 2.53+0.18 4.7240.28 7168 7417 14789 o C[eB is more efficient with the fewest number
800 | 3.0140.13 2.6740.11 3.57+021 | 6720 7802 9765 )
1000 | 2.9040.07 2574023 3.0940.19 | 8424 8285 9516 of independence tests on all datasets
MEAN 2.79 2.59 3.79 7437 7835 11357
P 500 | 2.87£0.05 2.6240.19 5.00+0.15 | 5234 11126 16819
800 | 2.66+021 3.0240.13 5754032 | 8236 11424 51967
1000 | 2.824023  2.9940.07 4.34+0.19 | 13384 9956 36888
MEAN 2.78 2.88 5.03 8951 10835 26322




Global Causal Discovery \
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We consider the RAI-BF and PC-Stable for comparison
rI¢® denotes the RAI with empirical Bayesian Ml estimation; rBF,,;, denotes the RAl with BF,,;, independence
test #2328
SHD #Independence Test
Dataset Size rieB rBE. 0 RAI-BF PC-Stable | r1¢®  rBF.,» RAI-BF PC-Stable
s 100 | 21.6%21 242%2.3 304%3.7 23.8%1.7 | 283 314 803 559 =
00 | 19927 1778 BS54 26:l9 | M2 sle 97 = o Both rI¢® and rBF_y;, outperform RAI-
17.6+1.7  16.0+2. 642, A4+, 131 .
MEAN | 197 19.3 255 23.6 350 538 955 954 BF and PC-Stable in TermS.Of both
INSURANCE 100 [ 489%13 50129  549£36 S20xL5 | 486 604 905 1217 accuracy (SHD) and efficiency (#
300 | 473408 445420  46.6+£32 502431 | 576 986 1011 1250
500 | 495+18 394430 47.1+22 507425 | 662 1200 1120 2326 Independence Test)
MEAN | 486 4.7 495 51.0 575 930 1012 1598
e 100 | 445%22 427423 484%58 458+49 | 801 958 1591 2215
300 | 40.743.0  36.1+45  353+54 346427 | 1158 1752 1881 3398
500 | 40.043.1  29.845.1  29.8452 36.5+57 | 1433 2018 2098 3992 .
MEAN | 417 36.2 37.8 390 | 1161 1576 1857 3202 o Comparing the performance
500 | 88.042.0 983 £15 [180+1.0 O91.6+1.0 | 2024 2587 6171 3267
HAILFINDER %00 | 850+17 1063421 1247467 997+12 | 1983 3726 7847 3423 between the two proposed methods
1000 | 923+45 1083423 131.3+32 101.8+22 | 2638 3073 16618 3603 o , i
MEAN | 884 104.3 124.7 977 2215 3129 10212 ] 3431 rBFcniz QChieves overall better
S 500 | 676132 543126  19.6t40 812128 | 2603 3796 3422 2963 accuracy
800 | 658425 529428 740437 799424 | 3941 4587 5106 6026 eB - .
1000 | 615438 _523+39 710465  Ri4t27 | 4723 5170 5980 6846 o rI¢® achieves overall better efficiency
MEAN | 650 | 532 74.9 80.8 3786 4518 5503 5945
CHILDS 500 | 1220426 109.3%5.1 1340426 113.9424 | 6966 8646 10038 10253
800 | 121.743.8 1053440 1323467 120.1429 | 10249 10431 9337 10708 . .
1000 | 1163429 1057425 1263+7.0 123.4+1.7 | 10375 10494 11174 11070 o We reach consistent conclusions
MEAN | 1200 106.8 126.3 119.1 9197 9857 11174 10677




Conclusions

o We infroduce Bayesian methods for robust constraint-based causal discovery under
insufficient data

o Two Bayesian-augmented frequentist independence tests are proposed for reliable
statistic estimation under a frequentist independence test framework

o Through extensive experiments, we show that, by infroducing Bayesian approaches,
the proposed methods not only outperform the competing methods in terms of
accuracy, but also improve efficiency significantly
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