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Abstract

Maximum-A-Posteriori (MAP) inference is a fun-

damental task in probabilistic inference and be-

lief propagation (BP) is a widely used algorithm

for MAP inference. Though BP has been applied

successfully to many different fields, it offers no

performance guarantee and often performs poorly

on loopy graphs. To improve the performance

on loopy graphs and to scale up to large graphs,

we propose a variational message passing neural

network (V-MPNN), where we leverage both the

power of neural networks in modeling complex

functions and the well-established algorithmic the-

ories on variational belief propagation. Instead

of relying on a hand-crafted variational assump-

tion, we propose a neural-augmented free energy

where a general variational distribution is parame-

terized through a neural network. A message pass-

ing neural network is utilized for the minimization

of neural-augmented free energy. Training of the

MPNN is thus guided by neural-augmented free

energy, without requiring exact MAP configura-

tions as annotations. We empirically demonstrate

the effectiveness of the proposed V-MPNN by

comparing against both state-of-the-art training-

free methods and training-based methods.

1 INTRODUCTION

Given a probability distribution of a set of random vari-

ables, a Maximum-A-Posteriori (MAP) inference problem

involves identifying the most probable configuration of a

subset of unobserved random variables with observed evi-

dence for the rest of the variables. MAP inference problem

has been studied in different communities, such as discrete

energy minimization [Kappes et al., 2013] where optimiza-

tion solvers are designed to directly solve for the optimal

solution (i.e., the most probable configuration). Solving the

MAP problem exactly is NP-hard, even with binary vari-

ables [Kolmogorov and Zabin, 2004, Cooper, 1990]. MAP

inference on a probabilistic graphical model (PGM) is a

fundamental task in probabilistic inference, where the joint

probability distribution of a set of random variables is cap-

tured by a PGM. Such task has lots of real-world applica-

tions such as image semantic segmentation in computer vi-

sion [Knobelreiter et al., 2020] and protein structure pre-

diction in biochemistry [Soni et al., 2010]. In this work, we

focus on MAP inference inside PGM context.

Different probabilistic inference algorithms have been pro-

posed leveraging underlying structures of graphs, with be-

lief propagation (BP) via message passing [Murphy et al.,

2013] being a popular and widely used one. Besides, for

efficient approximate inference, variational methods have

been widely considered whereby probabilistic inference

is reformulated as an optimization problem. Variational

assumptions are introduced over variational distributions

such as mean field assumption [Barabási et al., 1999] and

Bethe assumption [Yedidia et al., 2001a]. Under mean

field assumption, a variational distribution can be fully fac-

torized which in general does not hold on an arbitrary

graph. Bethe assumption is relaxed and is true on loop-free

graphs. Variational BP is to perform variational inference

through message passing and is theoretically grounded on

the well-established connection between BP and Bethe free

energy [Tatikonda and Jordan, 2002, Yedidia et al., 2003,

2000, 2001a, Heskes, 2004]. Variational BP under Bethe

assumption is exact on loop-free graphs, but its perfor-

mance on an arbitrary loopy graph remains inaccurate with-

out performance guarantee [Cannings et al., 1976, Shenoy

and Shafer, 2008]. Different works based on variational BP

have been proposed to improve the performance on loopy

graphs, all of which rely on specific variational assump-

tions, resulting in specific families of variational distribu-

tions.

In this work, we propose a variational message passing

neural network (V-MPNN) for improved MAP inference
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performance on loopy graphs. V-MPNN leverages both the

power of neural networks in modeling complex functions

and the well-established algorithmic theories on variational

BP. In particular, a neural-augmented free energy is pro-

posed where variational distribution is parameterized via

a neural network. An optimal variational condition is ex-

plored during training. Minimization of neural-augmented

free energy is achieved through a message passing neural

network (MPNN), which performs probabilistic inference

through message passing. The training of the MPNN is

guided by neural-augmented free energy, which is differ-

ent from existing neural-network-based inference methods

that require exact inference results as annotations. Without

requiring labeled training data, our proposed V-MPNN is

data efficient. More importantly, our model can scale up to

large graphs where exact inference results are unobtainable.

2 RELATED WORKS

MAP inference. MAP inference can be directly solved

as an integer optimization problem [Wu et al., 2020] or

can be relaxed to be a linear optimization problem (LP).

With the constraints on marginals enforcing global consis-

tency, i.e., marginal polytope, exact MAP inference can

be achieved under LP relaxation [Wainwright and Jordan,

2008]. Marginal polytope is in general intractable. Instead,

constraints enforcing local consistency (e.g., pairwise con-

sistency) are considered, that is, local polytope [Sherali and

Adams, 1990]. Local polytope yields pseudo-marginals

that are local consistent but is not guaranteed to be exact.

Unfortunately, MAP inference under LP relaxation with

local polytope remains computational prohibitive, particu-

larly on large graphs [Yanover et al., 2006].

Variational BP for MAP inference. Variational BP is

to perform variational inference through message passing.

Variational BP is based on the connection between BP

and Bethe free energy [Yedidia et al., 2001b]. Since Bethe

free energy can exactly capture only loop-free graphs,

BP is guaranteed to be exact on loop-free graphs and is

only an approximate inference on loopy graphs. Differ-

ent techniques have been proposed to improve the per-

formance of BP on loopy graphs, including initialization

strategies [Koehler, 2019, Knoll et al., 2018], message up-

date scheduling [Elidan et al., 2012, Knoll et al., 2015,

Aksenov et al., 2020] and damping [Murphy et al., 2013,

Pretti, 2005]. In addition to these practical techniques,

more sophisticated hand-crafted variational distributions

are proposed, leading to different variational BP algo-

rithms [Hazan and Shashua, 2010, Riegler et al., 2012].

For example, max-product tree-reweighted message pass-

ing (TRW-MP) [Wainwright et al., 2005a] decomposed the

original joint distribution into a convex combination of tree-

structured distributions. A tree-reweighted variational free

energy is correspondingly derived. TRW-MP is guaranteed

to produce exact MAP configurations under a certain con-

dition but it suffers from convergence issues.

Existing studies show that the entropy term within a vari-

ational free energy heavily affects the algorithm perfor-

mance [Ravikumar et al., 2010, Meshi et al., 2012, Lee

et al., 2020, Savchynskyy et al., 2011, Hazan and Shashua,

2012]. More specifically, when the entropy is concave and

the variational free energy is thus convex, a class of mes-

sage passing algorithms is obtained with convergence guar-

antee [Savchynskyy et al., 2011, 2012, Hazan and Shashua,

2012, Weiss et al., 2012, Meshi et al., 2015]. MAP infer-

ence error bound with convex free energy can also be de-

rived. In this work, we propose to further reduce the MAP

inference error bound by leveraging neural networks.

Neural networks for probabilistic inference. Neural net-

works have been considered for probabilistic inference

tasks. Yoon et al. [2019] empirically demonstrated the us-

age of MPNN [Gilmer et al., 2017] for probabilistic in-

ference, including MAP inference and marginal inference.

The architecture of MPNNs follows a message passing

scheme. Messages and beliefs are parameterized by neu-

ral networks and are learned from observed probabilistic

graphs annotated with corresponding exact inference re-

sults. Though inspired by belief propagation, MPNN is

solely learned from data. Different works have been pro-

posed along this line, the majority of which are for marginal

inference. Satorras and Welling [2020] proposed to refine

messages from belief propagation via messages learned in

MPNN. Kuck et al. [2020] proposed a belief propagation

neural network (BPNN) where beliefs are regularized by

minimizing a Bethe free energy. Zhang et al. [2019] pro-

posed a factor graph neural network (FGNN) that can per-

form MAP inference. FGNN is proved to be equivalent to

BP and thus can perform well only when ordinary BP does

well. Hence, FGNN does not explicitly address the poor in-

ference performance issue of BP on loopy graphs. All the

neural-network-based methods mentioned above require ei-

ther exact MAP configurations or exact partition functions

as annotations for fully supervised training. As a result,

these methods are limited to small graphs where exact in-

ference results are obtainable.

3 PROPOSED METHOD

We propose a variational message passing neural network

(V-MPNN) for improving inference performance on loopy

graphs and scaling up to large graphs. V-MPNN leverages

both the power of neural networks in modeling complex

functions and the algorithmic theories on variational BP.

We begin with preliminaries that are necessary for later dis-

cussions. We then introduce our proposed V-MPNN. To-

wards the end of this section, we summarize the training

objectives of the proposed V-MPNN.



3.1 PRELIMINARIES

In this work, we focus on MAP inference on discrete pair-

wise markov random fields (MRFs). We first define MAP

inference on MRFs and then introduce the variational free

energy. We discuss different families of variational distribu-

tions and introduce the minimization of a variational free

energy through message passing. In the end, we show the

connection between the optimality of minimizing a varia-

tional free energy and the exactness of MAP inference.

3.1.1 MAP Inference on Markov Random Field

Given a set of N random variables x = {x1, x2, ..., xN} in

discrete space χ = χ1×χ2× ...×χM , their joint probabil-

ity distribution is captured by an MRF G = (V, E) where

|χi| = ki is the number of possible states of each variable

xi, |V| = N , |E| = M with M being the total number of

edges in the graph. The joint probability distribution of x

is defined as,

p(x) ∝ exp(
∑

i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj)) (1)

where E refers to the set {(i, j) : i ∈ V, j ∈ N (i), i < j}.

θ defines probability parameters of the graph G. θi(xi) is

the unary potential of variable xi and θij(xi, xj) is the pair-

wise potential of two neighboring variables xi and xj con-

nected via edge (i, j). Given a graph G and its probability

parameters θ, the MAP inference task is formulated as

x∗ = argmax
x∈χ

p(x)

= argmax
x∈χ

∑

i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj)
(2)

3.1.2 Variational Free Energy

Variational method converts a probabilistic inference prob-

lem to an optimziation problem, solving for a variational

distribution by minimizing a variational free energy [Blei

et al., 2017]. Given a target joint distribution p(x), Gibbs

free energy as a function of a variational distribution q(x)
is defined as

G(q) = U(q)− T ◦H(q) (3)

U(q) =
∑

x
q(x)E(x) is the average energy and the

energy function E(x) is specified by p(x). H(q) =
−
∑

x
q(x) ln q(x) is the entropy. T ◦ is the temperature.

For MAP inference, temperature is specified to be a suf-

ficiently small value ǫ (T ◦ = ǫ). An optimal variational

distribution is obtained as

q∗ = arg min
q∈M(G)

G(q) (4)

Marginal polytope M(G) enforces global consistency as

M(G) = {q : q ≥ 0;
∑

x
q(x) = 1}. This constrained op-

timization is strictly convex and q∗ achieves zero KL diver-

gence w.r.t. the target distribution, that is, KL(q∗||p) = 0.

Exact inference can be performed with q∗. However, mini-

mizing the Gibbs free energy over marginal polytope is in

general computational prohibitive. Variational assumptions

are introduced for tractable variational distribution.

On pairwise MRF with the joint distribution defined

in Eq. 1, we have E(x) = −
∑

i∈V θi(xi) −∑
(i,j)∈E θij(xi, xj) and the average energy is computed

as

U(q) = U({qi}, {qij}) =

−
∑

i∈V

∑

xi

qi(xi)θi(xi)−
∑

(i,j)∈E

∑

xi,xj

qij(xi, xj)θij(xi, xj) (5)

The average energy becomes a function of local marginals

{qi}i∈V and {qij}(i,j)∈E with qi(xi) =
∑

x\xi
q(x) and

qij(xi, xj) =
∑

x\(xi∪xj)
q(x). We thus assume a varia-

tional distribution q(x) is a function of {qi(xi)}i∈V and

{qij(xi, xj)}(i,j)∈E , referred to as pairwise assumption.

Pairwise assumption is widely used on pairwise MRF and

there exist various families of variational distributions un-

der pairwise assumption as introduced below.

Families of variational distributions. Belief propagation

(BP) [Murphy et al., 2013] and TRW-MP [Wainwright

et al., 2005a] are the two most representative families of

variational distributions under pairwise assumption. In BP,

the family of variational distribution is defined as:

qBP(x) =
∏

i∈V

qi(xi)
∏

(i,j)∈E

qij(xi, xj)

qi(xi)qj(xj)
(6)

Correspondingly, we obtain a variational free energy (i.e,

Bethe free energy):

GBP({qi}, {qij}) =

U({qi}, {qij})− ǫ(
∑

i∈V

(1− |N (i)|)H(qi) +
∑

(i,j)∈E

H(qi, qj)) (7)

N (i) denotes the set of neighboring nodes of i-th

node. H(qi) = −
∑

xi
qi(xi) ln qi(xi). H(qi, qj) =

−
∑

xi,xj
qij(xi, xj) ln qij(xi, xj). In TRW-MP, a convex

combination of tree-structured distributions via spanning

trees is employed for approximating probability distribu-

tion. The family of variational distribution is defined as

qTRW-MP(x) =
∏

i∈V

qi(xi)
∏

(i,j)∈E

(
qij(xi, xj)

qi(xi)qj(xj)
)ρij (8)

which is closely related to BP but differs in terms of an

edge appearance probability ρij ∈ (0, 1]. Edge appearance

probability ρij measures the probability of an edge (i, j)
in a graph G being present in a randomly chosen spanning



Figure 1: Overview of the proposed variational message passing neural network (V-MPNN)

tree. A variational free energy is correspondingly obtained

as

GTRW-MP({qi}, {qij}) =

U({qi}, {qij})− ǫ(
∑

i∈V

(1−
∑

j∈N (i)

ρij)H(qi) +
∑

(i,j)∈E

ρijH(qi, qj)) (9)

TRW-MP is guaranteed to perform exact MAP inference

under a certain post-checking condition [Wainwright et al.,

2005a,b]. In summary, under the pairwise assumption, a

variational free energy is of a general form:

Gpairwise({qi}, {qij}) =

U({qi}, {qij})− ǫ(
∑

i∈V

ciH(qi) +
∑

(i,j)∈E

cijH(qi, qj)) (10)

Each of the variational BP algorithms (e.g., BP and TRW-

MP) is specific to a family of variational distributions, lead-

ing to an entropy approximation (i.e., a set of ci and cij in

Eq. 10). The performance of a variational BP algorithm is

hence limited by the corresponding variational assumption.

Differently, we propose to leverage the power of a neural

network to automatically explore the optimal variational

distribution family under the pairwise assumption.

Minimization of a variational free energy. Given a vari-

ational free energy in Eq. 10, the optimal solution set

{q∗i , q
∗
ij}i∈V,(i,j)∈E is obtained as:

{q∗i , q
∗
ij} = arg min

{qi,qij}∈L(G)
Gpairwise({qi}, {qij}) (11)

with the local polytope constraint set L(G) = {{qi, qij} :
qi ≥ 0; qij ≥ 0;

∑
xi
qi(xi) = 1, ∀i ∈ V; qi(xi) =∑

xj
qij(xi, xj), ∀(i, j) ∈ E}. This constrained optimiza-

tion is in general not convex. Its convexity depends on

the concavity of the entropy term, which varies with dif-

ferent variational distribution families. Solving for optimal

solution can be implemented through message passing. Af-

ter convergence, fixed-point solutions are guaranteed to

be local optimal in minimizing Gpairwise. However, a vari-

ational gap usually exists between q∗ and the target dis-

tribution p (i.e., KL(q∗||p) > 0), where q∗ is computed

from {q∗i , q
∗
ij}i∈V,(i,j)∈E . MAP inference is performed as

x∗
i = argmaxxi

q∗i (xi). MAP inference is exact if there

does not exist a variational gap. Otherwise, the inference

remains approximate and is prone to errors.

3.2 VARIATIONAL MESSAGE PASSING NEURAL

NETWORK

We now introduce the proposed variational message pass-

ing neural network (V-MPNN). We first introduce the pro-

posed convex neural-augmented free energy whereby we

parameterize variational distribution families via a neu-

ral network. The proposed neural-augmented free energy

is provable convex. The minimal MAP inference error

with the proposed neural-augmented free energy is upper

bounded by an optimal entropy approximation. We then in-

troduce the minimization of the proposed convex neural-

augmented free energy through a message passing neural

network (MPNN). The MPNN performs inference through

message passing with messages parameterized via neural

network parameters. In the end, we summarize the training

objectives together with training procedures. The overview

of V-MPNN is shown in Figure 1.

3.2.1 Convex Neural-augmented Free Energy

Under the pairwise assumption, we introduce the proposed

neural-augmented free energy Gneural, where we parame-

terize variational distribution families through neural net-

work parameters Φ. Such parameterization is implicitly

achieved via a neural-network-parameterized entropy ap-

proximation:

Gneural(q
node, qedge; Φ)

= U(qnode, qedge)− ǫH(qnode, qedge; Φ)
(12)

with input tensors qnode = {qi}i∈V ∈ R
N×k and qedge =

{qij}(i,j)∈E ∈ R
M×k2

. The calculation of U(qnode, qedge)
directly follows the definition of the average energy and

requires no free parameters to be learned. Neural-network-

parameterized entropy approximation is realized through a



neural network with three sets of free parameters φnode ∈
R

1×N , φedge ∈ R
1×M , φ∆ ∈ R

N×N . In particular, a

row-wise entropy calculation w.r.t. each input tensor is

firstly performed, producing intermediate values: hnode =
{H(qi)}i∈V ∈ R

N×1 and hedge = {H(qi, qj)}(i,j)∈E ∈
R

M×1. The approximate entropy is then computed as

H(qnode, qedge; Φ) = φnodehnode+

exp(φedge)hedge + sum(ReLU(φ∆)⊙∆h)
(13)

where ∆h ∈ R
N×N with ∆h(i, j) = H(qi, qj) − H(qi)

if (i, j) ∈ E . Otherwise, ∆h(i, j) = 0. ⊙ denotes

element-wise product. Neural network parameters Φ =
{φnode,φedge,φ∆} are unknown and are to be learned. We

theoretically prove the convexity of the proposed neural-

augmented free energy and the minimal MAP inference er-

ror bound through the following propositions.

Proposition 1. Neural-augmented free energy Gneural is

provable convex with a strictly concave neural-network-

parameterized entropy approximation H(qnode, qedge; Φ).

Proof: We prove this proposition by showing the neural-

network-parameterized entropy approximation is strictly

concave. We first introduce the definition of concave en-

tropy approximation [Heskes, 2004, Weiss et al., 2012]:

Definition (Concave Entropy Approximation). An ap-

proximate entropy of Eq. 10 is strictly concave over local

polytope L(G) if there exist ĉij > 0, α̂ij ≥ 0 and ĉi such

that ci = ĉi −
∑

j∈N (i) α̂ij and cij = ĉij + α̂ij + α̂ji. The

approximate entropy becomes

H({qi}, {qij}) =
∑

i∈V

ĉiH(qi)+

∑

(i,j)∈E

ĉijH(qi, qj) +
∑

i∈V

∑

j∈N (i)

α̂ij(H(qi, qj)−H(qi))
(14)

With any set of parameters ĉij > 0, α̂ij ≥ 0 and ĉi, the

approximate entropy of Eq. 14 is strictly concave. Tensor

operation defined in neural-augmented free energy (Eq. 13)

is equivalent to Eq. 14, with φnode, φedge and φ∆ cor-

responding to {ĉi}i∈V , {ĉij}(i,j)∈E and {α̂ij}i∈V,j∈N (i),

respectively. exp(·) ensures the satisfaction of the con-

straint ĉij > 0. ReLU(·) ensures the satisfaction of the con-

straint α̂ij ≥ 0. By definition of concave entropy approxi-

mation, the neural-network-parameterized entropy approx-

imation H(qnode, qedge; Φ) is strictly concave. The neural-

augmented free energy Gneural is thus convex over local

polytope L(G).

We now show the minimal MAP inference error with the

proposed neural-augmented free energy is upper bounded

by an optimal entropy approximation. We first define the

MAP inference error and then present the proposition

with its proof. Let q∗
Φ denote the optimal solution set

{q∗Φ,i, q
∗
Φ,ij}i∈V,(i,j)∈E minimizing the neural-augmented

free energy Gneural parameterized by Φ. Given a tar-

get probability distribution p, the MAP inference error

∆map(q
∗
Φ, p) is defined as

∆map(q
∗
Φ, p) =

∑

i∈V

∑

xi

(pi(xi)− q∗Φ,i(xi))θi(xi)

+
∑

(i,j)∈E

∑

xi,xj

(pij(xi, xj)− q∗Φ,ij(xi, xj))θij(xi, xj)
(15)

with pi =
∑

x\xi
p(x) and pij =

∑
x\(xi∪xj)

p(x). By

definition, ∆map(q
∗
Φ, p) ≥ 0 [Hazan and Shashua, 2010].

Proposition 2. MAP inference error is upper bounded by

an entropy approximation scaled by ǫ, i.e.,

∆map(q
∗
Φ, p) ≤ ǫH(q∗

Φ; Φ) (16)

The minimal MAP inference error is hence upper bounded

by an optimal entropy approximation with Φ∗ =
argminΦ H(q∗

Φ; Φ).

Proof: Given the optimal solution set q∗
Φ minimizing the

neural-augmented free energy Gneural parameterized by Φ,

we have

Gneural({q
∗
Φ,i}, {q

∗
Φ,ij}; Φ) ≤ Gneural({pi}, {pij}; Φ) (17)

By reorganizing the above equation, we have

∆map(q
∗
Φ, p) ≤ ǫ(H(q∗

Φ; Φ)−H({pi}, {pij}; Φ)) (18)

Given the fact that H({pi}, {pij}) ≥ 0, we can have

∆map(q
∗
Φ, p) ≤ ǫH(q∗

Φ; Φ) (19)

With an optimal set of neural network parameters Φ∗ =
argminΦ H(q∗

Φ; Φ), the error bound becomes

∆map(q
∗
Φ∗ , p) ≤ ǫH(q∗

Φ∗ ; Φ∗) (20)

We thus show that the minimal MAP inference error is up-

per bounded by an optimal entropy approximation. Propo-

sition 2 is the basis for the proposed V-MPNN and it moti-

vates the training of our neural-network-parameterized en-

tropy approximation as we will introduce in Section 3.2.3.

In the end, we provide a brief comparison between the

proposed neural-augmented free energy and existing vari-

ational BP algorithms:

Proposition 3. Neural-augmented free energy subsumes

existing variational distribution families (e.g., BP and

TRW-MP) as a strict generalization. The optimal MAP

inference performance achieved with neural-augmented

free energy is superior or comparable to existing

variational distribution families, i.e., ∆map(q
∗
Φ∗ , p) ≤

∆map(q
∗
Φfix , p)

Proof: By manipulating neural network parameters, differ-

ent existing variational distribution families can be realized



with neural-augmented free energy. For example, neural-

augmented free energy with Φ specified as φnode = 1 −
|N (i)|, φedge = 1 and φ∆ = 0 is equivalent to BP. Further-

more, given the fact that q∗
Φ∗ = argminq Gneural(q; Φ

∗),
we have

U(q∗
Φ∗)− ǫH(q∗

Φ∗ ; Φ∗) ≤ U(q∗
Φfix)− ǫH(q∗

Φfix ; Φ
∗) (21)

with q∗
Φfix denotes the optimal variational distribution min-

imizing neural-augmented free energy specified with fixed

parameters Φfix. By subtracting U({pi}, {pij}) on both

sides of Eq. 21 and a re-organization, we have

∆map(q
∗
Φ∗ , p) ≤ ∆map(q

∗
Φfix , p) + ǫ∆ (22)

with ∆ = H(q∗
Φ∗ ; Φ∗)−H(q∗

Φfix ; Φ
∗). If ∆ ≤ 0, it is clear

that ∆map(q
∗
Φ∗ , p) ≤ ∆map(q

∗
Φfix , p). If ∆ > 0, we can

have ∆map(q
∗
Φ∗ , p) ≤ ∆map(q

∗
Φfix , p) with a sufficiently

small coefficient (ǫ → 0). To show the latter point, we first

note that ∆ = H(q∗
Φ∗ ; Φ∗)−H(q∗

Φfix ; Φ
∗) ≤ H(q∗

Φ∗ ; Φ∗).
We then show that H(q∗

Φ∗ ; Φ∗) is upper bounded by a con-

stant and finite value δ. For clear derivation, we use no-

tation q and Φ and derive for H(q; Φ) in the following.

The derivation applies to arbitrary q and Φ. To derive δ,

we firstly re-organize the entropy approximation H(q; Φ)
defined in Eq. 13 as

H(q; Φ) =
∑

i∈V

(φnode
i −

∑

j∈N (i)

ReLU(φ∆
ij))H(qi)+

∑

(i,j)∈E

(exp(φedge
ij ) + ReLU(φ∆

ij) + ReLU(φ∆
ji))H(qi, qj)

(23)

We now show that both H(qi) and H(qi, qj) are bounded

by a constant value. For H(qi), applying the Jensen’s in-

equality yields,

H(qi) = −
∑

xi

qi(xi) log qi(xi) =
∑

xi

qi(xi) log
1

qi(xi)

≤ log
∑

xi

qi(xi)

qi(xi)
= log ki

(24)

where ki indicates the number of states of variable xi. Sim-

ilarly, we have H(qi, qj) ≤ log kij where kij indicates

the number of joint configurations of variables xi and xj .

Given the bounds for H(qi) and H(qi, qj), we can con-

clude

H(q; Φ) ≤ δ =
∑

i∈V

|φnode
i −

∑

j∈N (i)

ReLU(φ∆
ij)| log ki+

∑

(i,j)∈E

(exp(φedge
ij ) + ReLU(φ∆

ij) + ReLU(φ∆
ji)) log kij

(25)

δ is only a function of underlying graph and parameters Φ.

Thus, we have ∆ ≤ H(q∗
Φ∗ ; Φ∗) ≤ δ. With ∆ ≤ δ, we

now can show

∆map(q
∗
Φ∗ , p) ≤ ∆map(q

∗
Φfix , p) + ǫδ (26)

δ is not a function of ǫ. Furthermore, given the mild as-

sumption that neural parameters Φ are of finite values, δ

is always finite. With a constant and finite upper bound

δ, there always exists a sufficiently small ǫ such that

∆map(q
∗
Φ∗ , p) ≤ ∆map(q

∗
Φfix , p). Theoretically, we show

that the optimal MAP inference performance achieved with

neural-augmented free energy is superior or comparable to

existing variational distribution families.

3.2.2 Minimization of Neural-augmented Free

Energy with MPNN

To minimize the neural-augmented free energy, we employ

a message passing neural network (MPNN). In particular,

qnode = {qi}i∈V and qedge = {qij}(i,j)∈E are parame-

terized by an MPNN, leading to unary marginal estimate

qnode(Ψ) and pairwise marginal estimate qedge(Ψ). We de-

tail the MPNN module in the following.

Unary marginal estimation. We map each node in MPNN

to a variable in MRF with hidden feature hi ∈ Rki . ki is

the number of possible states of variable xi. In total, we

have node features h = {h1,h2, ...,hN} and N is the total

number of nodes. Node feature hi corresponds to the unary

marginal estimation in logarithmic space, up to a scale fac-

tor zi. At every iteration t, each node receives a message

from each of its neighboring nodes as

mt+1
j→i = M(ht

i,m
t
i→j , θij , z

t
j) (27)

M is a message function realized via a multi-layer per-

ceptron (MLP). The messages are then aggregated through

summation, i.e., mt+1
i =

∑
j∈N (i) m

t+1
j→i. Each node then

updates its hidden state with the aggregated message as:

ht+1
i = U(mt+1

i , θi, zi) = mt+1
i + θi − ln(zt+1

i ) (28)

U is a node update function and is customized based on

BP’s belief equation, instead of employing a gated recur-

rent unit (GRU) as a standard MPNN. Scale factor zi is

calculated as zt+1
i =

∑
xi
exp(θi(xi) + mt+1

i (xi)). The

update process is repeated until convergence. Estimated

marginal probability of variable xi (i.e., qi) is obtained as

qi = exp(h
(T )
i ) (29)

where h
(T )
i is the hidden feature from the last iteration.

Pairwise marginal estimation. The pairwise marginal es-

timation is obtained as

qij = exp(θij + h
(T )
i + h

(T )
j −mT

j→i −mT
i→j) (30)

where h
(T )
i and h

(T )
j are the respective hidden features for

i-th node and j-th node from the last iteration of MPNN.

Eq. 30 is defined based on BP’s pairwise belief equation.

We customize our MPNN based on BP with only mes-

sage function M containing free parameters that need to

be learned. The free parameters of MPNN Ψ hence refers

to parameters within the message function M.



3.2.3 Training Objectives

In summary, we have two sets of parameters to be learned:

Φ and Ψ. The total training objective is based on neural-

augmented free energy, i.e.,

min
Ψ

max
Φ

Gneural(q
node(Ψ), qedge(Ψ); Φ) (31)

under the local polytope constraint L(G). To effectively per-

form the training with the neural-augmented free energy,

we consider a two-phase alternative update. For each itera-

tion r, we first update Ψ given the neural-augmented free

energy specified with current Φr, i.e.,

Ψr+1 = argmin
Ψ

Gneural(q
node(Ψ), qedge(Ψ); Φr) (32)

The constraints within local polytope L(G) are naturally

satisfied by adopting BP belief equations for customizing

our MPNN. We then update Φ. By definition of Gneural in

Eq. 12, we have maxΦ Gneural(Φ) = minΦ H(Φ) and the Φ
is updated as

Φr+1 = argmin
Φ

H(qnode(Ψr+1), qedge(Ψr+1); Φ) (33)

Following proposition 2, we theoretically prove that the en-

tropy is the upper bound of the MAP inference error and

hence updating Φ by minimizing the entropy is equivalent

to minimizing the MAP inference error. We update two sets

of parameters alternatively until convergence. After train-

ing, only the MPNN module with the optimal parameters

Ψ∗ is required for MAP inference. MAP configuration is

obtained as

x∗
i = arg max

xi∈χi

qi(xi; Ψ
∗) (34)

4 EXPERIMENTS

Datasets. We consider 13 classic graphs for evaluation –

these are the most representative graphs of real world mod-

els, and are employed widely in related works [Yoon et al.,

2019]. Their structures are illustrated in Figure 2. There

are three loop-free graphs, i.e., STAR, TREE and PATH. The

other 10 graphs are loopy graphs, with the COMPLETE

graph being the most complex one. To simulate graphi-

cal models with different parameters, we randomly sam-

ple from uniform distributions [Wainwright et al., 2005a].

Particularly, we assume θi(xi) = bixi and θij(xi, xj) =
Jijxixj with xi = {−1, 1}. Pairwise parameters Jij are

sampled from a uniform distribution, i.e., Jij = Jji ∼
U [−1, 1]. Unary parameters bi are sampled from a uniform

distribution as bi ∼ U [−0.05, 0.05]. For each type of graph,

we simulate 1000 graphs for training and 100 graphs for

testing. GT MAP configuration of each simulated graph is

computed by enumeration. Since enumeration is a computa-

tionally expensive process, we limit the sizes of the graphs.

Particularly, we consider two graph sizes: N=9 and N=15.

Evaluation metrics. We employ the accuracy of estimated

MAP configuration as the evaluation metric [Yoon et al.,

2019]. Given a GT MAP configuration x∗ = {x∗
1, ..., x

∗
N},

and an estimated MAP configuration x̂ = {x̂1, ..., x̂N}, the

accuracy of x̂ is calculated as
#(x∗

i =x̂i)
N

. We report the av-

erage accuracy over testing graphs.

Experiment settings. ADAM optimizer is employed for

training with a learning rate 1e − 4. In Eq 12, ǫ = 0.0001.

For the message function M, a five-layer MLP is adopted

and hidden features are of dimension 256. Messages prop-

agate for T = 10 iterations. MPNN is pre-trained at a mes-

sage level, where a mean squared error between messages

from M and messages from BP is used as the loss function.

4.1 COMPARISON TO STATE-OF-THE-ART

METHODS

We compare the proposed V-MPNN to different state-of-

the-art methods for approximate MAP inference. Specifi-

cally, we consider both training-free methods and training-

based methods for comparison. Training-free methods refer

to optimization algorithms that do not contain neural net-

work components and thus require no training procedure,

such as the belief propagation algorithm. In this work, we

limit our comparisons to message-passing-based optimiza-

tion approaches. Training-based methods refer to neural-

network-based methods for probabilistic inference tasks.

4.1.1 Comparison to Training-free Methods

We consider three training-free methods: BP [Murphy et al.,

2013], TRW-MP [Wainwright et al., 2005a] and max prod-

uct linear programming (MPLP) [Globerson and Jaakkola,

2007]. For all these three methods, we apply the same

stopping criterion: if the maximum number of iteration t

is larger than 200 or the average difference between be-

liefs from two consecutive iterations is sufficiently small,

i.e., 1
N

∑N
i=1 |b

t+1
i − bti|

2 < 1e − 7, we break the algo-

rithm and obtain the estimated inference results1. Follow-

ing [Wainwright et al., 2005a], for both BP and TRW-MP,

we apply message damping in log-space with damping pa-

rameter set to be 0.5. The edge appearance probability in

TRW-MP is set as ρij =
|V|−1
|E| .

Results are presented in Table 1. As shown, we can see

that V-MPNN achieves the best average accuracy with

both sizes of graphs. On each type of graph, V-MPNN

achieves overall better performance than the other three

baselines. On loopy graphs, though the performance of all

the algorithms decreases as the complexity of the graph

increases, V-MPNN achieves better accuracy compared to

the other three baselines. On CIRCULAR LADDER with 15

1The maximum number of iterations is set to be 200 because

the number of converging runs stops changing after 200.



Figure 2: Structures of 13 classic graphs with 9 nodes. Graphs on the first row from left to right are: STAR, TREE, PATH,

CIRCLE, LADDER, 2D GRID, CIRCULAR LADDER; graphs on the second row from left to right are: BARBELL, LOLLIPOP,

WHEEL, BIPARTITE, TRIPARTITE, COMPLETE

Table 1: Comparison to training-free methods

Graph
N=9 N=15

BP TRW-BP MPLP V-MPNN BP TRW-BP MPLP V-MPNN

STAR 1.0 .99 1.0 .93 1.0 1.0 1.0 .74

TREE 1.0 .99 1.0 .96 1.0 1.0 1.0 .93

PATH 1.0 1.0 1.0 .97 1.0 1.0 1.0 .93

CYCLE .91 .76 .90 .85 .84 .84 .89 .87

LADDER .68 .66 .72 .77 .63 .61 .67 .72

2D GRID .57 .48 .74 .74 .56 .50 .63 .69

CIRCULAR LADDER .62 .50 .76 .83 .61 .53 .63 .73

BARBELL .57 .55 .67 .71 .60 .57 .64 .66

LOLLIPOP .59 .60 .61 .88 .62 .55 .58 .67

WHEEL .56 .44 .62 .70 .58 .50 .62 .69

BIPARTITE .54 .52 .62 .74 .62 .56 .55 .64

TRIPARTITE .57 .62 .52 .68 .52 .55 .51 .65

COMPLETE .56 .60 .49 .65 .54 .54 .53 .60

MEAN .71 .67 .73 .80 .70 .67 .69 .73

nodes, V-MPNN achieves 73% accuracy, which is 20%
higher than the accuracy achieved by TRW-BP. On loop-

free graphs, such as STAR, TREE, and PATH, BP is guar-

anteed to produce the exact MAP configuration, and thus

always achieves 100% accuracy. Though the proposed V-

MPNN is theoretically shown to be a strict generalization

of BP, training of the MPNN is not guaranteed to find the

global optimal, leading to MAP inference errors on loop-

free graphs.

4.1.2 Comparison to Training-based Methods

We compare the proposed V-MPNN to a training-based

method: node-GNN [Yoon et al., 2019] for MAP inference.

Node-GNN2 is the state-of-the-art method that employs

neural networks for probabilistic inference tasks. We em-

ploy the suggested hyper-parameter settings stated in the

paper to perform the experiments.

Results are presented in Table 2. C-LADDER denotes CIR-

CULAR LADDER. As shown, V-MPNN achieves significant

2https://github.com/ks-korovina/pgm_graph_inference.

Table 2: Comparison to training-based method

Graph
N=9 N=15

Node-GNN V-MPNN Node-GNN V-MPNN

STAR .65 .93 .52 .74

TREE .77 .96 .75 .93

PATH .81 .97 .73 .93

CYCLE .79 .85 .75 .87

LADDER .72 .77 .69 .72

2D GRID .72 .74 .74 .69

C-LADDER .81 .83 .71 .73

BARBELL .72 .71 .71 .66

LOLLIPOP .72 .88 .69 .67

WHEEL .68 .70 .70 .69

BIPARTITE .75 .74 .74 .64

TRIPARTITE .73 .68 .72 .65

COMPLETE .82 .65 .70 .60

MEAN .75 .80 .70 .73

better average accuracy with both sizes of graphs without

requiring exact MAP configurations for training. Across

different types of graphs, V-MPNN achieves overall better

performance than node-GNN and significantly outperforms

node-GNN on loop-free graphs. On TREE with 9 nodes,

V-MPNN achieves 96% accuracy, which is 19% higher



than the accuracy achieved by node-GNN. These results

show that, under the guidance of well-established algorith-

mic knowledge, the proposed V-MPNN can be trained to

achieve outstanding performance, without requiring exact

MAP configurations as annotations.

4.2 ABLATION STUDY

In our experiments, MPNN is pre-trained with BP’s mes-

sage equation. In practice, we find this pre-training step is

crucial since directly using the neural-augmented free en-

ergy objective Gneural without pre-training can easily make

training diverge. We thus adopt the pre-training step and

then fine tune the model with Gneural. To better understand

the effectiveness of the neural-augmented free energy ob-

jective Gneural, we perform an ablation study. Particularly,

we compare the performance of V-MPNN to the perfor-

mance of V-MPNN with pre-training only. We consider 13

classic graphs with 9 nodes. Results are shown in Table 3.

Table 3: Effectiveness of NFE update (N=9)

Graph pre-training pre-training+fine tuning

STAR .93 .93

TREE .96 .96

PATH .97 .97

CYCLE .80 .85

LADDER .77 .77

2D GRID .72 .74

C-LADDER .82 .83

BARBELL .70 .71

LOLLIPOP .88 .88

WHEEL .70 .70

BIPARTITE .72 .74

TRIPARTITE .66 .68

COMPLETE .64 .65

MEAN .79 .80

As shown, fine-tuning through Gneural improves V-MPNN’s

average performance compared to V-MPNN with pre-

training only. On CYCLE, the performance of V-MPNN is

improved by 5% with Gneural through fine tuning. From the

results, we can see that the neural-augmented free energy

Gneural introduces important effect on the inference perfor-

mance of V-MPNN, particularly on loopy graphs.

5 CONCLUSION

In this work, we proposed a variational message passing

neural network for MAP inference. Instead of relying on

a specific family of variational distributions, we proposed

a neural-augmented free energy where variational assump-

tions are parameterized via a neural network. An optimal

family of variational distributions is learned through train-

ing. An MPNN is employed for efficient inference through

message passing. Training of the MPNN is performed un-

der the guidance of neural-augmented free energy, with-

out requiring exact MAP configurations as annotations. In

our experiments, the proposed V-MPNN outperforms both

state-of-the-art training-free and training-based methods

for MAP inference, demonstrating the effectiveness of the

proposed method.
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