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q MAP in Markov Random Fields (MRFs)
• For a set of 𝑁 random variables {𝑥!}!"#$ , an MRF 𝒢 = (𝒱, ℇ) captures its 

joint distribution with 𝒱 = 𝑁 and ℇ = 𝑀. 𝑀 is the total number of edges 
in the MRF. The joint distribution is defined as

𝑝(𝒙) ∝ exp(∑!∈𝒱 𝜃! 𝑥! + ∑(!,))∈ℇ𝜃!)(𝑥!, 𝑥)))
where 𝜽 = {𝜃! 𝑥! , 𝜃!)(𝑥!, 𝑥))} refers to probability parameters. 

• MAP inference in MRF is formulated as
𝒙∗ = 𝑎𝑟𝑔max

𝒙
𝑝(𝒙) = 𝑎𝑟𝑔max

𝒙
∑#∈𝒱 𝜃# 𝑥# + ∑(#,()∈ℇ 𝜃#((𝑥# , 𝑥()

q Variational Belief Propagation (BP) for MAP inference
• Variational belief propagation approach formulates MAP inference as an 

optimization problem where a variational distribution is obtained by 
minimizing a variational free energy under a variational assumption.

• In MRF, it is natural to assume a variational distribution 𝑞(𝑥) is a function of 
{𝑞! 𝑥! }!∈𝒱 and {𝑞!) 𝑥!, 𝑥) }(!,))∈ℇ, referred to as pairwise assumption.

• Under pairwise assumption, we have the variational free energy of form:
𝐺,-./0.12 𝑞! , 𝑞!) = 𝑈 𝑞! , 𝑞!) − 𝜖(∑!∈𝒱 𝑐!𝐻 𝑞! +

∑(!,))∈ℇ 𝑐!)𝐻(𝑞!, 𝑞)))
with average energy 𝑈 𝑞! , 𝑞!) = −∑!∈𝒱 𝑞!(𝑥!)𝜃! 𝑥! −
∑(!,))∈ℇ𝑞!)(𝑥!, 𝑥))𝜃!)(𝑥!, 𝑥)). 𝜖 is a sufficient small value. 𝐻 𝑞! denotes 
the entropy of 𝑞!. 𝐻(𝑞!, 𝑞)) denotes the entropy of 𝑞!)(𝑥!, 𝑥)).

• An optimal variational distribution is obtained as
{𝑞!∗, 𝑞!)∗ } = 𝑎𝑟𝑔 min

{5!,5!"}
𝐺78!9:!;< 𝑞! , 𝑞!)

MAP inference is performed as 𝑥!∗ = 𝑎𝑟𝑔max 𝑞!∗(𝑥!). 

• Each of the variational BP algorithms is specific to a family of variational 
distributions, leading to an entropy approximation (i.e., a set of 𝑐! and 𝑐!)). 
The performance of MAP inference is limited by the corresponding 
variational assumption.

q A Variational message passing neural network (V-
MPNN) is proposed, leveraging both the power of 
neural network (in both modeling complex functions 
and conducting message passing mechanism), and 
the well-established algorithmic theories on 
variational belief propagation.

q Outstanding inference performance is achieved 
compared against both training-free and training-
based methods.

q Neural-augmented Free Energy
• We propose a neural-augmented free energy 𝐺=2>/-? where we parameterize variational distribution families 

through neural network parameters Φ as
𝐺=2>/-? 𝒒@AB<, 𝒒<BC<; Φ = 𝑈 𝒒@AB<, 𝒒<BC< − 𝜖𝐻 𝒒@AB<, 𝒒<BC<; Φ

with 𝒒@AB< = {𝑞! 𝑥! }!∈𝒱 and 𝒒<BC< = {𝑞!) 𝑥!, 𝑥) }(!,))∈ℇ.  Parameterization of variational distribution families 
is implicitly achieved via the neural-network-parameterized entropy 𝐻 𝒒@AB<, 𝒒<BC<; Φ .

• Theoretically performance guarantee with 𝐺=2>/-? is provided through three propositions:
[Proposition 1]: Neural-augmented free energy 𝐺=2>/-? is provable convex with a strictly concave neural-
network-parameterized approximation 𝐻 𝒒@AB<, 𝒒<BC<; Φ .
[Proposition 2]: MAP inference error ΔD87(𝑞E∗ , 𝑝) is upper bounded by an entropy approximation scaled by 𝜖, 
i.e., ΔD87(𝑞E∗ , 𝑝) ≤ 𝜖𝐻(𝑞E∗ ; Φ). The minimal MAP inference error is hence upper bounded by an optimal 
entropy approximation with Φ∗ = 𝑎𝑟𝑔min

E
𝐻(𝑞E∗ ; Φ) .

[Proposition 3]: Neural-augmented free energy subsumes existing variational distribution families as a strict 
generalization. The optimal MAP inference performance achieved with neural-augmented free energy is 
superior or comparable to existing variational distribution families, i.e., ΔD87(𝑞E∗

∗ , 𝑝) ≤ ΔD87(𝑞E$!%
∗ , 𝑝).

qMinimization of Neural-augmented Free Energy with MPNN
• To minimize 𝐺=2>/-? , we employ MPNN which performs inference through message passing with messages 

parameterized via neural network parameters Ψ. Each node in MPNN is mapped to a variable in MRF. Node 
feature {𝒉!}!"#$ corresponds to the unary marginal estimation {𝒒!}!"#$ in logarithmic .

• At each iteration 𝑡, i-th node receives a message from its neighbor j-th node through message function ℳ as
𝒎)→!
GH# = ℳ 𝒉!G,𝒎!→)

G , 𝜃!)
ℳ is realized through MLP containing free parameters Ψ to be learned. Each node then update its feature 
as 𝒉!GH# = 𝒎!

GH# + 𝜃! − ln(𝑧!GH#) with the aggregated message 𝒎!
GH# = ∑)∈𝒩(!)𝒎)→!

GH#. 𝑧!GH# =
∑J! exp(𝒎!

GH# + 𝜃!). The update process is repeated until convergence. In the end, unary and pairwise marginal 
estimations are extracted by following BP’s belief equation.

qTraining Objectives
• The total training objective is based on neural-augmented free energy

min
K

max
E

𝐺=2>/-? 𝒒@AB<(Ψ), 𝒒<BC<(Ψ);Φ
• Two phase alternative update is considered for effective training. At each iteration 𝑟, we firstly update Ψ as

Ψ9H# = 𝑎𝑟𝑔min
K

𝐺=2>/-? 𝒒@AB<(Ψ), 𝒒<BC<(Ψ);Φ9

We then update Φ as
Φ9H# = 𝑎𝑟𝑔max

E
𝐺=2>/-? 𝒒@AB<(Ψ9H#), 𝒒<BC<(Ψ9H#);Φ = 𝑎𝑟𝑔min

E
𝐻 𝒒@AB<(Ψ9H#), 𝒒<BC<(Ψ9H#);Φ

According to the proposition 2, Φ is updated in the direction of minimizing the MAP inference error.
• After training, only MPNN module with optimal parameter Ψ∗ is required for MAP inference. MAP configuration 

is obtained as 𝑥!∗ = 𝑎𝑟𝑔max 𝑞!(𝑥!; Ψ∗).

q Compared to training-free methods
• Training-free methods refer to optimization algorithms.
• V-MPNN is better particularly on complex and larger graphs 

by leveraging neural-augmented free energy. 

q Compared to training-based methods
• Training-based methods refer to neural-network-based 

models that require exact inference results for training.
• V-MPNN is better particularly on simple and sparse graphs 

by leveraging the injected well-established theories.
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CONTRIBUTIONS

q Instead of relying on a fixed and pre-defined variational 
distribution,  we propose a neural-augmented free energy 
where variational distribution is parameterized via a neural 
network. An optimal variational distribution is explored during 
training.

q Minimization of the neural-augmented free energy is achieved 
through a message passing neural network (MPNN). The 
training of the MPNN is guided by the neural-augmented free 
energy, without requiring labeled training data.

q We achieve outstanding inference performance compared to 
both training-free methods and training-based methods.
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