38th Conference on Uncertainty in Artificial Intelligence Eindhoven, Netherlands



# Variational Message Passing Neural Network for Maximum–A–Posteriori (MAP) Inference

Zijun Cui, Hanjing Wang, Tian Gao, Kartik Talamadupula, Qiang Ji cuiz3@rpi.edu jiq@rpi.edu

### CONTRIBUTIONS

□ Instead of relying on a fixed and pre-defined variational distribution, we propose a neural-augmented free energy where variational distribution is parameterized via a neural Input MRF network. An optimal variational distribution is explored during training. □ Minimization of the neural-augmented free energy is achieved through a message passing neural network (MPNN). The training of the MPNN is guided by the neural-augmented free energy, without requiring labeled training data. U We achieve **outstanding inference performance** compared to both training-free methods and training-based methods. INTRODUCTION MAP in Markov Random Fields (MRFs) For a set of N random variables  $\{x_i\}_{i=1}^N$ , an MRF  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  captures its joint distribution with  $|\mathcal{V}| = N$  and  $|\mathcal{E}| = M$ . M is the total number of edges in the MRF. The joint distribution is defined as  $p(\mathbf{x}) \propto \exp(\sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j))$ where  $\boldsymbol{\theta} = \{\theta_i(x_i), \theta_{ii}(x_i, x_i)\}$  refers to probability parameters. MAP inference in MRF is formulated as  $\boldsymbol{x}^* = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}) = \arg \max_{\boldsymbol{x}} \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j)$ Variational Belief Propagation (BP) for MAP inference Variational belief propagation approach formulates MAP inference as an optimization problem where a variational distribution is obtained by minimizing a variational free energy under a variational assumption. In MRF, it is natural to assume a variational distribution q(x) is a function of  $\{q_i(x_i)\}_{i \in \mathcal{V}}$  and  $\{q_{ij}(x_i, x_j)\}_{(i,j) \in \mathcal{E}}$ , referred to as *pairwise assumption*. Under pairwise assumption, we have the variational free energy of form:  $G_{\text{pairwise}}(\lbrace q_i \rbrace, \lbrace q_{ij} \rbrace) = U(\lbrace q_i \rbrace, \lbrace q_{ij} \rbrace) - \epsilon(\sum_{i \in \mathcal{V}} c_i H(q_i) + q_i) + \epsilon(\sum_{i \in \mathcal{V}} c_i H(q_i)) + \epsilon($  $\sum_{(i,j)\in\mathcal{E}} c_{ij} H(q_i,q_j))$ with average energy  $U(\lbrace q_i \rbrace, \lbrace q_{ij} \rbrace) = -\sum_{i \in \mathcal{V}} q_i(x_i) \theta_i(x_i) \sum_{(i,j)\in\mathcal{E}} q_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$ .  $\epsilon$  is a sufficient small value.  $H(q_i)$  denotes Training Objectives the entropy of  $q_i$ .  $H(q_i, q_j)$  denotes the entropy of  $q_{ij}(x_i, x_j)$ . An optimal variational distribution is obtained as  $\{q_i^*, q_{ij}^*\} = \arg \min_{\{q_i, q_{ij}\}} G_{pairwise}(\{q_i\}, \{q_{ij}\})$ MAP inference is performed as  $x_i^* = arg \max q_i^*(x_i)$ . Each of the variational BP algorithms is specific to a family of variational distributions, leading to an entropy approximation (i.e., a set of  $c_i$  and  $c_{ij}$ ). The performance of MAP inference is limited by the corresponding variational assumption.



#### Neural-augmented Free Energy

We propose a neural-augmented free energy  $G_{neural}$  where we parameterize variational distribution families through neural network parameters  $\Phi$  as

 $G_{\text{neural}}(\boldsymbol{q}^{node}, \boldsymbol{q}^{edge}; \Phi) = U(\boldsymbol{q}^{node}, \boldsymbol{q}^{edge}) - \epsilon H(\boldsymbol{q}^{node}, \boldsymbol{q}^{edge}; \Phi)$ 

with  $q^{node} = \{q_i(x_i)\}_{i \in \mathcal{V}}$  and  $q^{edge} = \{q_{ij}(x_i, x_j)\}_{(i,j) \in \mathcal{E}}$ . Parameterization of variational distribution families is implicitly achieved via the neural-network-parameterized entropy  $H(q^{node}, q^{edge}; \Phi)$ .

Theoretically performance guarantee with  $G_{neural}$  is provided through three propositions:

[Proposition 1]: Neural-augmented free energy G<sub>neural</sub> is provable convex with a strictly concave neuralnetwork-parameterized approximation  $H(\boldsymbol{q}^{node}, \boldsymbol{q}^{edge}; \Phi)$ .

**[Proposition 2]:** MAP inference error  $\Delta_{map}(q_{\Phi}^*, p)$  is upper bounded by an entropy approximation scaled by  $\epsilon$ , i.e.,  $\Delta_{map}(q_{\Phi}^*, p) \leq \epsilon H(q_{\Phi}^*; \Phi)$ . The minimal MAP inference error is hence upper bounded by an optimal entropy approximation with  $\Phi^* = \arg \min H(q_{\Phi}^*; \Phi)$ .

[Proposition 3]: Neural-augmented free energy subsumes existing variational distribution families as a strict generalization. The optimal MAP inference performance achieved with neural-augmented free energy is superior or comparable to existing variational distribution families, i.e.,  $\Delta_{map}(q_{\Phi^*}^*, p) \leq \Delta_{map}(q_{\Phi^{fix}}^*, p)$ .

#### Minimization of Neural-augmented Free Energy with MPNN

To minimize  $G_{neural}$ , we employ MPNN which performs inference through message passing with messages parameterized via neural network parameters  $\Psi$ . Each node in MPNN is mapped to a variable in MRF. Node feature  $\{h_i\}_{i=1}^N$  corresponds to the unary marginal estimation  $\{q_i\}_{i=1}^N$  in logarithmic.

At each iteration t, i-th node receives a message from its neighbor j-th node through message function  $\mathcal{M}$  as  $\boldsymbol{m}_{i \rightarrow i}^{t+1} = \mathcal{M}(\boldsymbol{h}_{i}^{t}, \boldsymbol{m}_{i \rightarrow i}^{t}, \theta_{ii})$ 

 $\mathcal M$  is realized through MLP containing free parameters  $\Psi$  to be learned. Each node then update its feature as  $\boldsymbol{h}_i^{t+1} = \boldsymbol{m}_i^{t+1} + \theta_i - \ln(z_i^{t+1})$  with the aggregated message  $\boldsymbol{m}_i^{t+1} = \sum_{i \in \mathcal{N}(i)} \boldsymbol{m}_{i \to i}^{t+1} \cdot z_i^{t+1} = \boldsymbol{m}_i^{t+1}$ 

 $\sum_{x_i} \exp(m_i^{t+1} + \theta_i)$ . The update process is repeated until convergence. In the end, unary and pairwise marginal estimations are extracted by following BP's belief equation.

The total training objective is based on neural-augmented free energy

 $\min_{\Psi} \max_{\Phi} G_{\text{neural}} (\boldsymbol{q}^{node}(\Psi), \boldsymbol{q}^{edge}(\Psi); \Phi)$ 

• Two phase alternative update is considered for effective training. At each iteration r, we firstly update  $\Psi$  as  $\Psi^{r+1} = \arg\min_{\boldsymbol{W}} G_{\text{neural}} (\boldsymbol{q}^{node}(\Psi), \boldsymbol{q}^{edge}(\Psi); \Phi^{r})$ 

#### We then update $\Phi$ as

 $\Phi^{r+1} = \arg\max_{\Phi} G_{\text{neural}} \left( \boldsymbol{q}^{node}(\Psi^{r+1}), \boldsymbol{q}^{edge}(\Psi^{r+1}); \Phi \right) = \arg\min_{\Phi} H \left( \boldsymbol{q}^{node}(\Psi^{r+1}), \boldsymbol{q}^{edge}(\Psi^{r+1}); \Phi \right)$ According to the proposition 2,  $\Phi$  is updated in the direction of minimizing the MAP inference error.

After training, only MPNN module with optimal parameter  $\Psi^*$  is required for MAP inference. MAP configuration is obtained as  $x_i^* = arg\max q_i(x_i; \Psi^*)$ .





### **EXPERIMENTS**

### Compared to training-free methods

Training-free methods refer to optimization algorithms. V-MPNN is better particularly on complex and larger graphs by leveraging neural-augmented free energy.

| Graph           | N=9 |        |      |        | N=15 |        |      |        |
|-----------------|-----|--------|------|--------|------|--------|------|--------|
| Graph           | BP  | TRW-BP | MPLP | V-MPNN | BP   | TRW-BP | MPLP | V-MPNN |
| STAR            | 1.0 | .99    | 1.0  | .93    | 1.0  | 1.0    | 1.0  | .74    |
| TREE            | 1.0 | .99    | 1.0  | .96    | 1.0  | 1.0    | 1.0  | .93    |
| PATH            | 1.0 | 1.0    | 1.0  | .97    | 1.0  | 1.0    | 1.0  | .93    |
| CYCLE           | .91 | .76    | .90  | .85    | .84  | .84    | .89  | .87    |
| LADDER          | .68 | .66    | .72  | .77    | .63  | .61    | .67  | .72    |
| 2D GRID         | .57 | .48    | .74  | .74    | .56  | .50    | .63  | .69    |
| CIRCULAR LADDER | .62 | .50    | .76  | .83    | .61  | .53    | .63  | .73    |
| BARBELL         | .57 | .55    | .67  | .71    | .60  | .57    | .64  | .66    |
| LOLLIPOP        | .59 | .60    | .61  | .88    | .62  | .55    | .58  | .67    |
| WHEEL           | .56 | .44    | .62  | .70    | .58  | .50    | .62  | .69    |
| BIPARTITE       | .54 | .52    | .62  | .74    | .62  | .56    | .55  | .64    |
| TRIPARTITE      | .57 | .62    | .52  | .68    | .52  | .55    | .51  | .65    |
| COMPLETE        | .56 | .60    | .49  | .65    | .54  | .54    | .53  | .60    |
| MEAN            | .71 | .67    | .73  | .80    | .70  | .67    | .69  | .73    |

#### Compared to training-based methods

Training-based methods refer to neural-network-based models that require exact inference results for training.

V-MPNN is better particularly on simple and sparse graphs by leveraging the injected well-established theories.

| Creat      | N=       | 9      | N=15     |        |  |
|------------|----------|--------|----------|--------|--|
| Graph      | Node-GNN | V-MPNN | Node-GNN | V-MPNN |  |
| STAR       | .65      | .93    | .52      | .74    |  |
| TREE       | .77      | .96    | .75      | .93    |  |
| PATH       | .81      | .97    | .73      | .93    |  |
| CYCLE      | .79      | .85    | .75      | .87    |  |
| LADDER     | .72      | .77    | .69      | .72    |  |
| 2D GRID    | .72      | .74    | .74      | .69    |  |
| C-LADDER   | .81      | .83    | .71      | .73    |  |
| BARBELL    | .72      | .71    | .71      | .66    |  |
| LOLLIPOP   | .72      | .88    | .69      | .67    |  |
| WHEEL      | .68      | .70    | .70      | .69    |  |
| BIPARTITE  | .75      | .74    | .74      | .64    |  |
| TRIPARTITE | .73      | .68    | .72      | .65    |  |
| COMPLETE   | .82      | .65    | .70      | .60    |  |
| MEAN       | .75      | .80    | .70      | .73    |  |

## CONCLUSION

□ A Variational message passing neural network (V-MPNN) is proposed, leveraging both the power of neural network (in both modeling complex functions and conducting message passing mechanism), and the well-established algorithmic theories on variational belief propagation.

Outstanding inference performance is achieved compared against both training-free and trainingbased methods.

[Acknowledgement] This work is supported by the Rensselaer-IBM AI Research Collaboration (http://airc.rpi.edu), part of the IBM AI Horizons Network (http://ibm.biz/AlHorizons)