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Abstract

For multi-label supervised learning, the quality of the label
annotation is important. However, for many real world multi-
label classification applications, label annotations often lack
quality, in particular when label annotation requires special
expertise, such as annotating fine-grained labels. The rela-
tionships among labels, on other hand, are usually stable and
robust to errors. For this reason, we propose to capture and
leverage label relationships at different levels to improve fine-
grained label annotation quality and to generate labels. Two
levels of labels, including object-level labels and property-
level labels, are considered. The object-level labels charac-
terize object category based on its overall appearance, while
the property-level labels describe specific local object prop-
erties. A Bayesian network (BN) is learned to capture the
relationships among the multiple labels at the two levels. A
MAP inference is then performed to identify the most sta-
ble and consistent label relationships and they are then used
to improve data annotations for the same dataset and to gen-
erate labels for a new dataset. Experimental evaluations on
six benchmark databases for two different tasks (facial action
unit and object attribute classification) demonstrate the effec-
tiveness of the proposed method in improving data annotation
and in generating effective new labels.

Introduction
The performance of supervised multi-label learning heav-
ily relies on the quality and the quantity of label annota-
tions. Most existing learning algorithms assume the cor-
rectness of the annotated labels which is not always true.
Real-world datasets are annotated manually by human ex-
perts. Label error is defined as the discrepancy between
the actual labels and the assigned labels. The presence of
bias and inconsistency with human annotation has been
demonstrated in (Beigman Klebanov and Beigman 2010;
Passonneau and Carpenter 2014; Torralba and Efros 2011).
Three factors contribute to incorrect annotations, including
the imperfect evidence, confusion among similar patterns
and perceptual errors, in particular for fine grain level an-
notations.
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To illustrate how label errors are introduced in real-world
datasets, we consider the annotation of facial action units
(AUs) as an example. According to the Facial Action Cod-
ing System (FACS) (Friesen and Ekman 1978), AUs are de-
fined as a contraction or relaxation of one or a group of facial
muscles. Since the physical movements of muscles are con-
tinuous, there are boundary regions where the appearance of
AUs is close to both inactive and active states. The final la-
bel depends on the personal interpretation, which varies with
experts. An annotation error is illustrated in Figure 1. The
consequences of label errors on the performance and on the
complexity of classifiers have been widely studied, includ-
ing theoretical analysis (Bootkrajang and Kabán 2012) and
empirical assessment (Pantic et al. 2005). Besides labelling
errors, another issue is inadequate annotation. Since manual
annotation is often time-consuming and requires expertise,
data is often labelled sparsely or not labelled at all.

Different methods have been proposed to deal with label
errors. The natural approach is to correct the errors before
learning. It first detects incorrect labels and then either re-
moves (Segata et al. 2010) or flips them (Xiao et al. 2015).
Another approach is to design robust models to handle label
errors, either using an error tolerant loss function (Natarajan
et al. 2013) or explicitly modeling label errors with proba-
bilistic models (Ruiz et al. 2008). However, these methods
are only applicable to a single binary classification problem.

In this work, we propose a method to exploit relationships
among labels at different levels to reduce the annotation er-
rors for multi-label learning problems. Specifically, we pro-
pose to use a Bayesian network to capture the structural re-
lationships among labels at two different levels, i.e. object-
level (meta-level) and property-level. The object-level labels
capture the overall class such as object category, while the
property-level labels represent specific local object proper-
ties or attributes. Our goal is to systemically capture the in-
herent dependencies between object-level and property-level
labels and leverage such dependencies to correct the bias
and inconsistencies in manual annotations. The underlying
assumption is that despite the labeling errors, the dominant
relationships among labels at different levels remain accu-
rate and robust to labeling errors, and that the object-level
labelling is easier to label and hence is less susceptible to la-
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Figure 1: Instances of AU24 (Lip Pressor). (a) A positive
template of AU24 defined in FACS. (b) A positive instance
of AU24 in CK+ (Lucey et al. 2010) (the 5th sequence of the
136th subject). (c) A negative instance of AU24 in CK+ (the
10th sequence of the 127th subject). (c) is a label error.

belling errors. From the captured label relationships, a sub-
set of most consistent and stable label relationships are iden-
tified and are used to improve label annotation at property-
level and to generate labels.

The main contributions of the paper are as follows:

• We are the first to propose methods to systematically cap-
ture the structural relationships among labels at two dif-
ferent levels, to identify a subset of most robust and con-
sistent label relationships, and to use them to improve the
data annotation for existing datasets and to generate labels
for new datasets.

• Introduce methods to evaluate the performance of the pro-
posed model in label correction on real-world datasets
without access to ground truth labels.

• Extensive empirical evaluations on six real-world bench-
mark datasets against state-of-the-art methods for two dif-
ferent computer vision tasks demonstrate the effective-
ness of our method for both label annotation improvement
and generation.

Related Work
The existing learning algorithms dealing with label errors
can be categorized into two groups. Algorithms in the first
group intend to detect samples with incorrect labels and then
remove or flip them before classifier learning. (Khoshgof-
taar and Rebours 2004) combined predictions of multiple
classifiers to identify mis-labelled instances jointly. (Segata
et al. 2010) proposed to use local maximal margin model
trained on the k-Nearest Neighbors to determine whether to
reject incorrect instances.

Algorithms in the second group try to learn a model to
handle label errors. Many error tolerant methods have been
proposed based on basic classifiers, including robust boost-
ing (Bootkrajang and Kabán 2013), robust SVM (Xiao et
al. 2015), NHERD algorithm (Crammer and Lee 2010),
AROW (Crammer, Kulesza, and Dredze 2009), kernel
Fisher discriminant (Lawrence and Schölkopf 2001) and soft
confidence weighting (Hoi, Wang, and Zhao 2012). For ex-
ample, (Bootkrajang and Kabán 2013) proposed the robust
boosting by using an error tolerant basic learner and design-
ing a new objective function. Label noise is also modeled as
a random variable in Bayesian approaches (Ruiz et al. 2008)
and the knowledge on the noise is added as prior.

Recently there are related works on applying deep models
to multi-label problems to handle label errors. For example,

(Sukhbaatar et al. 2014) was trying to match the noise dis-
tribution by introducing a constrained linear ’noise’ layer
to the NN model. (Veit et al. 2017) used millions of data
with noisy annotations together with a small set of cleanly-
annotated data to train a model that was able to handle anno-
tation errors. These deep model based methods focus on de-
veloping robust features to handle noise, while our proposed
approach focuses on improving label errors. So these two
approaches are fundamentally different and complementary.
In addition, the proposed model is feature independent that
can work with hand-crafted as well as deep model learned
features. Hence, we focus our comparison with methods that
improve annotations instead of improving features.

Algorithms discussed before are considering label errors
only for single label classification problem. Besides han-
dling single noisy label for each sample, there are also
works (Dawid et al. 1979; Karger, Oh, and Shah 2011;
Parisi et al. 2014) that handle multiple noisy labels for each
sample. These labels may be generated by crowdsourcing
workers or by pre-trained classifiers. They are therefore
noisy and contain errors. Different methods are introduced,
including the EM method and belief propagation, to com-
bine the multiple noisy labels to infer the true labels for each
sample. These work require multiple noisy labels for each
sample, while we focus on single label for each sample.

All existing methods failed to explicitly capture and ex-
ploit relationships among labels. These relationships provide
useful information to improve label annotation. In this paper,
we introduce a method to reduce label annotation errors by
exploiting relationships among multiple labels.

Label Relationships Modeling and Inference
Problem Setup
Suppose that we are given a training setD = {xi,yi, zi}li=1.
Each xi ∈ Rd represents the features of the ith instance.
yi = {yi,1, ..., yi,K} ∈ {+1,−1}K is the label vector con-
sisting of K property-level labels while zi ∈ {1, 2, ..., C}
is the corresponding object-level (meta-level) label that can
be accurately acquired. C refers to the number of object-
level labels. Since the property-level labels yi are difficult
to annotate as mentioned previously, the given training set
D is polluted with label errors on yi and zi is assumed to be
correct since it is relatively easy to annotate. The goal is to
find a function (Eq. 1) that maps the noisy training setD to a
better oneD∗ which has fewer errors for each property-level
label under each object-level label.

f : D = {xi ,yi , zi}li=1 ⇒ D∗ = {xi ,y
∗
i , zi}li=1 (1)

To achieve such a purpose, we propose to leverage re-
lationships among labels to improve the label annotation
and to generate new labels. The relationships can be di-
vided into two groups, including the relationships between
the object-level label and the property-level labels, and the
relationships among property-level labels. We learn a BN
to capture these relationships encoded as probabilistic de-
pendencies. We first learn the structure and parameters of
the model, and we then infer a subset of most stable and
consistent property-level label configuration, given only the



object-level label. The inferred property-level label configu-
rations are then used to correct existing labels and to gener-
ate new labels. Details are described below.

Label Relationship Learning
In taxonomy, an instance can be assigned with multiple la-
bels at different levels and many of them are closely related
to each other, especially labels at different levels. For ex-
ample, a facial expression image categorized by a certain
expression can also be described by AUs. And AUs often
depend on each other to form a coherent and meaningful
facial expression. Some pairs of AUs co-occur frequently
under global facial expressions while some never show up
together. For example, AU6 (Cheek Raiser) and AU12 (Lip
Corner Puller) often show up together to form a happy ex-
pression. AU5 (Upper Lid Raiser) and AU7 (Lid Tightener)
never co-occur since anatomically, it is impossible to con-
tract and relax the same muscle simultaneously. The rela-
tionships among the labels are hence useful to improve label
annotation by considering all labels simultaneously.

To automatically capture relationships, we adopt a BN to
learn dependencies among these labels. A BN is a direct
acyclic graph (DAG) G = (V, E), where V denotes nodes
and E for edges. The edges E between nodes represent the
dependencies. The parameters of BN are used to represent
the conditional probability distribution of each node given
its parents. In a BN, Let Y = [Y1, Y2, ..., YK ] and Z denote
the property-level labels and the object-level label respec-
tively. We want to learn a BN G to capture dependencies
between Y and Z as well as relationships among Y s.

Structure learning We use the Bayesian Information Cri-
terion (BIC) (Schwarz and others 1978) score function to
search for an optimal model in the structure space Gs :

Score(G : D) = logP (D|θ̂G ,G)−
d(θ̂G)

2
logN (2)

where the first term is the log-likelihood of dataD under the
structure G and the parameters θ̂G , representing the fitness
of G to data D. The second term is a penalty on the com-
plexity of θ̂G , which is related to the number of free param-
eters d(θ̂G) and the number of training instances N . Here
D contains two levels of labels. θ̂G is obtained through a
Bayesian parameter learning given one candidate structure
G. The Branch and Bound algorithm (De Campos and Ji
2011) is adopted to exactly learn the structure of the BN
maximizing the BIC score (Eq. 2). The method returns a
globally optimal solution G∗.

Bayesian parameter learning Since Y and Z are dis-
crete, we use Conditional Probability Table (CPT) to repre-
sent the conditional distribution of each node given its par-
ents. To deal with insufficient data for certain parameters,
we propose to employ a Bayesian method to learn the BN
parameters instead of using the conventional maximum like-
lihood method,i.e.,

θ∗ = EP (θ|G,D,α)[θ] =

∫
θP (θ|G,D, α)dθ (3)

where α are the parameters for the Dirichlet distribution that
specify the prior distribution of the parameters θ.

We denote one node as Xi and its parents as Pa(Xi).
The parameter θij represents the conditional distribution
of Xi where j represents the state of Pa(Xi). The pos-
terior distribution of θij is P (θij |G,D, α) = Dir(αij1 +
Nij1, ..., αijri + Nijri), where ri is the number of states
of Xi. αijri is the hyper-parameter, which choose to be 1
for uniform distribution. Since θij is the parameters of a
multinomial distribution and the posterior of θij is Dirichlet
distribution that is conjugate to multinomial distribution, we
can get the analytical solution for Eq. 3,

θ∗ijk = EP (θijk|G,D,α)[θijk] =
αijk +Nijk
αij +Nij

(4)

where Nij =
∑ri
k=1Nijk and αij =

∑ri
k=1 αijk.

Label Relationship Inference
Given the learned structure and parameters, our goal is to
leverage the relationships encoded in the model to improve
label annotation. For this, we consider the largest subset of
property-level label Y, whose relationships are most consis-
tent and stable for a given object-level label Z. Such rela-
tionships can subsequently be used to improve label annota-
tion and to generate new labels. To obtain such relationships,
we propose a constrained MAP inference as,

Y′
∗
Z = arg max

Y′
max⊆Y

P (Y′max|Z,G∗, θ∗) ≥ η (5)

where Y′max is the maximum subset of Y,
P (Y′max|Z,G∗, θ∗) is the probability of the property-level
labels Y′, given the object-level label Z, the BN structure
G∗ and parameters θ∗. η is a pre-defined confidence level.

To efficiently explore the subspace of Y to identify the
largest subset, we start from the whole set of property-level
labels Y, then at each time reduce the size of the property-
level label set by one until we obtain a subset Y′ whose most
possible configuration produced by Eq. 5 satisfy

P (Y′
∗|Z,G∗, θ∗) ≥ η (6)

The constrained MAP inference can be performed for each
value of the property-level labelZ, yielding Y′

∗
z , i.e., the op-

timal property-level label relationships for each object level
label value z.

Label Correction and Generation
We assume Y′

∗
Z are robust to labelling errors and are true

across datasets. They therefore represent the most stable and
consistent property-level label relationships and can hence
be used to correct label annotations and to generate new la-
bels. For a dataset with existing annotations, label correc-
tions can then be performed by examining the labels for
each sample and correcting them if they are inconsistent
with Y′

∗
Z . For a dataset with missing property-level anno-

tations but with object-level annotations, we can then use
Y′
∗
z to produce property-level labels for each sample, given

its object-level label value z.



Experiments
We demonstrated the performance of our method on six real-
world benchmark databases for two computer vision tasks:
facial action unit(AU) recognition and object attribute pre-
diction. For AU recognition, facial expression corresponds
to the object-level label and AUs correspond the property-
level labels. Similarly, for object attribute prediction, object
category corresponds to the object-level label and attributes
correspond to property-level labels.
Datasets: For facial expressions, the Extended Cohn-
Kanande (CK+) (Lucey et al. 2010) database, the M&M Ini-
tiative facial expression database(Pantic et al. 2005)(MMI),
BP4D-Spontaneous database(BP4D)(Zhang et al. 2013) and
EmotionNet dataset(Matthews and Baker 2004) are four
widely used databases for AU recognition. CK+ and MMI
are posed expression databases while BP4D is spontaneous.
EmotionNet dataset is collected in the wild with annotations
automatically generated by existing algorithms, and contains
significant annotation errors. 309 sequences for 109 subjects
with both annotated AUs and the major six expressions were
collected from the CK+ database, while 196 sequences for
27 subjects were collected from the MMI database. The six
expressions consist of anger, disgust, fear, happiness, sad-
ness and surprise. Only the apex frame in each sequence
was used for training or testing. In our experiments, we
considered the recognition of the 10 most frequent AUs
1,2,6,7,9,12,17,23,24 and 25 in both CK+ and MMI. For
BP4D, we extracted 732 apex frames of 41 subjects un-
der 5 expressions from the raw sequences by following the
construction procedures of CK+. The expressions include
anger, disgust, fear, happiness and surprise except for sad-
ness since only very few frames of sadness satisfy the rules
in CK+. And we considered the recognition of 11 AUs such
as AU 1,2,6,7,10,12,14,15,17,23 and 24. For EmotionNet
dataset, all 24,556 images with AU annotations were col-
lected. Only around 2,000 images have expression annota-
tions. We considered the recognition of 11 AUs. They are
AU1,2,4,5,6,9,12,17,20,25 and 26. To evaluate the perfor-
mance, we performed 5 fold subject independent cross vali-
dation with F1-score as measurement. Each experiment was
run 10 times, and the average F1-score was reported.

For object attribute prediction, the a-Pascal database and
the a-Yahoo database (Farhadi et al. 2009) are used for
attribute prediction. The a-Pascal database (Farhadi et al.
2009) contains 6340 instances for training and 6355 for test-
ing. It has totally 20 object categories. The a-Yahoo database
contains 2644 instances belonging to 12 object categories
that have no intersection with the a-Pascal database. Each
instance is annotated for 64 attributes in both databases. To
evaluate the performance on attribute, we used G-Mean as
the measurement (Wang and Ji 2013).
Features: For AU recognition, face images were firstly nor-
malized to 200 × 200 according to two eye centers. 51 in-
ner facial landmarks were extracted by (Matthews and Baker
2004), around which Local Binary Patterns (LBP) (Ojala,
Pietikäinen, and Mäenpää 2002) features were computed
from regions of 32× 32 pixels. Finally, PCA was adopted to
reduce the feature dimensionality to 150. For attribute pre-
diction, 9751 dimension features are used for each image

(a) (b)

Figure 2: Two examples for successful correction from CK+.
For (a), AU9(Nose Wrinkler) is corrected from ’OFF’ to
’ON’ for expression Disgust. For (b), AU23(Lips Tightener)
is corrected from ’ON’ to ’OFF’ for expression Surprise.

provided by both a-Pascal and a-Yahoo databases.
hyper-parameter η: For all experiments, the confidence
level η is determined through a validation dataset.

Label Correction Evaluation with GT Annotations
To compare the annotation error rate of labels before and
after correction, we manually selected a subset of annota-
tions from CK+ and verified their correctness based on the
Facial Action Coding System(FACS) (Friesen and Ekman
1978). According to FACS, because of underlying facial
anatomy and the need to produce meaningful facial expres-
sions, certain AUs are always present for certain facial ex-
pressions. For example, AU6(Cheek Raiser) and AU12(Lip
Corner Puller) are always present for happy expression. We
follow these FACS rules to obtain ground truth labels for cer-
tain AUs under certain facial expressions. The verified sub-
set of annotations serves as our ground truth and only the
error rate for annotations that have ground truth labels are
reported. As shown in Table 1, annotation errors for differ-
ent AUs under different expressions are corrected. For AU1,
annotation errors of 12%, 7.1% and 2.4% are corrected re-
spectively for expression Fear, Sadness and Surprise. Simi-
lar label improvements are obtained for AU9, AU12, AU23,
and AU24. In Figure 2, we show two visual correction ex-
amples corresponding to the results in Table 1.

Label Correction Evaluation with Property-level
Label Classification
As the provided labels for the testing samples are also noisy,
it does not make sense to compare the corrected labels with
the provided labels for the testing samples. To evaluate the
proposed method on noisy real datasets, we train property-
level label classifiers on the training dataset with original la-
bels and with corrected labels respectively. We then compare
their classification performance on the same testing dataset.

We first trained two baseline classifiers by using the orig-
inal noisy labels (NLB) and the improved labels (MAPLB)
respectively, and compared their performances on the same
testing datasets. Then, we evaluated the performance of sev-
eral state-of-the-art algorithms by training them using cor-
rected labels and original labels respectively. Thirdly, we
compared our method with a set of state-of-the-art algo-
rithms that can handle label errors.



Error rate AU1 AU9 AU12 AU23 AU24

Angry – – 0.022 0.000 0.267
– – /0.000 /0.000 /0.000

Disgust – 0.017 – – –
– /0.000 – – –

Fear 0.120 – – – –
/0.000 – – – –

Happy – – 0.029 – –
– – /0.000 – –

Sadness 0.071 – – – –
/0.000 – – – –

Surprise 0.024 – – 0.012 –
/0.000 – – /0.000 –

Table 1: Comparison of the annotation error rate of original
labels and corrected labels on CK+

AU1 AU2 

AU7 

AU9 AU12 AU17 AU23 AU24 AU25 

EXP 

AU6 
 

  
 
 
 
 

   
 
 

     
 
 
 

  
AU14 AU15 

AU2 AU10 AU12 AU24 AU23 

AU1 AU6 AU17 

EXP AU7 

(a) (b)

Figure 3: AU recognition experiment on CK+ and BP4D.
(a) Structure of the learned BN on CK+; (b) Structure of the
learned BN on BP4D

For the methods we compare with, we apply the same
hand-crafted features in our experiments(except for the ex-
periments with deep models) and thus we can demonstrate
that any performance improvement is because of label cor-
rection. For the performance on the benchmark datasets, we
use simple baseline classifiers as the goal of this work is not
to produce the best model for a particular task but to improve
existing methods through label corrections.

Basic classifiers with improved labels We firstly con-
ducted experiments on CK+ and BP4D. We used a regular-
ized logistic regression model(LR) and SVM as two basic
classifiers. Each classifier is trained with the improved labels
and the original labels respectively. Then, the trained classi-
fiers are used for AU prediction on the same testing set. Clas-
sifiers are trained to classify each AU independently. The
results are illustrated in Figure 3, Table 2 and Table 3.

As shown in Table 2, on CK+, MAPLB outperforms NLB
by 4.5% with LR, and by 5.5% with SVM on average of
all AUs. The F1-score of AU7, AU24 have been improved
significantly, especially for AU7 (Lid Tightener) which is
hard to annotate only according to the local appearance. The
relationships can improve noisy labels, especially for the la-
bels that are difficult to annotate. For BP4D as shown in Ta-
ble 3, the performance of MAPLB is 3.0% better than NLB
with a LR classifier, and 3.1% better with a SVM classi-
fier. The improvement is also significant though not as much
as CK+ since the BP4D is a spontaneous database. BP4D
has larger facial appearance variance, and the relationships
among expression and AUs are more complex. We also com-

Method AU1 AU2 AU6 AU7 AU9 AU12

LR NLB 0.936 0.912 0.787 0.480 0.908 0.897
MAPLB 0.936 0.911 0.804 0.701 0.923 0.913

SVM NLB 0.935 0.890 0.787 0.450 0.899 0.891
MAPLB 0.932 0.899 0.803 0.674 0.899 0.910

Method AU17 AU23 AU24 AU25 MEAN

LR NLB 0.873 0.585 0.525 0.947 0.785
MAPLB 0.866 0.613 0.681 0.948 0.830

SVM NLB 0.877 0.611 0.386 0.950 0.767
MAPLB 0.881 0.629 0.649 0.946 0.822

Table 2: Comparison of the improved and the original labels
for AU recognition performance on CK+

Method AU1 AU2 AU6 AU7 AU10 AU12

LR NLB 0.546 0.394 0.764 0.826 0.833 0.858
MAPLB 0.605 0.488 0.787 0.870 0.855 0.858

SVM NLB 0.550 0.418 0.771 0.827 0.830 0.864
MAPLB 0.598 0.500 0.796 0.870 0.853 0.864

Method AU14 AU15 AU17 AU23 AU24 MEAN

LR NLB 0.663 0.532 0.726 0.549 0.534 0.657
MAPLB 0.737 0.537 0.726 0.562 0.534 0.687

SVM NLB 0.639 0.519 0.731 0.532 0.525 0.655
MAPLB 0.732 0.519 0.731 0.560 0.525 0.686

Table 3: Comparison of the improved and the original labels
for AU recognition performance on BP4D

pare our method to (Wang, Gan, and Ji 2017) which uses
BN to jointly predict the AU labels and achieves 81.51%
on CK+ and 66.68% on BP4D. Our method outperforms
(Wang, Gan, and Ji 2017) by 1.49% on CK+ and by 2.02%
on BP4D with a LR classifier.

To address the concern that label errors in CK+ and
BP4D can be insignificant, we conducted the experiment
on EmotionNet dataset. Because provided expression labels
are limited, we captured relationships among 11 AUs with-
out expressions. Due to occlusion, many images have par-
tial AU labels. The learned AU relationships are firstly ap-
plied to generate the most probable property-level labels for
the missing AU annotations. Then AU classifiers are trained
with the completed AU labels and evaluated on the testing
set. SVM and a standard 3-layer CNN are applied as the
baseline classifiers and the results are reported in Table 4.
As shown in Table 4, MAPLB outperforms NLB by 3.3%
on average of 11 AUs with SVM. With CNN, the F1-score
of AU25 is increased by 1.5% and the average performance
is improved by 0.6%, which show that the proposed method
can work with not only hand-craft features but also deep fea-
tures. The improvement with CNN is not as significant as
with SVM because the CNN can better handle label errors.
These results demonstrate that our model still works well
for datasets that contain significant label errors and without
object-level labels for both shallow and deep models.

For attribute prediction, we used linear SVM (Chang and
Lin 2011) as the basic classifier. We trained the classifier
on a-Yahoo dataset and tested its performance on a-Pascal
dataset. As shown in the Table 5, the performance is im-
proved by 1.0%. The performance improvement for attribute
recognition is not as significant as AU recognition, which
may be due to the fact that AUs are harder to annotate than
most attributes, and hence are more prone to labelling errors.



Method AU1 AU2 AU4 AU5 AU6 AU9

LR NLB 0.473 0.425 0.523 0.427 0.586 0.430
MAPLB 0.485 0.493 0.523 0.490 0.586 0.495

CNN NLB 0.486 0.525 0.646 0.486 0.785 0.644
MAPLB 0.482 0.537 0.641 0.500 0.797 0.648

Method AU12 AU17 AU20 AU25 AU26 MEAN

LR NLB 0.644 0.417 0.412 0.583 0.476 0.491
MAPLB 0.644 0.495 0.499 0.583 0.475 0.524

CNN NLB 0.855 0.545 0.499 0.793 0.561 0.620
MAPLB 0.852 0.546 0.499 0.808 0.572 0.626

Table 4: Comparison of the improved and the original labels
for AU recognition on EmotionNet

Method NLB MAPLB
a-Pascal 0.743 0.753

Table 5: Comparison of the improved labels and original la-
bels for attribute prediction on a-Pascal

State-of-the-art multi-label learning models with im-
proved labels We train state-of-the-art multi-label learn-
ing models by using the original labels and the corrected
labels respectively. We then compare the performance of the
models trained using the improved labels to the performance
of the models trained using the original labels.

Totally we consider four multi-label learning algorithms:
ML-KNN(Zhang and Zhou 2007), LEAD(Zhang and Zhang
2010), LIFT(Zhang and Wu 2015), and MLTSVM(Chen
et al. 2016). These algorithms exploit the relationships
among labels to improve classifiers. The results are shown in
Tabel 6. Performances of these four methods get improved
by using the corrected labels during training. MLTSVM
achieves 9.3% improvement on CK+ and 8.8% improve-
ment on BP4D which are significant. For attribute predic-
tion, we trained SVM with the improved labels to provide
attribute measurements in (Wang and Ji 2013) instead of us-
ing the original noisy labels. We use the measurements to
learn the BN, and apply it for prediction. The performance
of using the improved labels is 79.4%, compared to the orig-
inal 79.0% in (Wang and Ji 2013).

Comparison with state-of-the-art methods We compare
basic classifiers that are trained with corrected labels with
eight SoA methods that are proposed to handle label errors,
including ALFASVM(Xiao et al. 2015), LSVM(Segata et al.
2010), rLR(Bootkrajang and Kabán 2012), rBoost(Bootkra-
jang and Kabán 2013), NKFD (Lawrence and Schölkopf
2001), NHERD(Crammer and Lee 2010), SCW(Hoi, Wang,
and Zhao 2012), and AROW (Crammer, Kulesza, and
Dredze 2009). We conduct experiments on the CK+, MMI
and BP4D. We apply regularized Logistic Regression (BN-
LR) and linear SVM (BN-SVM) as two basic classifiers.
For several AUs, MMI contains very few positive instances.
LSVM and rBoost can not handle such cases. Since AU an-
notations in the MMI is very sparse and the instances are not
enough to capture the relationships precisely, we apply the
BN learned on CK+ to infer the labels for MMI.

As shown in Table 7, BN-LR and BN-SVM outperform
other methods on CK+. NKFD is a kernel fisher discrimi-
nant method, whose performance is the same with BN-SVM

on CK+. However, NKFD uses RBF kernel while SVM is a
linear method. On MMI and BP4D, BN-SVM achieves the
highest F1-score. These results further demonstrate the ef-
fectiveness of using the relationships to handle label errors.

Label Correction Evaluation without GT
Annotations
The previous experiments assume testing labels are good
which may not be the case since the annotations of the test-
ing data are subject to the same errors as the training data.
We conducted two experiments to evaluate the effectiveness
of the proposed method without access to the GT labels.

Evaluation with prediction uncertainty We evaluate the
performance of the classifier by calculating the entropy of its
predictions. The assumption is that a better classifier should
produce less average uncertainty on the unlabelled test-
ing samples. We used regularized logestic regression model
(LR) as the base classifier and computed the entropy with
the output probabilistic distribution as

H(y) = −
N∑
i=1

P (yi) log2(P (yi)) (7)

where N = 2 as each AU is of binary states. Prediction
entropy is calculated for each instance. We then take av-
erage entropy over all testing instances which is treated as
the classifier uncertainty. A classifier that produces predic-
tions with lower entropy is less uncertain about its predic-
tions, and a good classifier should provide accurate predic-
tions with low uncertainty. We compared the prediction un-
certainty of LR classifiers that are trained with the improved
labels(MAPLB) and the original labels(NLB) respectively.

As shown in Table 8, on both CK+ and BP4D, MAPLB
produces predictions with significantly less uncertainty. On
AU7, MAPLB achieves 63.4% less average entropy on CK+
and 64.1% less average entropy on BP4D compared to NLB.
The reduction in prediction uncertainty demonstrates again
the improvement of original noisy labels.

Evaluation through surrogate task We evaluate the ef-
fectiveness of our method on a surrogate (meta-level) task.
For AU recognition, instead of directly evaluating the AU
recognition on the testing set, we indirectly evaluate the la-
bel correction performance by studying its impact on facial
expression recognition. The expression labels are assumed
to be reliable, and thus improvement on expression classi-
fication accuracy can validate the correction of AU annota-
tions. During training, we train an expression classifier to
map AU labels to expression and also train AU classifiers to
map image features to AU labels. This is done for both orig-
inal and corrected AU labels. During testing, we predict the
AU labels for the unseen image and use the predicted AUs
as input of the expression classifier for expression recogni-
tion. We used regularized logestic regression model(LR) and
SVM as two basic classifiers and performed evaluation on
the original labels and the improved labels respectively. The
results are shown in Table 9. On CK+, MAPLB outperforms
NLB by 6.5% with LR classifier and by 6.1% with SVM



Method ML-KNN LEAD LIFT MLTSVM
(Zhang and Zhou 2007) (Zhang and Zhang 2010) (Zhang and Wu 2015) (Chen et al. 2016)

CK+ NLB 0.700 0.755 0.711 0.691
MAPLB 0.752 0.817 0.776 0.784

BP4D NLB 0.611 0.626 0.638 0.609
MAPLB 0.659 0.695 0.676 0.697

Table 6: Improvements of state-of-the-art methods by using the improved labels on CK+ and BP4D

Method ALFASVM LSVM rLR rBoost NKFD
(Xiao et al. 2015) (Segata et al. 2010) (Bootkrajang and Kabán 2012) (Bootkrajang and Kabán 2013) (Lawrence and Schölkopf 2001)

CK+ 0.783 0.812 0.803 0.803 0.820
MMI 0.416 - 0.482 - 0.494
BP4D 0.653 0.651 0.669 0.661 0.668

Method NHERD AROW SCW BN-LR BN-SVM(Crammer and Lee 2010) (Crammer, Kulesza, and Dredze 2009) (Hoi, Wang, and Zhao 2012)
CK+ 0.779 0.791 0.777 0.826 0.820
MMI 0.412 0.396 0.368 0.514* 0.532*
BP4D 0.657 0.663 0.658 0.684 0.688

Table 7: Comparison with label error tolerant state-of-art methods on CK+, MMI, and BP4D

Dataset AU1 AU2 AU6 AU7 AU9

CK+ NLB 0.181 0.181 0.313 0.317 0.085
MAPLB 0.136 0.147 0.074 0.116 0.081

BP4D NLB 0.300 0.298 0.303 0.284 -
MAPLB 0.235 0.212 0.132 0.102 -

Dataset AU10 AU12 AU14 AU15 AU17

CK+ NLB - 0.130 - - 0.257
MAPLB - 0.074 - - 0.131

BP4D NLB 0.299 0.221 0.446 0.279 0.329
MAPLB 0.132 0.132 0.119 0.213 0.246

Dataset AU23 AU24 AU25 MEAN

CK+ NLB 0.126 0.151 0.196 0.194
MAPLB 0.109 0.109 0.124 0.110

BP4D NLB 0.293 0.232 - 0.299
MAPLB 0.246 0.205 - 0.179

Table 8: Comparison of the improved and the original labels
for AU recognition uncertainty on CK+ and BP4D

classifier. On BP4D dataset, SVM achieves 3.9% improve-
ment on expression classification accuracy and LR achieves
3.2% improvement. Evaluations on the surrogate task fur-
ther show that the original labels are improved.

Method LR SVM

CK+ NLB 0.820 0.825
MAPLB 0.885 0.886

BP4D NLB 0.425 0.426
MAPLB 0.457 0.465

Table 9: Evaluation through expression recognition

Label Generation Evaluation
In the previous sections, we evaluate our method in terms of
its capability in label correction. In this section, we evaluate
its ability in generating new labels for another new dataset.
For this, we perform the cross-database annotation gener-
ation experiment. The relationships among object-level la-
bel and property-level labels exist in different databases for
the same task. We use the label relationships learned on the
source database to generate labels for the target database.

On the target database, given the object-level label, the la-
bel relationships Y′

∗
Z learnt in the source domain are used

to generate the most probable property-level labels. Specifi-
cally, we learn the BN structure and parameters on the CK+
database and use the learned BN to generate AU labels for
training samples in the MMI database given the expression.
AU classifiers are trained with original AU labels(NLB) and
the generated AU labels(MAPLB) respectively. The trained
classifiers are then evaluated on the same testing set. The
average F1-score over AUs is reported in Table 10. The per-
formance of using the generated AU labels achieves 5.0%
improvement over using the original labels with SVM clas-
sifier and 4.9% improvement with LR classifier.

Method LR SVM

MMI NLB 0.465 0.482
MAPLB 0.514 0.532

Table 10: Cross-database annotation generation

Discussion
Contribution of object-level labels To evaluate the con-
tribution of object-level labels to label correction, we con-
duct an ablation study on CK+ with setting a regularized lo-
gistic regression model(LR) as the basic classifier. We train
the basic classifier with the original noisy labels(NLB), im-
proved labels(MAPLB) by using relationships among AUs
and expressions, and improved labels(mMAPLB) by using
relationships among AUs only. The experiments settings re-
main the same. As shown in Table 11 below, object-level
labels are important for effective label correction.

Conclusion
Label errors are always present. For effective supervised
learning, label errors should be dealt with to mitigate their
side effects. In this paper, we proposed a novel method to
capture and leverage relationships among labels at two dif-
ferent levels to improve both label annotation and to gen-
erate new labels. We extensively evaluated our method on



Method AU1 AU2 AU6 AU7 AU9 AU12
NLB 0.936 0.912 0.787 0.480 0.908 0.897

MAPLB 0.936 0.911 0.804 0.701 0.923 0.913
mMAPLB 0.936 0.912 0.787 0.608 0.908 0.897
Methods AU17 AU23 AU24 AU25 MEAN

NLB 0.873 0.585 0.525 0.947 0.785
MAPLB 0.866 0.613 0.681 0.948 0.830

mMAPLB 0.873 0.585 0.624 0.947 0.809

Table 11: The contribution of object-level labels

benchmark datasets with several state-of-the-art methods for
the two computer vision tasks, including AU recognition and
attribute prediction. The experimental results show the effec-
tiveness of the proposed method in both improving label an-
notation and in generating new labels. The proposed method
can also generalize to other object recognition tasks where
there exist strong relationships among object labels.
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