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Abstract
Causal discovery is to learn cause-effect relation-
ships among variables given observational data
and is important for many applications. Existing
causal discovery methods assume data sufficiency,
which may not be the case in many real world
datasets. As a result, many existing causal dis-
covery methods can fail under limited data. In
this work, we propose Bayesian-augmented fre-
quentist independence tests to improve the perfor-
mance of constraint-based causal discovery meth-
ods under insufficient data: 1) We firstly introduce
a Bayesian method to estimate mutual information
(MI), based on which we propose a robust MI based
independence test; 2) Secondly, we consider the
Bayesian estimation of hypothesis likelihood and
incorporate it into a well-defined statistical test, re-
sulting in a robust statistical testing based indepen-
dence test. We apply proposed independence tests
to constraint-based causal discovery methods and
evaluate the performance on benchmark datasets
with insufficient samples. Experiments show sig-
nificant performance improvement in terms of both
accuracy and efficiency over SOTA methods.

1 Introduction
Learning causal relations has been a fundamental and widely-
investigated topic. The causal relations are captured by a di-
rected acyclic graph (DAG), and a directed link in DAG cap-
tures cause-effect relation between two variables connected
by the link [Glymour et al., 2019]. Specifically, a directed
link from node X to node Y indicates the cause-effect rela-
tion between cause variable X and effect variable Y . Causal
discovery aims at learning a DAG capturing causal-effect re-
lationships among a set of random variables from observa-
tional data, and one of the dominant approaches for causal
discovery is through the structure causal model (SCM). Exist-
ing causal discovery methods focus on learning a DAG with
high confidence from sufficient data samples [Yu et al., 2019].
Not much attention, however, has been paid to performance
improvement of causal discovery under limited data. Such
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work is important, as even in the era of big data, there are
still domains in which the availability of data is very limited.
For example, in biological or clinical disciplines, data can
be severely insufficient either because of high cost or lack
of cases from which data is collected [Mukherjee and Speed,
2007]. Furthermore, even for applications with a vast amount
of data, the data may not adequately cover all possible states
of the nodes, leading to insufficient data for certain states. For
example, the observed data under the absence of earthquake
is adequate, while the observed data under the occurrence of
earthquake is limited, due to the fact that earthquake rarely
happens in nature.

In this paper, we employ constraint-based methods to learn
a DAG through independence tests from observational data.
Constraint-based causal discovery methods can be performed
globally or locally. Global approaches aim at learning cause-
effect relationships among all random variables, such as PC-
stable [Colombo and Maathuis, 2014], and Sepset consis-
tent PC (SC-PC) [Li et al., 2019]. Global causal discovery
methods discussed above learn DAGs that are in the same
markov equivalent class of ground truth DAG. Further tests
under certain assumptions about the graph or data distribu-
tion are needed to resolve the causal ambiguity [Glymour et
al., 2019]. In this paper, we focus on learning markov equiva-
lent DAGs. In contrast to global approaches, local approaches
identify the direct causes and effects of a target variable,
represented by a causal Markov Blanket [Gao and Ji, 2015;
Yang et al., 2021]. A causal Markov Blanket captures lo-
cal relationships of a target variable by identifying its par-
ents, children, and spouses. For both global and local ap-
proaches, the main challenge of constraint-based causal dis-
covery methods is that their performance highly depends on
the accuracy of the independence test. Independence test er-
ror, even one mistake in independence decision, can prop-
agate throughout the graph, causing a sequence of errors
and resulting in an erroneous DAG with incorrect orienta-
tions [Spirtes, 2010]. Hence, to perform a robust constraint-
based causal discovery, it is crucial to improve the robustness
of the independence test.

To improve the causal discovery performance under insuf-
ficient data, we propose to introduce Bayesian approaches to
independence tests for accurate and efficient constraint-based
causal discovery. Specifically, two Bayesian-augmented
frequentist independence tests are proposed, whereby we
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use Bayesian approach to reliably estimate, under low data
regime, independence test statistics used by frequentist in-
dependence tests. For both MI estimation (Sec.3.1) and hy-
pothesis likelihood estimation (Sec.3.2), we employ Bayesian
inference to calculate statistics by considering the entire pa-
rameter space instead of using a point estimate one. Given the
estimated Bayesian statistics, we follow the standard frequen-
tist framework to perform independence test. The proposed
Bayesian-augmented independence tests are then applied to
improve the constraint-based causal structure learning. We
evaluate both local and global causal discovery performance
with proposed independence tests on benchmark datasets and
compare them to state-of-the-art methods. We empirically
demonstrate the effectiveness of the proposed Bayesian ap-
proaches in improving both the accuracy and efficiency of the
local and global causal discovery under insufficient data.

2 Related Work
To handle causal discovery under insufficient data, some
methods downsize the problem domain to sub-domains. Ro-
hekar et al., [2020] approximated the structure by perform-
ing independence tests with a small fixed size of the con-
dition set. The structure was then refined by iteratively in-
creasing the condition set. A similar idea was explored in the
Recursive Autonomy Identification (RAI) method [Yehezkel
and Lerner, 2009]. Related works along this line always as-
sume that there exist sufficient data for sub-domains. Besides,
Claassen and Heskes [2012] estimated the posterior distribu-
tion of the independence hypothesis between two variables,
based on which reliability was quantified. The causal discov-
ery was then processed in decreasing order of reliability. Ro-
hekar et al., [2018] estimated posterior distribution of DAG
through bootstrap samples. The negative effect from indepen-
dence tests error was minimized through model averaging.

Some causal discovery methods address the limited data
issue by directly improving the independence test [Marx and
Vreeken, 2018]. A Bayesian-augmented frequntist indepen-
dence test based on Bayes Factor (BF) was proposed [Na-
tori et al., 2017] whereby Bayesian parameter estimate is em-
ployed in computing BF while the value of BF is then ap-
plied to a frequentist independence test. The proposed inde-
pendence test is incorporated into RAI, achieving competitive
DAG learning performance. However, a threshold is required
in [Natori et al., 2017] and the selection of threshold can be
heuristic. Instead, we propose to formulate the Bayes Fac-
tor into a well-defined statistical independence test without
requiring threshold tuning.

In addition, different approaches have been proposed for
robust independence tests under insufficient data. These
methods, however, are not aimed at improving the causal
discovery performance. Seok and Seon Kang [2015] im-
proved the estimation of mutual information (MI) by parti-
tioning the whole sample space into sub-regions. For bet-
ter MI estimation under limited data, Bayesian approaches
have been widely considered [Hutter, 2002; Archer et al.,
2013]. Besides, shrinkage estimators have also been em-
ployed [Sechidis et al., 2019; Hausser and Strimmer, 2009].
Another category of recent independence test techniques are

focused on developing non-parametric methods to improve
efficiency, such as CCIT [Sen et al., 2017] and RCIT [Strobl
et al., 2019]. These works assume the availability of suffi-
cient data and are mainly focused on continuous variables,
while we are focused on discrete ones.

3 Proposed Methods
We consider two types of independence test: MI based and
statistical testing based independence tests. We introduce
Bayesian approaches to improve both types of independence
tests through a Bayesian-augmented frequentist framework.
Particularly, for MI based approach, we employ empirical
Bayesian approach for better MI estimation under limited
data. For statistical testing based approach, we consider the
empirical Bayesian estimation of hypothesis likelihood and
formulate it into χ2 statistical independence test, providing
an accurate p-value under limited data.

3.1 Bayesian Approach for Mutual Information
Based Independence Test

The mutual information (MI) of two discrete ran-
dom variables X and Y is defined as MI(X;Y ) =∑Kx

i=1

∑Ky

j=1 P (xi, yj) log
P (xi,yj)
P (xi)P (yj) , where Kx and Ky

denote the total number of possible states of X and Y
respectively. P (xi, yj), P (xi), and P (yj) represent the
joint probability of (X,Y ), and the marginal probabilities
of X and Y respectively. By definition, MI(X;Y ) = 0
if and only if X and Y are independent. In practice, the
true MI is unknown, and the estimated MI is always larger
than zero. In the following, we denote the probability
distribution parameters as θ, i.e., P (xi) = θi, P (yj) = θj
and P (xi, yj) = θij . Conventionally, MLE is employed
to estimate θ from data as θ̂ = arg maxθ p(D|θ), where
P (D|θ) is the likelihood of parameter θ given the data D.
MI is then estimated as MI = MI(X;Y |θ̂). When data
is insufficient, MLE is not reliable [Geweke and Singleton,
1980] and MI tends to be overestimated. Instead, the full
Bayesian MI is estimated from data over the entire parameter
and hyper-parameter space, i.e.,

ˆMIfB = MI(X;Y |D)

=

∫ ∫
MI(X;Y |θ, α)p(θ, α|D)dθdα

=

∫ ∫
MI(X;Y |θ)p(θ|α,D)p(α|D)dθdα

(1)

where α is the hyper-parameter for symmetric Dirichlet prior
of θ1. The full Bayesian MI is the expected MI over the joint
posterior distribution of the parameters and hyper-parameter,
i.e., p(θ, α|D). The integration over hyper-parameter α can
be computationally challenging [Archer et al., 2013]. In-
stead of marginalizing out α, we propose to maximize it out.
Particularly, we approximate the integration over the hyper-
parameter space by its mode α∗ that maximizes a posterior

1As we have no prior preference on the elements of the Dirichlet
distribution, we assume symmetric Dirichlet distribution, i.e., each
entry in α shares the same value and we denote it as α.



(MAP) of α, i.e., α∗ = arg maxα p(α|D). By assuming uni-
form distribution of p(α), we have α∗ = arg maxα p(D|α).
The likelihood p(D|α) can be computed as (See Appx.A for
details),

p(D|α) = N !
Γ(Kα)

Γ(Kα+N)

K∏
i=1

Γ(α+ ni)

Γ(α)ni!
(2)

whereK is the number of states for the random variable, ni is
the number of samples for state i, and N =

∑K
i ni. P (D|α)

follows Polya distribution and Γ(x) is the gamma function.
We solve for α∗ with a fixed-point update [Minka, 2000].

Given α∗, the full Bayesian method is converted to the em-
pirical Bayesian method, and we have the proposed empirical
Bayesian MI M̂I

eB
defined as,

M̂I
eB

=

∫
MI(X;Y |θ)p(θ|D,α∗)dθ (3)

with a closed-form solution (See Appx.A for details):

M̂I
eB

= ψ(N + α∗K + 1)−
∑
ij

nij + α∗

N + α∗K
[ψ(ni + α∗Ky + 1)

+ ψ(nj + α∗Kx + 1)− ψ(nij + α∗ + 1)

(4)

where ψ(x) is the digamma function. ni and nj are the num-
ber of samples for X = i and Y = j respectively, and nij is
the number of samples for (X,Y ) = (i, j). The closed-form
solution to empirical Bayesian estimation of MI was firstly
presented in [Hutter, 2002], based on which we propose our
approach. Our contribution lies in automatically estimating
α∗ by maximizing p(α|D) instead of manually selecting α as
in Hutter’s method. Given the estimated MI, we compare it
against a pre-defined threshold for independence test. If MI
is smaller than the threshold, two random variables will be
declared to be independent, and dependent otherwise.

3.2 Bayesian Approach for Statistical Testing
Based Independence Test

We now introduce our proposed Bayesian approach to im-
prove the statistical testing based independence test. We
firstly consider a standard independence test, G test [McDon-
ald, 2009], which is a likelihood ratio test with null hypoth-
esis assuming two random variables are independent. G test
is a widely used statistical test. As the same with other sta-
tistical tests, G test doesn’t require threshold tuning and the
significance level is set to be 5% by default. The formula
for the statistic G reads as G = −2

∑Kx

i=1

∑Ky

j=1 nij ln
θ̂iθ̂j

θ̂ij

where θ̂ = arg maxθ P (D|θ). Samples D = {Dn}Nn=1 are
i.i.d given parameter θ̂ and the statistic G follows asymp-
totic χ2

df=(Kx−1)(Ky−1) distribution, based on which a statis-
tical test can be performed (See Appx.B for detailed deriva-
tions). As MLE parameter estimates are not reliable un-
der insufficient data, leading to inaccurate estimation of the
likelihood of hypothesis, we instead consider the empirical
Bayesian estimation. Specifically, we employ the Bayes Fac-
tor (BF) [Kass and Raftery, 1995] which defines the ratio of

expected likelihoods of null hypothesis(H0) and that of the
alternative hypothesis(H1) over all possible parameter set-
tings with the posterior distributions of parameters under null
and alternate hypothesis respectively,

BF =
P (D|H0, α

0)

P (D|H1, α1)
=

∫
P (D|θ)P (θ|H0, α

0)dθ∫
P (D|θ)P (θ|H1, α1)dθ

(5)

where α0 and α1 are the hyper-parameters for the symmet-
ric Dirichlet prior under null and alternate hypothesis re-
spectively. Both hypothesis likelihoods P (D|H0, α

0) and
P (D|H1, α

1) can be analytically solved, and BF can be com-
puted (See Appx.C for detailed derivations). However, BF
can’t be directly applied to a statistical test because samples
D = {Dn}Nn=1 are not i.i.d given hyper-parameter α and
BF no longer follows the χ2 distribution under the null hy-
pothesis. Detailed discussions on this are in Appx.C. Instead,
we propose to approximate P (D|α) by a multinomial dis-
tribution and calculate modified parameters of multinomial
distribution with α taken into account, as both capture the
distributions for integer random variables, i.e.,

P (D|α) ≈ P (D|θ̃) =
N !∏K
i=1 ni!

K∏
i=1

θ̃i
ni (6)

where K is the total number of states, and N =
∑K
i=1 ni is

the total number samples with ni being the number of sam-
ples for state i. θ̃i are the modified parameters of the multi-
nomial distribution. θ̃i = g(ni,α)

g(N,Kα) with g(ni, α) = ani + bα

where Λ =

(
a
b

)
are unknown coefficients. In summary,

the motivations for the proposed approximation in Eq. 6 are
two folds: 1) we formulate BF into a statistical test whereby
threshold can be automatically decided; 2) different from G
statistic using MLE parameter estimates, we use modified pa-
rameter estimates with prior α incorporated. By plugging the
P (D|α) (defined in Eq. 2) into Eq. 6, it is clear that to satisfy
Eq. 6, we must have ni ln g(ni, α) = ln Γ(ni+α)− ln Γ(α).
Given {ni}Ki=1 and α, we can construct a system of K such
equations through which we can solve for Λ∗, i.e.,

Λ∗ = arg min
Λ
||MΛ− T ||22 = (M tM)−1M tT (7)

with M =

n1, α
n2, α
...

nK , α

, T =

 t(n1, α)
t(n2, α)
...

t(nK , α)

, and t(ni, α) =

exp( 1
ni

(ln Γ(ni + α) − ln Γ(α))). Given Λ∗, we have θ̃i
as θ̃i = g(ni,α)

g(N,Kα) = a∗ni+b
∗α

a∗N+b∗Kα . P (D|θ̃) can well ap-
proximate P (D|α) (Empirical justifications can be found in
Appx.D). Our proposed approximation is different from the
method provided in [Minka, 2000] where the Polya distribu-
tion P (D|α) is interpreted as a multinomial distribution with
modified counts ñi. In addition, our proposed estimation can
better approximate the Polya distribution given the symmetric
Dirichlet prior (Detailed derivations and empirical evaluation
are in Appx.D) compared to [Minka, 2000]. We then approx-
imate the hypothesis likelihood under null and alternative hy-
pothesis respectively and obtain a modified Bayes Factor B̃F



B̃F =
P (D|θ̃, H0)

P (D|θ̃, H1)
=

∏Kx

i=1 θ̃i
ni ∏Ky

j=1 θ̃j
nj∏KxKy

i=1,j=1 θ̃ij
nij

(8)

We obtain the statistic BFchi2 for the statistical test as,

BFchi2 = −2 ln B̃F = −2

Kx∑
i=1

Ky∑
j=1

nij ln
θ̃iθ̃j

θ̃ij
(9)

The statistic BFchi2 asymptomatically follows the
χ2
df=(Kx−1)(Ky−1) distribution (Details are in Appx.D).

If p-value is smaller than the significance level, we reject
the null hypothesis and accept the alternative hypothesis.
It is worth noting that BF can be directly applied for a
frequentist independence test where a pre-defined threshold
η is required [Natori et al., 2017]. The value of the threshold
is unconstrained [Kass and Raftery, 1995] making it hard to
be properly selected. Instead, our approach only requires a
significant level for independence test which is usually set to
be 5% by default. Like conventional likelihood ratio test, our
method indeed requires the asymptotic assumption. But with
the use of Bayesian estimation, our method is less reliant
on asymptotic assumption as demonstrated by experiments.
As conventional likelihood ratio test is sound, our method
should also be sound.

It is generally believed that Bayesian approach for parame-
ter estimation is better than MLE under insufficient data [Kr-
uschke, 2013], which motivates our Bayesian-augmented fre-
quentist approaches. We theoretically show that Bayesian
estimation is always better than MLE for parameter es-
timation with smaller estimation variance (Details are in
Appx.E). Through exhaustive experiments, we further em-
pirically demonstrate the robustness of Bayesian approaches
under limited data through improved performance on both in-
dependence test and causal discovery. While our discussion
focuses on marginal independence test, our methods can be
straightforwardly applied to conditional independence test as
they share the same mechanism. In fact, when applied to
causal discovery, our methods are applied to primarily per-
form conditional independence tests.

4 Experiments
We evaluate both the local and global constraint-based causal
discovery performance on benchmark datasets. Our work is
to improve independence tests, so as to improve causal dis-
covery under insufficient data. We thus focus our evalua-
tions on constraint-based methods. Through exhaustive ex-
periments, we show that our approaches can significantly im-
prove causal discovery performance in terms of both accu-
racy and efficiency over state-of-the-art methods. Besides,
we compare proposed independence tests to state-of-the-art
independence tests to further show the effectiveness of the
proposed methods.
Experiment Settings. We employ six benchmark datasets2

that are widely used for causal discovery evaluation:
CHILD, INSURANCE, ALARM, HAILFINDER, CHILD3

2https://www.bnlearn.com/bnrepository/.

and CHILD5. Statistical information of datasets are in Appx.
F. The causal discovery performance is evaluated in terms
of both accuracy and efficiency. For accuracy, we employ
the structural hamming distance (SHD) [Tsamardinos et al.,
2006a]. SHD computes the number of extra and incorrect
(missing and reverse) edges in the learned causal structure
compared to the ground truth one. For efficiency, we con-
sider the number of conducted independence test. We per-
form evaluation on a number of small sized datasets. These
small sample sizes are chosen to mimic insufficient data sce-
nario through significantly small number of samples per con-
figuration. For each sample size, we repeat 10 runs and report
the averaged performance over 10 runs. In addition, we re-
port standard derivation of SHD. All the experiments are per-
formed on a laptop with a 2.3 GHz 8-Core Intel Core i9 pro-
cessor using CPU only (Specific running time can be found
in Appx. F).

4.1 Local Constraint-based Causal Discovery

For the local causal discovery, we employ Causal Markov
Blanket (CMB) [Gao and Ji, 2015], which is the state-of-the-
art method. CMB employs constraint-based approach, which
performs conditional independence test using MI to identify
the CMB of a target node. We incorporate the proposed inde-
pendence tests into CMB and compare to the original CMB.
We denote cIeB as the CMB with empirical Bayesian MI
estimation and cBFchi2 as CMB with BFchi2 independence
test. SHD is 0 if learned CMB is identical to the ground truth
CMB. Details on algorithm settings (e.g., hyper-parameters)
are in Appx. F.

From Table 1, we can see that both cIeB and cBFchi2 out-
perform the CMB on all datasets in terms of both accuracy
and efficiency under insufficient data. The number of per-
formed independence test reduces dramatically. On ALARM
dataset, cIeB only performs 2210 independence tests on av-
erage, while CMB requires 17907 tests on average. The pro-
posed methods improve the accuracy significantly. On IN-
SURANCE dataset, cBFchi2 improves the averaged SHD by
3.92 compared to CMB. From the results we can see that, by
introducing Bayesian approaches, both the accuracy and the
efficiency can be improved. Comparing the performance be-
tween the two proposed methods, cBFchi2 achieves overall
better accuracy, and cIeB is more efficient with the fewest
number of independence test on all datasets.

It is worth noting that the number of independence test in-
creases with reduced samples in CMB, but decreases with the
proposed methods. The reason is that under insufficient data,
MLE will lead to an overestimated MI. Hence, conventional
MI based independence test is likely to declare dependence
when data size is small, resulting in a large number of inde-
pendence test. As the sample size increases, the incorrect
dependency declarations will be corrected and the number
of independence tests will decrease. On the other hand, our
methods are more accurate and show a preference of inde-
pendence under insufficient data, resulting a small number of
performed independence test.



SHD #Independence Test
Dataset Size cIeB cBFchi2 CMB cIeB cBFchi2 CMB

CHILD 100 2.90±0.28 2.65±0.40 5.94±0.65 1008 1154 16869
300 2.61±0.26 2.64±0.59 6.95±0.63 1709 1926 14578
500 2.29±0.31 2.24±0.84 4.52±0.58 2524 4751 13873

MEAN 2.60 2.51 5.80 1747 2610 15107

INSURANCE 100 3.89±0.34 3.98±0.39 7.18±0.66 1261 1363 22168
300 3.47±0.21 3.24±0.12 7.59±0.57 1541 2977 18043
500 3.11±0.21 2.98±0.13 7.20±0.67 1477 3949 14881

MEAN 3.49 3.40 7.32 1426 2763 18364

ALARM 100 2.69±0.07 2.39±0.19 5.20±0.71 1424 1109 27492
300 2.50±0.19 2.27±0.15 4.36±0.83 2398 3885 14900
500 2.40±0.11 2.26±0.19 3.53±0.62 2807 4766 11328

MEAN 2.53 2.31 4.36 2210 3253 17907

HAILFINDER 500 3.33±0.02 4.22±0.04 7.90±0.11 676 1923 183350
800 3.56±0.01 4.49±0.13 7.12±0.09 1098 2145 169705

1000 3.56±0.09 4.45±0.08 7.10±0.11 1924 2621 119815
MEAN 3.48 4.39 7.37 1233 2229 157620

CHILD3 500 2.46±0.23 2.53±0.18 4.72±0.28 7168 7417 14789
800 3.01±0.13 2.67±0.11 3.57±0.21 6720 7802 9765

1000 2.90±0.07 2.57±0.23 3.09±0.19 8424 8285 9516
MEAN 2.79 2.59 3.79 7437 7835 11357

CHILD5 500 2.87±0.05 2.62±0.19 5.00±0.15 5234 11126 16819
800 2.66±0.21 3.02±0.13 5.75±0.32 8236 11424 51967

1000 2.82±0.23 2.99±0.07 4.34±0.19 13384 9956 36888
MEAN 2.78 2.88 5.03 8951 10835 26322

Table 1: Local causal discovery performance under insufficient data

4.2 Global Constraint-based Causal Discovery
Majority of global causal discovery algorithms are under
causal sufficiency assumption, whereby all random variables
are observed in data and there is no latent variable. How-
ever, causal sufficiency assumption can be violated since
the real data may fail to capture the values for all the vari-
ables, leaving some variables to be latent. To address this
issue, several recent causal discovery methods [Ramsey et
al., 2012; Colombo et al., 2012] have been developed to
identify latent common confounders of the observed vari-
ables. In our evaluations, we mainly focus on standard al-
gorithms that are under causal sufficiency assumptions. We
firstly employ RAI [Yehezkel and Lerner, 2009] as our base-
line and compare to two state-of-the-art methods. Then,
to demonstrate that our proposed methods can consistently
improve causal discovery performance, we consider well-
known DAG learning algorithms: PC [Spirtes et al., 2000]
and MMHC [Tsamardinos et al., 2006b] as two additional
baselines. In the end, we consider the algorithms without
causal sufficiency assumption to demonstrate that our pro-
posed methods can be applied to different causal discovery
methods, independent of the existence of latent confounders.

Global causal discovery with causal sufficiency assump-
tion. We employ RAI as our baseline algorithm and incor-
porate the proposed independence tests. We denote rIeB
as the RAI with empirical Bayesian MI estimation, and
rBFchi2 as RAI with BFchi2 independence test. We com-
pare our approaches to two state-of-the-art methods: RAI-

BF method [Natori et al., 2017] and PC-stable [Colombo and
Maathuis, 2014]. SC-PC3 can’t be performed under insuf-
ficient data smoothly, and thus we exclude this method for
comparison. SHD is 0 if the learned DAG and the ground
truth DAG belong to the same equivalence class. Details on
algorithm settings (e.g., hyper-parameters) are in Appx. F.

From Table 2, we can see that rBFchi2 outperforms RAI-
BF and PC-stable on almost all datasets in terms of both
accuracy and efficiency. rIeB also achieves overall better
accuracy and significantly improves efficiency. For exam-
ple, on CHILD3, rBFchi2 improves the SHD by 21.7 and
27.6 compared to RAI-BF and PC-stable. In terms of effi-
ciency, on HAILFINDER, rIeB only performs 2215 inde-
pendence tests in average, while RAI-BF requires 10212 tests
in average. Comparing between the two proposed methods,
rBFchi2 achieves better accuracy and rIeB achieves better
efficiency. With the proposed methods, the number of in-
dependence tests decreases due to the reduced samples for
all datasets, which is consistent with the conclusion we have
from the local causal discovery. In addition, both RAI-BF and
PC-stable show a preference of independence under insuffi-
cient data, leading to the decreased number of independence
tests with reduced number of samples.

SinceBFchi2 essentially is only an approximate of original
BF, BF with the optimal threshold should outperform BFchi2
in principle. However, selecting the optimal threshold for
BF can be challenging and incorrect thresholds can lead to

3https://github.com/honghaoli42/consistent pcalg.



SHD #Independence Test
Dataset Size rIeB rBFchi2 RAI-BF PC-Stable rIeB rBFchi2 RAI-BF PC-Stable

CHILD 100 21.6±2.1 24.2±2.3 30.4±3.7 23.8±1.7 283 314 893 559
300 19.9±2.7 17.7±1.8 23.5±4.4 22.6±1.9 342 546 997 986
500 17.6±1.7 16.0±2.9 22.6±2.4 24.4±2.2 424 754 975 1317

MEAN 19.7 19.3 25.5 23.6 350 538 955 954

INSURANCE 100 48.9±1.3 50.1±2.9 54.9±3.6 52.0 ±1.5 486 604 905 1217
300 47.3±0.8 44.5±2.0 46.6±3.2 50.2±3.1 576 986 1011 1250
500 49.5±1.8 39.4±3.0 47.1±2.2 50.7±2.5 662 1200 1120 2326

MEAN 48.6 44.7 49.5 51.0 575 930 1012 1598

ALARM 100 44.5±2.2 42.7±2.3 48.4±5.8 45.8 ±4.9 891 958 1591 2215
300 40.7±3.0 36.1±4.5 35.3±5.4 34.6±2.7 1158 1752 1881 3398
500 40.0±3.1 29.8±5.1 29.8±5.2 36.5 ±5.7 1433 2018 2098 3992

MEAN 41.7 36.2 37.8 39.0 1161 1576 1857 3202

HAILFINDER 500 88.0±2.0 98.3 ±1.5 118.0±1.0 91.6±1.0 2024 2587 6171 3267
800 85.0±1.7 106.3 ±2.1 124.7 ±6.7 99.7±1.2 1983 3726 7847 3423
1000 92.3±4.5 108.3 ±2.3 131.3 ±3.2 101.8±2.2 2638 3073 16618 3603

MEAN 88.4 104.3 124.7 97.7 2215 3129 10212 3431

CHILD3 500 67.6±3.2 54.3±2.6 79.6±4.9 81.2±2.8 2693 3796 5422 4963
800 65.8±2.5 52.9±2.8 74.0±3.7 79.9±2.4 3941 4587 5106 6026
1000 61.5±3.8 52.3±3.9 71.0±6.5 81.4±2.7 4723 5170 5980 6846

MEAN 65.0 53.2 74.9 80.8 3786 4518 5503 5945

CHILD5 500 122.0±2.6 109.3±5.1 134.0 ±2.6 113.9±2.4 6966 8646 10038 10253
800 121.7±3.8 105.3±4.0 132.3±6.7 120.1±2.9 10249 10431 9337 10708
1000 116.3±2.9 105.7±2.5 126.3±7.0 123.4±1.7 10375 10494 11174 11070

MEAN 120.0 106.8 126.3 119.1 9197 9857 11174 10677

Table 2: Global causal discovery performance under insufficient data

inferior causal discovery performance. Instead of fixing the
threshold of RAI-BF with its default value, we consider the
optimal performance of RAI-BF with tuned thresholds for
comparison. According to the results (details can be found
in Appx. F), RAI-BF with the optimally tuned threshold at
best achieves comparable performance compared to rBFchi2
in terms of both accuracy and efficiency, which is expected.
While rBFchi2 only requires a fixed significance level (5%
by default) without additional tuning process.

To further show that our proposed methods can consis-
tently improve the causal discovery performance, we con-
sider another two widely used DAG learning algorithms:
PC [Spirtes et al., 2000] and MMHC [Tsamardinos et al.,
2006b]. We incorporate the proposed methods into PC and
MMHC for evaluation. From results (details are in Appx. F),
our proposed methods can consistently improve the DAG
learning performance, particularly with PC. For example,
on ALARM, PC with BFchi2 achieves averaged SHD 40.5,
while PC only achieves averaged SHD 58.2. Overall, BFchi2
achieves better accuracy and IeB achieves better efficiency
with both PC and MMHC on different datasets.

Global causal discovery without causal sufficiency as-
sumption. To demonstrate that our robust independent tests
can also be applied to causal discovery without causal suffi-
ciency assumption, we employ the conservative FCI (cFCI)
method [Ramsey et al., 2012] as our baseline. cFCI is con-
sidered as the state-of-the-art causal discovery algorithm that
identifies latent confounders. We denote cIeB as the cFCI
with empirical Bayesian MI estimation, and cBFchi2 as cFCI
with BFchi2 independence test. We compare our approaches

Dataset SHD #Independence Test
(MEAN) cIeB cBFchi2 cFCI cIeB cBFchi2 cFCI
CHILD 49.1 35.1 50.4 109 417 2289

INSURANCE 118.7 94.9 121.3 147 593 4836
ALARM 105.3 78.2 94.7 397 902 7361

HAILFINDER 153.2 220.2 339.0 368 2024 82683
CHILD3 204.3 135.2 103.6 692 2858 4009
CHILD5 250.7 159.0 178.8 1145 5161 7068

Table 3: Global causal discovery performance (with latent con-
founder) under insufficient data

to cFCI with default g2 statistical based independence test4.
As we can see from Table 3, cIeB achieves best efficiency
by performing the smallest number of independence tests.
In terms of accuracy, cBFchi2 achieves overall better per-
formance. The consistent performance improvement further
demonstrates that the proposed independence test can im-
prove the causal discovery performance under insufficient
data, independent of the existence of latent confounders.

4.3 Bayesian Approaches for Independence Tests
To compare the proposed independence tests to state-of-the-
art methods, we firstly perform a direct evaluation of pro-
posed independence tests on synthetic data, and we then com-
pare to state-of-the-art methods in terms of causal discovery
performance on benchmark datasets. On synthetic data, we
compare to three state-of-the-art independence tests: adaptive
partition [Seok and Seon Kang, 2015], empirical Bayesian
with fixed α [Hutter, 2002] and full Bayesian method [Archer
et al., 2013]. We evaluate the performance in terms of both

4https://github.com/striantafillou/causal-graphs.



accuracy and efficiency. Experimental results show that the
proposed methods achieve better accuracy with significantly
improved efficiency. Detailed experiment settings and re-
sults can be found in Appx.G. More importantly, we compare
proposed independence tests to two state-of-the-art methods:
adaptive partition and empirical Bayesian with fixed α meth-
ods in terms of causal discovery performance on benchmark
datasets. Because the full Bayesian method is of high com-
putational complexity, making it impractical to be applied
to constraint-based causal discovery, we exclude the com-
parison to this method. We incorporate the adaptive parti-
tion method and the empirical Bayesian with fixed α method
to RAI (denoted as rIAdP and rIeBFix respectively). As

Dataset SHD
(MEAN) rIAdP rIeBFix rIeB rBFchi2 RAI-BF
CHILD 26.5 23.9 19.7 19.3 25.5

INSURANCE 53.2 49.1 48.6 44.7 49.5
ALARM 46.9 40.9 41.7 36.2 37.8

HAILFINDER 70.8 91.2 88.4 104.3 124.7
CHILD3 81.6 66.3 65.0 53.2 74.9
CHILD5 129.9 121.6 120.0 106.8 126.3

Table 4: Accuracy comparison to SoTA independence tests

shown in Table 4, our methods achieve overall better accuracy
than rIAdP and rIeBFix on different datasets. For example,
on CHILD3, rBFchi2 achieves averaged SHD 53.2, signifi-
cantly better than rIAdP which achieves averaged SHD 81.6.
In terms of efficiency evaluation, rIeB also achieves competi-
tive efficiency (details are in Appx. G). Overall, our proposed
methods outperform other SoTA independence tests in terms
of causal discovery performance. On HAILFINDER, because
rIAdP tends to declare independence, the learned DAG con-
tains fewer false positive edges compared to other methods
and thus its averaged SHD is the best.

5 Conclusion
In this paper, we introduce Bayesian methods for robust
constraint-based causal discovery under insufficient data.
Two Bayesian-augmented frequentist independence tests are
proposed for reliable statistic estimation under a frequentist
independence test framework. Specifically, we propose: 1)
an effective empirical Bayesian method for accurate estima-
tion of mutual information under limited data; 2) a Bayesian
statistical testing method for independence test by formu-
lating the Bayes Factor into the well-defined χ2 statistical
test. We apply the proposed methods to both local and
global causal discovery algorithms and evaluate their perfor-
mance against state-of-the-art methods on different bench-
mark datasets. The experiments show that, by introducing
Bayesian approaches, the proposed methods not only outper-
form the competing methods in terms of accuracy, but also
improve efficiency significantly.
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Appendix
A. Full Bayesian MI method
We define the full Bayesian MI estimation (Eq. 1) as

ˆMIfB =

∫ ∫
MI(X;Y |θ, α)p(θ, α|D)dθdα

=

∫ ∫
MI(X;Y |θ)p(θ|α)p(α|D)dθdα

(10)

To approximately solve for ˆMIfB , we propose to approxi-
mate the integration over hyper-parameters by its mode α∗
that maximizes the posterior of α given data D, and we ob-
tain the proposed empirical Bayesian MI,

M̂I
eB

=

∫
MI(X;Y |θ)p(θ|D,α∗)dθ (11)

where α∗ = arg max p(α|D). Apply Bayes’s rule, we have
p(α|D) ∝ p(D|α)p(α) (12)

By assuming uniform distribution for p(α), we have
α∗ = arg max p(α|D) = arg max p(D|α) (13)

The likelihood distribution p(D|α) follows the Pólya distri-
bution and is computed as

p(D|α) =

∫
p(D|θ)p(θ|α)dθ (14)

where p(D|θ) is a mutinomial distribution and p(θ|α) is a
Dirichlet distribution. Eq. 14 can be solved analytically

p(D|α) =

∫
p(D|θ)p(θ|α)dθ

=

∫
N !∏K
i=1 ni!

K∏
i=1

θni
i

Γ(Kα)∏K
i=1 Γ(α)

K∏
i=1

θα−1
i dθ

=
N !∏K
i=1 ni!

∫
Γ(Kα)∏K
i=1 Γ(α)

K∏
i=1

θni+α−1
i dθ

=
N !∏K
i=1 ni!

Γ(αK)

Γ(αK +N)

∏K
i=1 Γ(α+ ni)

Γ(α)K

=
N !Γ(αK)

Γ(α)KΓ(αK +N)

K∏
i=1

Γ(α+ ni)

ni!

(15)
We solve for α∗ with a fixed-point update

αnew = αold
∑
i,j ψ(α+ nij)−Kψ(α)

Kψ(αK +N)− ψ(Kα)
(16)

where ψ is the digamma function. Given α∗, M̂I
eB

can be
computed as (Eq. 4)

M̂I
eB

=

∫
MI(X;Y |θ)p(θ|D,α∗)dθ

= ψ(N + α∗K + 1)−
∑
ij

nij + α∗

N + α∗K
[ψ(ni + α∗Ky + 1)

+ ψ(nj + α∗Kx + 1)− ψ(nij + α∗ + 1)]
(17)

where ψ is the digamma function.



B. Underlying distribution of a Likelihood Ratio
Test
The likelihood ratio test is defined as

LR = −2 ln
supθ∈Θ0

P (D|θ)

supθ∈Θ P (D|θ)
(18)

where a null hypothesis is corresponding to parameter θ ∈
Θ0 and Θ0 is a subset of the whole parameter space Θ.

B.1. Underlying distribution in general
In this section, we will derive a general form of the underly-
ing distribution for the likelihood ratio test statistic without
explicitly providing a likelihood function. The likelihood ra-
tio test statistic can be re-written as

LR = −2(L(θ0)− L(θ1)) (19)

where L(θ) = lnP (D|θ) is a log-likelihood function and
θ0 ∈ Θ0, θ1 ∈ Θ. We do a Taylor expansion for L(θ0) at
point θ1, and we have

L(θ0) ≈ L(θ1) + (θ0 − θ1)L′(θ1)

+
1

2
(θ0 − θ1)TL′′(θ1)(θ0 − θ1)

(20)

Note that θ1 = arg maxP (D|θ, H1) and thus L′(θ1) = 0.
Then we have

L(θ0) = L(θ1) +
1

2
(θ0 − θ1)TL′′(θ1)(θ0 − θ1) (21)

Plug equation(12) into equation(10) and we have

LR = (θ0 − θ1)T (−L′′(θ1))(θ0 − θ1) (22)

In order to derive a general form for the distribution of LR
from equation(13), we need to compute the distribution of
(θ0 − θ1). We do another Taylor expansion for L′(θ0) at
point θ1 and we have

L′(θ0) = L′(θ1) + (θ0 − θ1)L′′(θ1) (23)

where L′(θ1) = 0. And we have

θ0 − θ1 = (L′′(θ1))−1L′(θ0) (24)

We plug equation(15) into equation(13), and we have

LR = L′(θ0)T (L′′(θ1))−T (−L′′(θ1))(L′′(θ1))−1L′(θ0)

= L′(θ0)T (−L′′(θ1))−1L′(θ0)
(25)

where L′′(θ1))−T = L′′(θ1))−1. Furthermore, we
decompose the positive definite matrix (−L′′(θ1))−1 as
(−L′′(θ1))−1 = Q2. In other words, we denote the decom-
position as

(−L′′(θ1))−1 = (−L′′(θ1))−1/2(−L′′(θ1))−1/2 (26)

with (−L′′(θ1))−1/2 = Q. Then we have

LR

= L′(θ0)T (−L′′(θ1))−1/2(−L′′(θ1))−1/2L′(θ0)

= L′(θ0)T (−L′′(θ1))−T/2(−L′′(θ1))−1/2L′(θ0)

= [(−L′′(θ1))−1/2L′(θ0)]T [(−L′′(θ1))−1/2L′(θ0)]

= ZTZ

(27)

where Z = (−L′′(θ1))−1/2L′(θ0). Assume Z follows a
Gaussian distribution and we compute its expectation and
variance in the following.

E[Z] = E[(−L′′(θ1))−1/2L′(θ0)]

= (−L′′(θ1))−1/2E[L′(θ0)]
(28)

where

E[L′(θ0)] = E[
d logP (D|θ0)

dθ
]

= E[
dP (D|θ0)

dθ

1

P (D|θ0)
]

=

∫
dP (D|θ0)

dθ

1

P (D|θ0)
P (D|θ0)dD

=
d

dθ

∫
p(D|θ0)dD

=
d

dθ
(1) = 0

(29)

Given the result in Eq. 29, we can show that E[Z] = 0. Now
we consider the variance of Z. We have

V ar[Z] = V ar[(−L′′(θ1))−1/2L′(θ0)]

= (−L′′(θ1))−1V ar[L′(θ0)]
(30)

where V ar[L′(θ0)] = E[(L′(θ0))2] − E2[L′(θ0)] =
E[(L′(θ0))2] because E[L′(θ0)] = 0. We claim that
E[(L′(θ0))2] = E[−L′′(θ0)] and we prove this claim in the
following:

E[−L′′(θ0)]

= E[−d
2 logP (D|θ0)

dθ2
]

= E[− d

dθ
(
dP (D|θ0)

dθ

1

P (D|θ0)
)]

= E[−d
2P (D|θ0)

dθ2

1

P (D|θ0)
+ (

dP (D|θ0)

dθ

1

P (D|θ0)
)2]

= E[−d
2P (D|θ0)

dθ2

1

P (D|θ0)
] + E[(

d logP (D|θ0)

dθ
)2]

= E[(L′(θ0)2]
(31)

where E[−d
2P (D|θ0)
dθ2

1
P (D|θ0) ] = 0 because

E[−d
2P (D|θ0)

dθ2

1

P (D|θ0)
]

= −
∫
d2P (D|θ0)

dθ2

1

P (D|θ0)
P (D|θ0)dD

= − d2

dθ2

∫
p(D|θ0)dD

= − d2

dθ2
(1) = 0

(32)

After we prove the claim, we plug the claim into Eq. 30 and
we have

V ar[Z] = (−L′′(θ1))−1E[−L′′(θ0)] (33)



In the end, we derive a general form for the distribution of
LR as

LR = ZTZ (34)

where Z ∼ N(0, V ar[Z]) with V ar[Z] =
(−L′′(θ1))−1E[−L′′(θ0)].

B.2. G-test and χ2 distribution
The value of the G test is derived from the LR where the
underlying model is a multinomial model. Suppose we
have i.i.d samples D = {Dn} = {(Xn, Yn)} where n =
{1, 2, ..., N}, given the multinomial model, we have

g = −2 ln

∏N
n=1 P (Xn|θ0)P (Yn|θ0)∏N
n=1 P ((Xn, Yn)|θ1)

(35)

where we apply the null hypothesis that P (X,Y ) =
P (X)P (Y ). Suppose we have X = xi where i =
{1, 2, ...,Kx} and Y = yj where j = {1, 2, ...,Ky}, then
we have

g = −2 ln

∏Kx

i=1 θ
ni
i

∏Kx

i=1 θ
ni
j∏Kx

i=1

∏Ky

j=1 θ
nij

ij

(36)

Note that

Kx∏
i=1

θni
i =

Kx∏
i=1

θ
∑

j nij

i =

Kx∏
i=1

Ky∏
j=1

θ
nij

i (37)

Similarly, we have
∏Ky

j=1 θ
nj

j =
∏Ky

j=1

∏Kx

i=1 θ
nij

j . Then we
can write Eq. 36 as

g = −2 ln

∏Kx

i=1

∏Ky

j=1 θ
nij

i θ
nij

i∏Kx

i=1

∏Ky

j=1 θ
nij

ij

= −2

Kx∑
i=1

Ky∑
j=1

nij ln
θiθj
θij

(38)

which is the definition of the G statistic. Now we show that
given a multinomial model which is applied in the G test,
V ar[Z] = (−L′′(θ1))−1E[−L′′(θ0)] = 1 and thus g fol-
lows χ2 distribution. Firstly, given a multinomial model,
we have L(θ) = logP (D|α) = log

∏N
n=1 P (Dn|α) =∑N

n=1 logP (Dn|θ). Then we have

E[−L′′(θ0)] = E[−
N∑
n=1

d2 logP (Dn|θ0)

dθ2
]

=

N∑
n=1

E[−d
2 logP (Dn|θ0)

dθ2
]

(39)

where E[−d
2 logP (Dn|θ0)

dθ2 ] is a function of the true underly-
ing θ and we denote it as Iθ (which is known as the fisher
information). We thus have E[−L′′(θ0)] = NIθ. Then for

the V ar[Z], we have

V ar[Z] = (−L′′(θ1))−1E[−L′′(θ0)]

= (−L′′(θ1))−1NIθ

= (
−L′′(θ1)

N
)−1Iθ

= (
1

N

N∑
n=1

−d
2 logP (Dn|θ1)

dθ2
)−1Iθ

= I−1
θ Iθ = 1

(40)

where we assume N is large enough so that the averaged
−d

2 logP (Dn|θ1)
dθ2 can well approximate the expectation Iθ.

Then we can show that g = ZTZ ∼ χ2 with Z ∼ N(0,1).

C. Bayes Factor and χ2 Distribution
C.1. Closed-form solution of Bayes Factor
We denote the Bayesian likelihood ratio value asBF with the
definition (Eq. 5),

BF =
P (D|H0, α

0)

P (D|H1, α1)
=

∫
P (D|θ)P (θ|H0, α

0)dθ∫
P (D|θ)P (θ|H1, α1)dθ

(41)

where we assume the symmetric Dirichlet prior. Under the
null hypothesis H0, i.e., two random variables are indepen-
dent, we set the posterior for each random variable X,Y sep-
arately, i.e.,

p(θ|H0, α
0) = p(θx|H0, αx)p(θy|H0, αy) (42)

with p(θx|H0, αx) ∼ Dir(αx) and p(θy|H0, αy) ∼
Dir(αy). Given parameters under null hypothesis, we have
the multinomial distribution for p(D|θ),

p(D|θ) = N !

Kx∏
i=1

Ky∏
j=1

(θxi
θyj )nij

nij !
(43)

Then we have p(D|H0, α
0) as

p(D|H0, α
0) =

∫
p(D|θ)p(θ|H0, α

0)dθ

=

∫
N !

Kx∏
i=1

Ky∏
j=1

(θxiθyj )nij

nij !
p(θx|H0, αx)p(θy|H0, αy)dθ

=
N !∏Kx

i=1

∏Ky

j=1 nij !

×
∫ Kx∏

i=1

Ky∏
j=1

(θxiθyj )nijp(θx|H0, αx)p(θy|H0, αy)dθ

(44)

Notice that
Kx∏
i=1

Ky∏
j=1

(θxi
θyj )nij =

Kx∏
i=1

θ
∑

j nij

xi

Ky∏
j=1

θ
∑

i nij
yj

=

Kx∏
i=1

θni
xi

Ky∏
j=1

θnj
yj

(45)



Plug Eq. 45 back into Eq. 44 and we have

p(D|H0, α
0)

= M

∫ Kx∏
i=1

θni
xi

Ky∏
j=1

θnj
yj p(θx|H0, αx)p(θy|H0, αy)dθ

= M

∫ Kx∏
i=1

θni
xi
p(θx|H0, αx)dθx

∫ Ky∏
j=1

θnj
yj p(θy|H0, αy)dθy

(46)

where M = N !∏Kx
i=1

∏Ky
j=1 nij !

. As the integration over θx and

θy in Eq. 46 are identical, we only derive for θx,∫ Kx∏
i=1

θni
xi
p(θx|H0, αx)dθx

=

∫ Kx∏
i=1

θni
xi

Γ(Kxαx)∏Kx

i=1 Γ(αx)

Kx∏
i=1

θαx−1
xi

dθx

=
Γ(Kxαx)

Γ(Kxαx +N)

Kx∏
i=1

Γ(αx + ni)

Γ(αx)

(47)

The integration over θy can be done in the same way,∫ Ky∏
j=1

θnj
yj p(θy|αy)dθy =

Γ(Kyαy)

Γ(Kyαy +N)

Ky∏
j=1

Γ(αy + nj)

Γ(αy)

(48)
Given Eq. 47 and Eq. 48, we have

p(D|H0, α
0) =

∫
p(D|θ)p(θ|H0, α

0)dθ

=
MΓ(Kxαx)Γ(Kyαy)

Γ(Kxαx +N)Γ(Kyαy +N)

×
Kx∏
i=1

Γ(αx + ni)

Γ(αx)

Ky∏
j=1

Γ(αy + nj)

Γ(αy)

(49)

whereM = N !∏Kx
i=1

∏Ky
j=1 nij !

. Under the alternative hypothesis,

i.e., two random variables are dependent, we set posterior for
the joint distribution of two random variables, i.e.,

p(θ|H1, α
1) ∼ Dir(αxy) (50)

with dimension K = KxKy . Following the similar proce-
dure as we did for the null hypothesis, we can show that

p(D|H1, α
1) =

∫
p(D|θ)p(θ|H1, αxy)dθ

= M
Γ(αxyK)

Γ(αxyK +N)

K∏
i

Γ(αxy + ni)

Γ(αxy)

(51)

where M = N !∏K
i=1 ni!

. Given the marginal likelihood for the
null hypothesis (Eq. 49) and and the marginal likelihood for

the alternative hypothesis (Eq. 51)), we calculate the likeli-
hood ratio as

BF =
Γ(αxKx)Γ(αyKy)Γ(αxyK +N)

Γ(αxyK)Γ(αxKx +N)Γ(αyKy +N)

× Γ(αxy)K

Γ(αx)KxΓ(αy)Ky

×
∏Kx

i=1 Γ(αx + ni)
∏Ky

j=1 Γ(αy + nj)∏Kx

i=1

∏Ky

j=1 Γ(αxy + nij)

(52)

Given a pre-defined threshold η, if BF > η, the null hypoth-
esis is more likely to be supported by the data and two vari-
ables are declared to be independent. Otherwise, we accept
alternative hypothesis and declare the variables to be depen-
dent.

C.2. BF and χ2 distribution
The Bayes factor is a likelihood ratio of the marginal likeli-
hood of two competing hypothesis, usually the null and alter-
native. The Bayes factor is defined as

BF =
P (D|H0, α

0)

P (D|H1, α1)
=

∫
P (D|θ)P (θ|H0, α

0)dθ∫
P (D|θ)P (θ|H1, α1)dθ

(53)

Different from the G-test which calculates statistics based
on one set of parameters, the Bayes factor is considering all
possible sets of parameters given the hypothesis. Note that
P (D|α) is a likelihood function with α = arg maxP (D|α),
and we can apply the general form of the underlying distribu-
tion of the likelihood ratio test to BF . We modify the value
BF as

LRBF = −2 lnBF = −2 ln
P (D|H0, α

0)

P (D|H1, α0)
= ZTZ (54)

where Z = (−L′′(α1))−1/2L′(α0). And Z ∼ N(0, V ar[Z])
with V ar[Z] = (−L′′(α1))−1E[−L′′(α0)]. We can analyt-
ically compute the likelihood function by integrating out pa-
rameter θ as

P (D|α) =

∫
P (D|θ)P (θ|α)dθ

=
Γ(α0)

Γ(α0 +N)

K∏
k

Γ(αk + nk)

Γ(αk)

(55)

where α0 =
∑K
k=1 αk and P (D|α) is the probability mass

function for the Polya distribution. And the log-likelihood
function is

L(α) = lnP (D|α)

= ln Γ(α0)− ln Γ(α0 +N)

+

K∑
k

ln Γ(αk + nk)− ln Γ(αk)

(56)

In this case, we should treat D as one sample data and thus
we can’t expect −L′′(α1) approach to E[−L′′(α0)]. In other
words, we can’t naturally have V ar[Z] = 1 and thus B̃F
doesn’t follow χ2 distribution.



D. Bayesian G statistic and its distribution
D.1. An approximated Polya Distribution
We denote the proposed likelihood ratio value asBF with the
definition (Eq. 5),

BF =
P (D|H0, α

0)

P (D|H1, α1)
=

∫
P (D|θ)P (θ|H0, α

0)dθ∫
P (D|θ)P (θ|H1, α1)dθ

(57)

where we assume the symmetric Dirichlet prior. To better
decide the threshold, we propose to combine the Bayes Fac-
tor BF with a well-defined statistical test χ2 via an approxi-
mated Pólya distribution, i.e.,

P (D|α) ≈ P (D|θ̃) =
N !∏K
i=1 ni!

K∏
k=1

θ̃k
nk (58)

Because N !∏K
i=1 ni!

is a common component that exists in

both P (D|α) and P (D|θ̃), we ignore this term in the fol-
lowing derivations. We re-write the log-likelihood function
lnP (D|α) as

lnP (D|α) =

K∑
k

(ln Γ(nk + α)− ln Γ(α))

− (ln Γ(N +Kα)− ln Γ(Kα))

(59)

On the other hand, we have the log-likelihood of P (D|θ̃) as

lnP (D|θ̃) =

K∑
k

nk ln θ̃k (60)

Furthermore, we assume that θ̃k has the form g(nk,α)
g(N,Kα) where

g(nk, α) is a function with unknown parameters that need to
be estimated. We plug θ̃k = g(nk,α)

g(N,Kα) into Eq. 60 and we have

lnP (D|θ̃) =

K∑
k

nk ln g(nk, α)−N ln g(N,Kα) (61)

Comparing Eq. 59 and Eq. 60, we can see that to make
P (D|α) ≈ P (D|θ̃), the desired property of the function
g(nk, α) is

nk ln g(nk, α) = ln Γ(nk + α)− ln Γ(α) (62)

Based on the fact that
∑K
k θ̃k = 1, the function g(nk, α)

should subject to the constraint that
K∑
k

g(nk, α) = g(N,Kα) = g(

K∑
k

nk,

K∑
k

α) (63)

In other words, the function g(nk, α) is a linear function with
respect to both nk and α. Thus, the form of the function
g(nk, α) should be

g(nk, α) = ank + bα (64)

where parameters Λ =

(
a
b

)
are unknowns that need to be

computed. To estimate two parameters, we haven1, α
n2, α
...

nK , α

(ab
)

=

 t(n1, α)
t(n2, α)
...

t(nK , α)

 (65)

where t(nk, α) = exp( 1
nk

(ln Γ(nk +α)− ln Γ(α))). Denote

M =

n1, α
n2, α
...

nK , α

, T =

 t(n1, α)
t(n2, α)
...

t(nK , α)

, and we re-write Eq. 65

asMΛ = T . We always haveK ≥ 2 and we solve for Λ with
the least square error, i.e.,

Λ∗ = arg min ||MΛ− T ||2 (66)

with the solution Λ∗ = (MTM)−1MTT . Given Λ∗, we have
θ̃k as

θ̃k =
g(nk, α)

g(N,Kα)
=

a∗nk + b∗α

a∗N + b∗Kα
(67)

and P (D|θ̃) can well approximate P (D|α).
We demonstrate the effectiveness of approximating the

Polya probability p(D|α) with modified parameter θ̃ by com-
paring it with Minka’s approach which approximates the
Polya distribution by modified counts. Synthetic data is gen-
erated following the procedure stated in the paper. In partic-
ular, we consider independency and dependency separately
and synthetic data is generated without assuming symmetric
Dirichlet prior. The relative absolute error between the esti-
mated probability p̃ and the true probability p, i.e., |p−p̃|p is
applied as the measurement given each sample set D. We re-
port the average error over 1000 runs for each sample size.
As we can see from Figure 1, our approach approximates the

(a) Independent Case

(b) Dependent

Figure 1: Relative Absolute Error of Polya distribution

true polya probability much better than Minka’s approach.
The reason is that Minka’s approach requires the estimation



of Dirichlet hyper-parameters and can’t work well with sym-
metric Dirichlet prior. In addition, the visualization of the
polya distribution is shown in Figure 2 and Figure 3.

Figure 2: Visualization of Polya distribution Estimation (Indepen-
dent Case)

Figure 3: Visualization of Polya distribution Estimation (Dependent
Case)

D.2. Distribution of Bayesian G statistic
We study the distribution of the proposed Bayes Factor statis-
tic BFchi2 to show that it asymptomatically follows the χ2

distribution given the null hypothesis being true, i.e., two
variables are independent. We perform experiments on the
synthetic data and follow the procedure stated in the paper
to generate the synthetic data. We consider both the uniform
prior α = 1 and Jeffrey’s prior α = 0.5 to study the effect of
the Dirichlet hyper-parameter. As we estimate the distribu-
tion under the true null hypothesis, we set two random vari-
ables X and Y to be independent. We estimate the statistic
distribution based on frequencies. For comparison, we show
the classical G statistic. We visualize the distribution in Fig-
ure 4, Figure 5 and Figure 6. As we can see from Figure
4, with sufficient data, i.e., 1000, both BFchi2 and G fol-
low χ2 distribution. Under insufficient data, the probability
of BFchi2 statistic tends to be overestimated with χ2 distri-
bution bias towards independence declaration. Compared to
uniform prior, BFchi2 statistic with Jeffrey’s prior produces
the distribution that is closer to the χ2 distribution.

E. Theoretical Guarantee on Bayesian Estimation
Improvement over MLE
To theoretically prove that the Bayesian estimation gives bet-
ter estimation then MLE, we compare the uncertainty of two
estimations via measuring their variances. We consider the
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Figure 4: Distribution of the Bayesian G statistic (3 by 3)
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Figure 5: Distribution of the Bayesian G statistic (5 by 5)
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Figure 6: Distribution of the Bayesian G statistic (7 by 7)

parameter estimation. Given data D, the closed-form solu-
tion for MLE is θMLE

i = ni

N , where ni is the number of
samples for state i, with

∑K
i=1 ni = N . The variance is then

computed as

V ar(θMLE
i ) = V ar(

ni
N

) =
V ar(ni)

N2
(68)

The variance computed with Eq. 68 captures the variance of
estimator caused by the randomness of data. To better show
this point, we start from the definition of the variance of the
MLE by considering the randomness of data:

V ar(θMLE) =

∫
D

(θMLE − E[θMLE ])2p(D)dD (69)



Since probability parameters are independent, we can simply
compute each of them θMLE

i separately, i.e.,

V ar(θMLE
i )

=

∫
D

(θMLE
i − E[θMLE

i ])2p(D)dD

=

∫
D

((θMLE
i )2 − 2θMLE

i E[θMLE
i ] + E2[θMLE

i ])p(D)dD

(70)

For MLE estimation, we have θMLE
i = ni

N , and E[θMLE
i ] =

E[ni]
N which is independent of data D. The variance of θMLE

i
then becomes

V ar(θMLE
i ) =

∫
D

(
n2
i

N2
− 2

ni
N

E[ni]

N
+
E2[ni]

N2
)p(D)dD

=

∫
D

(n2
i − 2niE[ni] + E2[ni])

N2
p(D)dD

=

∫
D

(ni − E[ni])
2p(D)dD

N2

=
V ar(ni)

N
(71)

Given the fact that ni follows the multinomial distribution
with GT parameter θi, the variance is V ar(ni) = Nθi(1 −
θi). In the end, we have

V ar(θMLE
i ) =

Nθi(1− θi)
N2

(72)

Similarly, given the closed-form solution for Bayesian esti-
mation is θBayesi = ni+αi

N+
∑

i αi
, we compute the variance as

V ar(θBayesi ) = V ar(
ni + αi

N +
∑
i αi

)

=
V ar(ni + αi)

(N +
∑
i αi)

2
=

V ar(ni)

(N +
∑
i αi)

2

(73)

where the variance is V ar(ni) = Nθi(1− θi). Furthermore,
for hyper-parameters αi, we always have αi > 0. In the end,
we have

V ar(θMLE
i )

=
Nθi(1− θi)

N2
>

Nθi(1− θi)
(N +

∑
i αi)

2

= V ar(θBayesi )

(74)

Here we show that variance of Bayesian estimation θBayesi is
always smaller than the variance of MLE θMLE

i for parameter
estimation.

F. Evaluations on Constraint-based Causal
Discovery
F.1. Experiment Settings on Algorithms and Dataset
Statistical information on datasets: We employ six
benchmark datasets that are widely used for causal discov-
ery evaluation: CHILD, INSURANCE, ALARM, HAIL-
FINDER, CHILD3 and CHILD5. CHILD, INSURANCE and

ALARM are medium networks with the number of variables
being 20,27 and 37 respectively. HAILFINDER, CHILD3
and CHILD5 are larger and more challenging networks with
the number of variables being 56, 60 and 100 respectively.
Their information is shown in Table 5.

Dataset #Variables #Edges Maximum #States
CHILD 20 25 6

INSURANCE 27 52 5
ALARM 37 46 4

HAILFINDER 56 66 11
CHILD3 60 75 6
CHILD5 100 125 6

Table 5: Benchmark DAG Information

Algorithm setting for local causal discovery: For the lo-
cal causal discovery, we employ Causal Markov Blanket
(CMB) [Gao and Ji, 2015], which is the state-of-the-art
method. For hyper-parameters, CMB applies G-test and the
significance level is set to be 5% as suggested. For cIeB ,
threshold is set based on empirical analysis with synthetic
data5. For cBFchi2, we apply the Jeffreys prior (α0 = α1 =
0.5) and significance level is 5%. To verify the performance
of original CMB algorithm, we perform CMB on ALARM
dataset with 5000 samples. The averaged SHD is 1.63, which
is comparable with the reported result, i.e., SHD=1.81 [Gao
and Ji, 2015].
Algorithm setting for global causal discovery: We em-
ploy RAI as our baseline algorithm and incorporate the pro-
posed independence tests. For hyper-parameters, RAI-BF ap-
plies BF with Jeffreys prior for independence test and the
threshold is set to 1. PC-stable applies χ2 independence test,
and the significance level is 5% by default. For rIeB , thresh-
old is determined based on our empirical analysis with syn-
thetic data. For rBFchi2 test, we apply the Jeffreys prior
and the significance level is 5%. To compare to RAI-BF,
we implement BF independence test and incorporate it into
RAI6. To verify the implementation, we perform RAI-BF on
ALARM dataset with 10,000 samples. The averaged SHD
is 25.2, which is comparable to the 25.3 in their reported re-
sult [Natori et al., 2017]. For PC-stable, we directly apply the
algorithm provided by bnlearn7.

F.2. Running Time on CPU
All the experiments in the paper are performed on a laptop
with a 2.3 GHz 8-Core Intel Core i9 processor using CPU
only. Specifically, we compare the running time of rIeB ,
rBFchi2 and RAI-BF since they are all based on the RAI
algorithm. We report the average running time over differ-
ent sample sizes for each dataset. From the results shown in
Table 6, we can see that rBFchi2 requires less running time
than rIeB and RAI-BF, particularly on large graphs. Though
the number of independence tests performed by rIeB is the
smallest, the running time per independence test is large, and

5Threshold is estimated as a function of the number of samples
per each configuration using synthetic data.

6https://github.com/benzione/FixRAI.
7https://www.bnlearn.com/documentation/man/constraint.html.



hence the total running time for rIeB is not competitive. We
will incorporate detailed results into the paper.

Datasets rIeB rBFchi2 RAI-BF
CHILD 5.83s 1.09s 0.72s

INSURANCE 10.08s 1.53s 0.80s
ALARM 24.05s 2.73s 1.63s

HAILFINDER 52.96s 9.67s 57.07s
CHILD3 68.86s 12.67s 18.06s
CHILD5 181.59s 23.82s 37.01s

Table 6: Running Time on CPU

F.3. Performance of RAI-BF with tuned threshold
Since the proposedBFchi2 essentially is only an approximate
of original BF and thus the BF with the optimal threshold, in
principle, should outperform BFchi2. But selecting the op-
timal threshold for the BF can be challenging and incorrect
thresholds can lead to inferior performance. BFchi2, in con-
trast, only needs a default significant level (5%) to perform
the test. This may explain why BFchi2 outperforms BF in
our experiments.

Instead of fixing the threshold for RAI-BF with its default
value, we tune its threshold and report the best SHD for com-
parison. The threshold is selected from [0.2, 2.0]. The cor-
responding number of independence tests is also reported.
From the results shown in Table 7, we can see that rIeB
achieves overall better efficiency by performing a smaller
number of independence tests, which is consistent with our
conclusion stated in the paper. Comparing the RAI-BF with
the optimally tuned threshold and rBFchi2, they achieve
comparable performance in terms of both accuracy and ef-
ficiency. On Child3 and Child5, RAI-BF, with an optimally

SHD #Independence Test
Dataset rIeB rBFchi2 RAI-BF rIeB rBFchi2 RAI-BF
CHILD 19.7 19.3 19.4 350 538 493

INSURANCE 48.6 44.7 45.1 575 930 757
ALARM 41.7 36.2 32.9 1161 1576 1708

HAILFINDER 88.4 104.3 103.9 2215 3129 2531
CHILD3 65.0 53.2 63.4 3786 4518 2260
CHILD5 120.0 106.8 116.7 9197 9857 8028

Table 7: Comparison to optimal RAI-BF with tuned threshold

selected threshold, performs a smaller number of indepen-
dence tests as the optimal threshold is small (∼0.2), leading
to more independence declarations.

F.4. Performance Improvement Consistency with PC and
MMHC
To further show that our proposed methods can consis-
tently improve the causal discovery performance, we con-
sider another two widely used DAG learning algorithms:
PC [Spirtes et al., 2000] and MMHC [Tsamardinos et al.,
2006b]. We incorporate the proposed methods into PC and
MMHC for evaluation. PC with empirical Bayesian MI esti-
mation and BFchi2 independence test are denoted as pcIeB
and pcBFchi2 respectively. MMHC with empirical Bayesian
MI estimation and BFchi2 independence test are denoted as
mIeB and mBFchi2 respectively.

Method PC
Dataset SHD #Independence Test

(MEAN) pcIeB pcBFchi2 PC pcIeB pcBFchi2 PC
CHILD 22.0 22.0 27.4 331 382 610

INSURANCE 50.4 50.0 57.4 548 699 1067
ALARM 41.9 40.5 58.2 1098 1355 3585

HAILFINDER 84.1 101.1 119.0 2511 3959 33352
CHILD3 77.2 75.2 88.8 2099 2548 3880
CHILD5 108 95.3 107.8 13180 11009 10348

Table 8: Evaluation of proposed methods with PC

Method MMHC
Dataset SHD #Independence Test

(MEAN) mIeB mBFchi2 MMHC mIeB mBFchi2 MMHC
CHILD 22.5 21.9 22.4 14 14 37

INSURANCE 52.1 49.9 52.9 19 23 45
ALARM 42.0 38.7 40.1 24 26 33

HAILFINDER 78.3 87.0 92.0 10 5 34
CHILD3 66.9 63.7 64.9 8 20 24
CHILD5 103 102 104 9 25 24

Table 9: Evaluation of proposed methods with MMHC

As shown in Table 8 and Table 9, our proposed meth-
ods can consistently improve the DAG learning performance,
particularly with PC. For example, on ALARM, pcBFchi2
achieves averaged SHD 40.5, while PC only achieves av-
eraged SHD 58.2. MMHC is a hybrid approach, where a
constraint-based algorithm is only used to obtain an initial
graph for a score-based algorithm. Thus, the performance of
MMHC doesn’t completely reflect the performance of inde-
pendence tests, and different independence tests don’t intro-
duce much difference to DAG learning performance. Overall,
BFchi2 achieves better accuracy and IeB achieves better ef-
ficiency with both PC and MMHC on different datasets.

G. Evaluation of Independence Tests
G.1. Evaluation on Synthetic Data
We perform experiments on synthetic data to study the perfor-
mance of the proposed independence tests. We firstly evalu-
ate the proposed empirical Bayesian MI estimation. We then
analyze the proposed BFchi2 independence test. For the syn-
thetic data, we consider two multi-state random variables X
and Y . The underlying probabilistic dependency between X
and Y is randomly generated. The probability parameters are
randomly generated given the dependency with the symmet-
ric Dirichlet prior. We generate synthetic data of different
small sizes for evaluation.

Mutual Information Estimation We compare our pro-
posed empirical Bayesian MI estimation with state-of-the-art
MI estimation methods. Specifically, we consider the adap-
tive partition method [Seok and Seon Kang, 2015], the em-
pirical Bayesian method [Hutter, 2002] and the full Bayesian
method [Archer et al., 2013]. To measure the accuracy of the
MI estimation, we apply the absolute error between the esti-
mated MI M̂I and the ground truth MIMI , i.e., |M̂I−MI|.
We report the averaged absolute error over 1000 runs for each
sample size. From Figure 7, we can see that our approach
gives the best estimation compared to others. In particular,
our proposed empirical Bayesian MI via a MAP estimation
of the hyper-parameter α performs better than the empiri-
cal Bayesian method with fixed α [Hutter, 2002]. Addition-
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Figure 7: Mutual Information Estimation

ally, we achieve comparable accuracy compared to the full
Bayesian method [Archer et al., 2013]. Without requiring
the integration over the hyper-parameter space, our methods
only takes 0.002 seconds on average to finish one run, while
the full Bayesian method [Archer et al., 2013] needs on av-
erage 10.481 seconds to finish one run. Thus, our empirical
Bayesian MI estimation is more computationally efficient to
be applied in causal discovery.

Hypothesis testing based Independence Test We compare
the proposed BFchi2 independence test against the standard
G test and the Bayes Factor (BF) [Natori et al., 2017] which
represents the state-of-the-art independence test that matches
with our approach. We follow the BF [Natori et al., 2017] and
apply Jeffreys prior. We consider Type-1 error and Power as
measurements. Type-1 error is rejecting the null hypothesis
H0 when it is true. The power is the probability of correctly
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Figure 8: Performance of BF-chi2

rejecting H0. We set the significance level of BFchi2 test, G
test, and manually tune the threshold of BF to make their cor-
responding Type-1 error near 5%. And we compare the power
of different methods. From the results shown in Figure 8,
we can see that Bayesian approaches BFchi2 and BF achieve
higher power than frequentist-based approach G test under
insufficient data with lower Type-1 error. And our approach
achieves slightly better power compared to the BF [Natori et
al., 2017], without any threshold tuning.

G.2. Evaluation on Benchmark Datasets
We compare proposed independence tests to two state-of-the-
art methods: adaptive partition and empirical Bayesian with
fixed α methods in terms of causal discovery performance
on benchmark datasets. We incorporate the adaptive partition
method and the empirical Bayesian with fixed α method to
RAI (denoted as rIAdP and rIeBFix respectively). In terms

Dataset #Independence Test
(MEAN) rIAdP rIeBFix rIeB rBFchi2 RAI-BF
CHILD 267 552 350 538 955

INSURANCE 516 589 575 930 1012
ALARM 915 1236 1161 1576 1857

HAILFINDER 1806 2486 2215 3129 10212
CHILD3 2642 4299 3786 4518 5503
CHILD5 7278 9889 9197 9857 11174

Table 10: Efficiency comparison to SoTA independence tests

of efficiency, as shown in Table 10, rIAdP achieves best ef-
ficiency by performing the smallest number of independence
tests. Though rIAdP is efficient, its accuracy is compromised
and rIAdP performs worse than other methods on almost all
the datasets. Our proposed method rIeB is the second most
efficient method, and achieves competitive accuracy at the
same time. Overall, our proposed methods outperform other
SoTA independence tests in terms of causal discovery perfor-
mance. On HAILFINDER, because rIAdP tends to declare
independence, the learned DAG contains fewer false positive
edges compared to other methods and thus its averaged SHD
is the best.

H. Classification Performance under Imbalanced
Data
To further demonstrate the effectiveness of the proposed
methods, we consider real world imbalanced datasets where
samples for certain classes are insufficient. Particularly, we
construct a structured classifier by using the learned DAG
from global causal discovery methods. We perform the eval-
uation on four UCI datasets [Dua and Graff, 2017] that are
benchmark imbalanced datasets [Jiang et al., 2014] [Jiang et
al., 2013]. The statistic information of datasets is shown in
Table 11. F1-score and AUC are applied as the evaluation

Table 11: Information of UCI datasets

Dataset #Samples #Attributes #Majority/#Minority
Breast-w 699 9 458/241

Spect 267 22 212/55
Diabetes 768 8 500/268

Parkinsons 195 23 147/48

metrics to measure the classification accuracy. We apply 3-
fold cross-validation. The settings of hyper-parameters for
independence tests remain the same as we did in the previous
section. Results are shown in Table 12.

Table 12: Predictive performance under imbalanced data

F1-score / AUC
Dataset rIeB rBFchi2 RAI-BF PC-stable

Breast-w 0.42/0.52 0.84/0.50 0.40/0.49 0.47/0.24
Spect 0.59/0.74 0.58/0.77 0.57/0.74 0.41/0.55

Diabetes 0.63/0.44 0.68/0.43 0.50/0.51 0.67/0.44
Parkinsons 0.61/0.74 0.70/0.64 0.38/0.50 0.48/0.54

We can see that rBFchi2 achieves better performance on
most of the datasets, and rIeB also achieves improved per-
formance. For example, on Breast-w dataset, rBFchi2 im-



proves the F1-score by 44% and 37% compared to RAI-
BF method and PC-stable method respectively. Considering
AUC, we can see that both rIeB and rBFchi2 achieve better
AUC than baseline methods RAI-BF and PC-stable on most
of the datasets. These results further demonstrate that, with
proposed independence tests, we can learn DAGs that better
capture underlying structure among variables under imbal-
anced data, leading to improved structure classification per-
formance.

References
[Archer et al., 2013] Evan Archer, Il Park, and Jonathan Pil-

low. Bayesian and quasi-bayesian estimators for mutual
information from discrete data. Entropy, 15(5):1738–
1755, 2013.

[Claassen and Heskes, 2012] Tom Claassen and Tom Hes-
kes. A bayesian approach to constraint based causal in-
ference. arXiv preprint arXiv:1210.4866, 2012.

[Colombo and Maathuis, 2014] Diego Colombo and Mar-
loes H Maathuis. Order-independent constraint-based
causal structure learning. The Journal of Machine Learn-
ing Research, 15(1):3741–3782, 2014.

[Colombo et al., 2012] Diego Colombo, Marloes H
Maathuis, Markus Kalisch, and Thomas S Richard-
son. Learning high-dimensional directed acyclic graphs
with latent and selection variables. The Annals of
Statistics, pages 294–321, 2012.

[Dua and Graff, 2017] Dheeru Dua and Casey Graff. UCI
machine learning repository, 2017.

[Gao and Ji, 2015] Tian Gao and Qiang Ji. Local causal dis-
covery of direct causes and effects. Advances in Neural
Information Processing Systems, 28:2512–2520, 2015.

[Geweke and Singleton, 1980] John F Geweke and Ken-
neth J Singleton. Interpreting the likelihood ratio statistic
in factor models when sample size is small. Journal of the
American Statistical Association, 75(369):133–137, 1980.

[Glymour et al., 2019] Clark Glymour, Kun Zhang, and Pe-
ter Spirtes. Review of causal discovery methods based on
graphical models. Frontiers in genetics, 10:524, 2019.

[Hausser and Strimmer, 2009] Jean Hausser and Korbinian
Strimmer. Entropy inference and the james-stein estima-
tor, with application to nonlinear gene association net-
works. Journal of Machine Learning Research, 10(7),
2009.

[Hutter, 2002] Marcus Hutter. Distribution of mutual infor-
mation. In Advances in neural information processing sys-
tems, pages 399–406, 2002.

[Jiang et al., 2013] L. Jiang, C. Li, Z. Cai, and H. Zhang.
Sampled bayesian network classifiers for class-imbalance
and cost-sensitive learning. pages 512–517, 2013.

[Jiang et al., 2014] Liangxiao Jiang, Chaoqun Li, and
Shasha Wang. Cost-sensitive bayesian network classifiers.
Pattern Recognition Letters, 45:211–216, 2014.

[Kass and Raftery, 1995] Robert E Kass and Adrian E
Raftery. Bayes factors. Journal of the american statistical
association, 90(430):773–795, 1995.

[Kruschke, 2013] John K Kruschke. Bayesian estimation su-
persedes the t test. Journal of Experimental Psychology:
General, 142(2):573, 2013.

[Li et al., 2019] Honghao Li, Vincent Cabeli, Nadir Sella,
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