
Decoding Finger Flexion from Electrocorticographic Signals Using a Sparse
Gaussian Process

Zuoguan Wang, Qiang Ji
Rensselear Polytechnic Institute

110 Eighth Street
Troy, NY, USA, 12180
{wangz6, jiq}@rpi.edu

Kai J. Miller
Department of Physics

box 351560, University of Washington
Seattle, WA, 98195, USA

kjmiller@gmail.com

Gerwin Schalk
BCI R&D Progr, Wadsworth Ctr, NYS Dept of Health

C650 Empire State Plaza
Albany, NY, 12201, USA
schalk@wadsworth.org

Abstract

A brain-computer interface (BCI) creates a direct
communication pathway between the brain and an ex-
ternal device, and can thereby restore function in peo-
ple with severe motor disabilities. A core component in
a BCI system is the decoding algorithm that translates
brain signals into action commands of an output device.
Most of current decoding algorithms are based on lin-
ear models (e.g., derived using linear regression) that
may have important shortcomings. The use of nonlinear
models (e.g., neural networks) could overcome some of
these shortcomings, but has difficulties with high di-
mensional feature spaces. Here we propose another de-
coding algorithm that is based on the sparse gaussian
process with pseudo-inputs (SPGP). As a nonparamet-
ric method, it can model more complex relationships
compared to linear methods. As a kernel method, it
can readily deal with high dimensional feature space.
The evaluations shown in this paper demonstrate that
SPGP can decode the flexion of finger movements from
electrocorticographic (ECoG) signals more accurately
than a previously described algorithm that used a lin-
ear model. In addition, by formulating problems in the
bayesian probabilistic framework, SPGP can provide
estimation of the prediction uncertainty. Furthermore,
the trained SPGP offers a very effective way for identi-
fying important features.

1. Introduction

Brain computer interfaces (BCI) decode a user’ in-
tent from brain signals [10]. Because a BCI system di-
rectly converts brain signals into commands to control
machines, it can be used to restore function to people
with severe body paralysis. A core component in a BCI

system is the decoding algorithm which translates brain
signals into action commands to control artificial actu-
ators. Decoding algorithms have received substantial
attention in the signal processing and machine learning
literature. The basic class of decoding methods is based
on linear models of the relationship between brain sig-
nals and particular output parameters (e.g., kinematic
parameters of limb movements). Of the basic class, the
simplest method takes the linear weighted summation
of neural activity. A lot of BCI studies have adopted this
approach to decode movement parameters from neural
activity [4, 8]. Other studies have also used Kalman fil-
ters that explicitly characterize the temporal evolution
of movement parameters [7, 1]. One important ben-
efit offered by Kalman filter is that as a probabilistic
method, kalman filter can provide confidence estimate
for results. Other studies have used other versions of
linear models such as Pace regression [2] or ridge re-
gression [5]. Due to their relative simplicity and effi-
cacy, these linear methods were commonly used in ex-
perimental research in BCI. However, linear models can
not handle more complex relationships between brain
and output control signals. To better describe these neu-
ronal modulations, a variety of non-linear methods have
been developed, which include neural network: [7],
multilinear perceptron [3]. But they tend to have diffi-
culty with high dimensional features and limited train-
ing data.

A Gaussian process provides a very popular and ele-
gant nonparametric Bayesian model for real world sta-
tistical problem. As a kernel based method, it can read-
ily work in high dimensional feature space with ker-
nelized operation in the input space. For it models
problems in an explicit probabilistic formulation, Gaus-
sian processes can provide results in parallel with con-
fidence interval (for regression). Unfortunately due to
its nonparametric nature, the computational cost of GP

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.915

3744

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.915

3760

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.915

3756

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.915

3756

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.915

3756

increases cubically with the number of training data.
However, this drawback has been solved by various ap-
proximation methods. Here, we propose to use sparse
gaussian process regression using pseudo-inputs for de-
coding of finger movements using electrocorticographic
(ECoG) recorded from the surface of the brain. Com-
pared to results of a recently published study [2], our
propopsed algorithm provides three benefits: 1. More
accurate decoding was obtained; 2. The uncertainty for
prediction was estimated. 3. The contribution of each
feature to the regression can be shown from the esti-
mated length scale parameters.

2. Sparse Gaussian Process for Regression

2.1 Gaussian Process for Regression

We provides a brief description of the gaussian pro-
cess for regression below. (A comprehensive descrip-
tion is given in [6].). Gaussian processes extend finite
multivariate Gaussian distribution to infinite space. All
the observations in the data set can be seen as a sam-
ple from this infinite multivariate Gaussian distribution.
Specifically, we have a data set S of N observations,
S = {(xn, yn)|n = 1, . . . , N}, where x denotes an in-
put vector of dimension D and y is its corresponding
real valued target. We put a Gaussian process prior on
the function f(x) so that given any finite input data set
X , p(f |X) follows an multivariate Gaussian distribu-
tion with mean m and covariance K. Very often we
assume the mean m = 0 and the distribution is deter-
mined by the covariance K. The covariance K is speci-
fied by the covariance function which relates one obser-
vation to another and depends on only a small number
of parameters. In our experiment, we choose the RBF
kernel with ARD hyperparameters:

K(x, x′) = σ2
f exp[−

1

2

D∑
d=1

ld(x(d) − x′
(d))

2] (1)

where l is the length scale parameter and σ2
f defines the

signal variance. The Gaussian process also assumes that
the observation y is corrupted by a gaussian noise, that
is:

y = f(x) +N (0, σ2
n) (2)

And by combining the observation noise the kernel
function yields:

K(x, x′) = σ2
f exp[−

1

2

D∑
d=1

ld(x(d) − x′
(d))

2]+σ2
nδ(x, x

′),

(3)
where δ is the Kronecker delta function and the hy-
perparameters θ = {σ2

f , l, σ
2
n} are learned from train-

ing data by maximizing the likelihood p(y|X, θ) =
N (y|0,K).

For regression, given input point x∗, we want to infer
y∗ conditioning on the observed data S and trained pa-
rameters θ. According to the Gaussian process prior, the

joint distribution of y and y∗ is still multivariate Gaus-
sian distribution:[

y
y∗

]
∼ N

(
0,

[
K KT

∗
K∗ K∗∗

])
where [K∗]n = K(x∗, xn) and K∗∗ = K(x∗, x∗). The
prediction on y∗ given x∗ is obtained by:

p(y∗|x∗, S, θ) = N (y∗|K∗K
−1y,K∗∗ −K∗K

−1KT
∗).
(4)

2.2 Sparse Gaussian Process with Pseudo-
Inputs

To better deal with large size data with GP, Snelson
and Ghahramani [9] introduced a sparse Gaussian pro-
cess with pseudo-inputs. The basic idea is that instead
of using whole data set D for training, we only con-
sider a pseudo data set D̄ that consists of {x̄m, f̄m}Mm=1

where M < N . The pseudo data set is chosen in the
way that it can provide best representation for the origi-
nal data set. As the standard model discussed in last sec-
tion, the single data point likelihood under the pseudo
data set is:

p(y∗|x∗, X̄, f̄) = N (y∗|K∗K
−1
M f̄ , K∗∗−K∗K

−1
M KT

∗).
(5)

where [KM]mm′ = K(x̄m, x̄m′), [K∗]m = K(x∗, x̄m)
and K∗∗ = K(x∗, x∗). The pseudo targets f̄ was not
explicitly represented, but was integrated out in predic-
tion. So given the new input data x∗, the prediction
distribution is given by:

p(y∗|x∗,D, X̄) =

∫
df̄p(y∗|x∗, X̄, f̄)p(f̄ |D, X̄)(6)

=N (y∗|u∗, σ
2
∗),

where u∗ = K∗Q
−1
M KMNΛ−1y, σ2

∗ = K∗∗ −
K∗(K

−1
M −Q−1

M)KT
∗ , QM = KM +KMNΛ−1KNM ,

Λ = diag(λ), λn = Knn −K∗K
−1
M KT

∗ , [KNM]nm =
K(xn, x̄m). The problem left is to find the hyperparam-
eters θ and the pseudo-input location X̄ . This is done
by maximizing the marginal likelihood:

p(y|X, X̄, θ) =

∫
df̄p(y|X, X̄, f̄)p(f̄ |X̄) (7)

=N (y|0,KNMK−1
M KNM + Λ),

through gradient ascent.

3. Experiments

3.1 Data collection and feature extraction

The following section gives a brief overview of data
collection and feature extraction. A more comprehen-
sive description is given in [2]. Signals were collected
from 48-64 electrodes placed on the surface of the brain
(electrocorticography (ECoG)) in five human subjects

37453761375737573757

Table 1. Decoding performance comparison between Pace regression and SPGP(mean/min/max).
Subject Alg. Thumb Index Finger Middle Finger Ring Finger Little Finger Avg.

A pace 0.70/0.67/0.74 0.68/0.66/0.69 0.61/0.59/0.63 0.56/0.53/0.60 0.59/0.56/0.62 0.63
A SPGP 0.77/0.74/0.80 0.74/0.67/0.78 0.67/0.60/0.69 0.65/0.58/0.73 0.68/0.61/0.77 0.70
B pace 0.68/0.63/0.72 0.68/0.52/0.77 0.65/0.55/0.76 0.74/0.70/0.78 0.71/0.58/0.78 0.69
B SPGP 0.74/0.69/0.77 0.73/0.63/0.80 0.69/0.58/0.79 0.77/0.70/0.81 0.75/0.64/0.81 0.74
C pace 0.58/0.48/0.65 0.61/0.60/0.62 0.56/0.46/0.60 0.55/0.49/0.60 0.51/0.43/0.58 0.56
C SPGP 0.58/0.48/0.70 0.68/0.61/0.74 0.65/0.58/0.69 0.62/0.57/0.69 0.59/0.51/0.66 0.62
D pace 0.35/0.28/0.40 0.46/0.40/0.58 0.50/0.45/0.56 0.45/0.42/0.51 0.38/0.28/0.44 0.42
D SPGP 0.38/0.29/0.44 0.54/0.47/0.63 0.52/0.44/0.59 0.46/0.40/0.53 0.41/0.38/0.44 0.46
E pace 0.49/0.46/0.53 0.52/0.42/0.62 0.60/0.51/0/72 0.54/0.47/0.59 0.55/0.47/0.64 0.54
E SPGP 0.49/0.43/0.54 0.57/0.45/0.64 0.59/0.44/0.69 0.55/0.53/0.60 0.57/0.49/0.65 0.55

Figure 1. (a) Ground truth (red) and pace regression result (dotted black) with correlation coef-
ficient 0.69; (b) Ground truth (red) and result of SPGP (solid black) with correlation coefficient
0.78; (c) Mean (solid), 2 standard deviation line (dotted black); (d) Prediction with selected 10
features (0.76)

(A-E), while these subjects repetitively flexed a partic-
ular finger that was indicated using visual cues. In of-
fline analyses, we first re-referenced the signals to the
common average reference (CAR), which subtracted
1
H

∑H
q=1 sq from each channel, where H was the to-

tal number of channels and sq was the collected signal

at the qth channel and at the particular time. For each
100-ms time slice (overlapped by 50 ms) and each chan-
nel, we converted the time-series ECoG data into the
frequency domain using an autogressive model of order
20. We then used this model to calculate frequency am-
plitudes between 0 to 1000 Hz in 1 Hz bins. Features

37463762375837583758

were extracted by averaging these frequency amplitudes
across specific frequency ranges. In our evaluations,
we selected five frequency ranges, that is 8-12Hz, 18-
24Hz, 75-115Hz, 125-159Hz, and 159-175Hz. In ad-
dition to the frequency features above, a time-domain
feature-Local Motor Potential (LMP) was computed by
averaging raw time-domain signal at each channel over
100-ms time window, i.e., a total of 6 features. Thus,
the total number of features was 288-384 features from
the 48-64 channels.

Figure 2. Estimated l for features

3.2 Results

Similar to the procedure described in [2], we defined
a movement period as the time between 1000 ms prior
to finger movement onset and 1000 ms after movement
offset. To compile training data with balanced move-
ment and rest periods, all data outside the movement
period were discarded. For each finger, 5-fold cross
validation was used to evaluate our model, i.e., 4/5th
of data was used for training and 1/5th of data was used
for testing. We compared the decoding output with that
of Pace regression, i.e., the algorithm that was used pre-
viously in [2]. Pace regression was implemented using
the Java-based Weka package. Table1 gives the quanti-
tative comparison between the results of SPGP and that
of pace regression. It shows that for the large majority
of fingers and subjects, SPGP achieved better decod-
ing results. I.e., the overall correlation coefficient cal-
culated between actual and decoded finger flexion im-
proved from 0.56 when using pace regression to 0.61
when using SPGP. Figure 1 gives an example for pre-
diction of pace regression and SPGP on the index fin-
ger of subject A. It shows that in the movement part
the prediction of SPGP fits the actual flexion better than
does the use of pace regression, and the noise in the
resting part when using SPGP is lower than when using
pace regression. In addition, SPGP can provide uncer-
tainty estimation for the prediction. Figure 1(c) shows
the prediction distribution of SPGP with mean and two
standard deviations.

Another very important advantage offered by SPGP
is that the dimensional scaling parameter l (see eq(1))
provides a very effective way for measuring the impor-
tance of features. In fact, l represents the weight of
each feature dimension during calculating the covari-
ance. Important features will be assigned with large

weights. We can verify the practical utility of these
weights by selecting a subset of features corresponding
to large weights and comparing the prediction using this
subset with that using all the features. When we take the
results for the index finger of subject A as an example,
figure 2 shows the trained log(l) on the 288 features.
Only a few large weights in log(l) make the feature
selection very effective. We simply take the features
corresponding to the largest 10 weights and rerun the
algorithm. The result was shown in figure 1(d) which
is almost same with that using the whole 288 features
no matter from the graph or from correlation coefficient
(0.76 vs 0.78).

4 Conclusion

This paper proposed the use of a sparse gaussian pro-
cess with pseudo-input for decoding finger flexion from
brain signals. As a nonlinear nonparametric bayesian
method, it modeled the data better than previously de-
scribed linear models. In addition, SPGP can provide
uncertainty estimation for the prediction. The length
scale parameters in the trained SPGP also provide a very
effective measurement for the importance of features.

References

[1] M. J. Black, E. Bienenstock, J. P. Donoghue, M. Ser-
ruya, W. Wu, and Y. Gao. Connecting brains with
machines: The neural control of 2d cursor movement
michael j. black. 2003.

[2] J. O. J. W. G. S. J. Kubanek, K.J.Miller. Decoding flex-
ion of individual fingers using electrocorticographic sig-
nals in humans. J Neural Eng, 6(6):14, 2009.

[3] K. H. Kim, S. S. Kim, and S. J. Kim. Superiority
of nonlinear mapping in decoding multiple single-unit
neuronal spike trains: A simulation study. Journal of
Neuroscience Methods, 150(2):202 – 211, 2006.

[4] D. J. McFarland, D. J. Krusienski, W. A. Sarnacki, and
J. R. Wolpaw. Emulation of computer mouse control
with a noninvasive brain-computer interface. J Neural
Eng, 5(2):101–110, Mar 2008.

[5] G. H. Mulliken, S. Musallam, and R. A. Andersen. Tra-
jectories from posterior parietal cortex ensembles. J.
Neurosci., 28(48):12913–12926, 2008.

[6] C. E. Rasmussen. Gaussian processes for machine
learning. MIT Press, 2006.

[7] R. Y. N. P. J. Sanchez J C, Erdogmus D and N. M. A.
A comparison between nonlinear mappings and linear
state estimation to model the relation from motor cor-
tical neuronal firing to hand movements. pages 59–65,
2002.

[8] G. Schalk and et al. Two-dimensional movement con-
trol using electrocorticographic signals in humans. J
Neural Eng, 5(1):75–84, Mar 2008.

[9] E. Snelson and Z. Ghahramani. Sparse gaussian pro-
cesses using pseudo-inputs. In NIPS, pages 1257–1264.
MIT press, 2006.

[10] J. R. Wolpaw, N. Birbaumer, D. J. McFarland,
G. Pfurtscheller, and T. M. Vaughan. Brain-computer
interfaces for communication and control. 113(6):767–
791, June 2002.

37473763375937593759

