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Facial action unit (AU) recognition is an important task for facial expression analysis. Traditional AU
recognition methods typically include a supervised training, where the AU annotated training images are
needed. AU annotation is a time consuming, expensive, and error prone process. While AU is hard to
annotate, facial expression is relatively easy to label. To take advantage of this, we introduce a new
learning method that trains an AU classifier using images with incomplete AU annotation but with
complete expression labels. The goal is to use expression labels as hidden knowledge to complement the
missing AU labels. Towards this goal, we propose to construct a Bayesian network (BN) to capture the
relationships among facial expressions and AUs. Structural expectation maximization (SEM) is used to
learn the structure and parameters of the BN when the AU labels are missing. Given the learned BNs and
measurements of AUs and expression, we can then perform AU recognition within the BN through a
probabilistic inference. Experimental results on the CKþ , ISL and BP4D-Spontaneous databases de-
monstrate the effectiveness of our method for both AU classification and AU intensity estimation.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Facial expression recognition has attracted increasing attention
due to its wide applications in human–computer interaction [1].
There are two kinds of descriptors of expressions: expression ca-
tegory and AUs [2]. The former describes facial behavior globally,
and the latter represents facial muscle actions locally. To recognize
AUs and expressions, a large number of annotated training images
are required. In general, AU annotation is more expensive and
harder than expression annotation, since expression is global and
easier to recognize, while AUs are local and subtle, and harder to
recognize. Furthermore, the number of AUs for an image is usually
larger than that of expressions. Therefore, the AUs should be la-
beled by qualified facial action coding system (FACS) experts.
Current research [3–6] reveals that some AUs are obvious and easy
to be annotated, while others are subtle and hard to annotate. This
phenomenon not only increases the difficulty of AU annotation,
but also makes the AU labels error prone. Compared with AU an-
notation, expressions are much easier to annotate, and can be la-
beled with great accuracy.
. Ji).
In this work, we try to design an AU recognition method with
the assistance of expression labels under the incomplete AU la-
beling. Specifically, during training, instead of trying to label every
AU in each image as being done by the existing AU recognition
methods, we only label AUs that can be labeled confidently and
leave those difficult and subtle AUs unlabeled. In addition, we
provide expression label for each image. Using such annotated
images, we then train an AU recognition algorithm by leveraging
on the relationships among AUs and the knowledge of the ex-
pressions. To take advantage of the available expression labels
during training, we propose to construct a BN to systematically
capture the dependencies among AUs and expressions. The nodes
of the BN represent the AUs and expressions. The links and their
parameters capture the probabilistic relations among AUs and
expressions. Since some AU labels are missing for some training
images, structural expectation maximization (SEM) is adopted to
learn the structure and parameters of the BN. Given the learned
BN, we can infer the AUs by combining the AU-expression re-
lationships encoded in the BN and the AU measurements. The
experimental results on the CKþ database show that, with com-
plete annotation, our method outperforms the state of the art
model-based and image-driven AU classification methods; with
incomplete annotation, our method performs much better than
state of the art AU classification methods. The experimental results
on the ISL database demonstrate the cross-database generalization
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ability of our method for AU classification. Furthermore, the ex-
perimental results on the BP4D-Spontaneous databases demon-
strate that for AU intensity estimation, our method outperforms
current model-based and image-driven AU intensity estimation
methods under both complete and incomplete annotation.
2. Related work

Usually, several AUs can be present at the same image or image
sequence. Thus, AU recognition can be formulated as a multi-label
classification problem. Due to the large number of possible label
sets, multi-label classification is rather challenging. Successfully
exploiting the dependencies inherent in multiple labels is the key
to facilitate the learning process. Accounting for dependencies
among AUs, present AU recognition research can be divided into
three groups.

The first group recognizes each AU individually and directly
from images or sequences [7,8]. They are referred to as image-
based AU recognition methods. Valstar and Pantic [7] proposed an
automatic method to detect 22 AUs. They first detected and
tracked 20 facial points, and then used a combination of Gentle-
Boost, support vector machines (SVMs), and hidden Markov
models as a classifier. van der Maaten and Hendriks [8] adopted
AAM features and linear chain conditional random field to detect
the presence of AUs. These works treat recognition of each AU
individually as one-vs.-all scheme, ignoring the dependencies
among AUs. However, multiple AUs can appear together and thus
there exist dependencies among them. The AU relationships may
help AU recognition.

The second group recognizes fixed AU combinations. One ap-
proach regards the AU combination as a new AU. For example,
Littlewort et al. [9] analyzed the AU combinations of 1þ2, 2þ4,
1þ4 and 1þ2þ4 using a linear SVM with Gabor features. Lucey
et al. [10] used SVM and nearest neighbor to detect a few combi-
nations of AUs (i.e. 1, 1þ2, 4, 5) with active appearance model
(AAM) features. The other approach integrates AU relations exist-
ing in AU labels into AU classifiers. Zhang and Mahoor [11] first
proposed a hierarchical model to group multiple AUs into several
fixed groups based on AU co-occurrences existing in AU labels and
facial regions. Then, each AU recognition is regarded as a task, and
AUs in the same groups share the same kernel. A multi-task
multiple kernel learning is used to learn AU classifiers simulta-
neously. Zhao et al. [12] selected a sparse subset of facial patches
and learned multiple AU classifiers simultaneously under the
constraints of group sparsity and local AU relations (i.e. positive
correlation and negative competition). Although the local de-
pendencies among AUs have been exploited in these works, the
combinations are manually determined and fixed. Thus, it is only
feasible for a few combinations and is hard to detect thousands of
possible combinations.

The third group explicitly exploits the co-existent and mutually
exclusive relations among AUs from target labels. They are referred
to as model-based AU recognition methods. Tong et al. [13,14]
used Gabor features and SVM to recognize each AU first, then they
model the relations among AU labels by dynamic Bayesian net-
work (DBN). Eleftheriadis et al. [15] proposed a multi-conditional
latent variable model to combine global label dependencies into
latent space and classifier learning. The image features are pro-
jected onto the latent space, which is regularized by constraints,
encoding local and global co-occurrence dependencies among AU
labels. Then, multiple AU classifiers are learned simultaneously on
the manifold. Both work assumes complete AU labeling and only
involves AUs without using expressions. Wang et al. [16] proposed
a hierarchical model to integrate the low-level image measure-
ments with the high-level AU semantical relationships for AU
recognition. A restricted Boltzmann machine (RBM) is used to
capture higher-order AU interactions, and a 3-way RBM is further
developed to capture related factors such as the facial expressions
to achieve better characterization of the AU relations. Although
their model can capture high order AU relationships, it cannot
effectively handle missing labels. Therefore, all the model-based
AU recognition methods require completely annotated images.

Due to the difficulties of collecting data with AU intensity va-
lues and the limited available database, current AU analyses
mainly focus on AU occurrence detection, and few work measures
the intensity of AUs. Furthermore, among the very few existing AU
intensity estimation work, most work, such as [17–23], measures
the intensity of each AU independently. They do not make use of
the intensity dependencies that are crucial for analyzing AUs. In
this paper, we refer to these methods as image-driven intensity
estimation methods. It is only recently that two works have con-
sidered AU relations for AU intensity estimation. Li et al. [24]
proposed using DBN to model AU relationships for measuring their
intensities. In order to estimate the intensity of AUs present in a
region of the upper face, Sandbach et al. [25] adopted Markov
random field structures to model AU combination priors. Similar to
Tong et al.'s [13,14] work, both works assume complete AU in-
tensity labeling and only involve AUs without using expressions.
They are referred to as model-based AU intensity estimation
methods. Therefore, all the model-based AU intensity estimation
methods [24,25] require completely AU-annotated images without
using expressions.

To the best of our knowledge, there is little reported work that
recognizes AUs or estimates AU intensities with the assistance of
expressions [16,26], although there exist a few works considering
the relations among expressions and AUs to help expression re-
cognition or to jointly recognize AUs and expressions [27]. For
example, Pantic and Rothkrantz [28] summarized the production
rules of expressions from AUs using the AUs-coded descriptions of
the six basic emotional expressions given by Ekman and Friesen
[2]. Velusamy et al. regarded AU to expression mapping as a pro-
blem of approximate string matching, and they adopted a learned
statistical relationship among AUs and expressions to build tem-
plate strings of AUs for six basic expressions [5]. Zhang and Ji
proposed to use DBNs to model the probabilistic relations of facial
expressions to the complex combination of facial AUs and tem-
poral behaviors of facial expressions [6]. Li et al. [27] introduced a
dynamic model to capture the relationships among AUs, expres-
sions and facial feature points. The model was used to perform AU
and expression recognition as well as facial feature tracking.

Current AU recognition and AU intensity estimation methods
require complete AU label assignments. However, AU analyses
with incomplete AU label assignments are frequently encountered
in realistic scenarios, due to the large number of AUs and difficulty
in manual AU annotation. Till now, little research has addressed
the challenge of AU analyses with incomplete AU labels. While AUs
are hard to annotate, facial expression is relatively easy to label.
The available expression labels during training and the de-
pendencies among expression and AUs may be useful for AU re-
cognition and AU intensity estimation. Thus, in the paper, we
construct AU classifiers with the ability of learning and inferring
from incomplete AU annotations with the help of ground truth of
expression knowledge that is available during training only.

Compared with related work, the main contribution of this
work lies in the introduction of a probabilistic framework to use
the ground truth of expression labels available during training to
help train an improved AU classifier under incomplete AU anno-
tation. In addition, we formulate AU detection as a multi-label
classification problem.



S. Wang et al. / Pattern Recognition 61 (2017) 78–9180
3. Methods

Assuming the training data is { }λ λ λ= ( … )+ =
D X , , , ,j j nj n j j

m
1 1 1

, in

which m is the number of training samples, n is the number of AU
labels. For the jth training image, we denote Xj as the image fea-
ture vector, and λ λ…, ,j nj1 as the n AU labels, and λ +n j1 as the ex-
pression label respectively. All the other data are complete, except
for the AU label data, which may be missing due to the hard an-
notation. The ground truth of expression label λ +n j1 , while avail-
able during training, is unavailable during testing. The goal of this
work is to construct an AU classifier or an AU estimator with the
abilities of learning and inferring from incomplete AU data with
the help of expression knowledge that is available during training.
As shown in Fig. 1, our approach consists of two modules: AU and
expression measurement extraction, and AUs and expression' re-
lations modeling by BN. The training phase of our approach in-
cludes training the traditional image-based methods for AU mea-
surement extraction and training the BN to capture the semantic
relationships among AUs and expressions. Given the measure-
ments, we infer the final labels of samples through the most
probable explanation (MPE) inference with the BN model. The
details are provided as follows.

3.1. Measurement extraction

The measurements λ̂ are the preliminary estimations of the AU
and expression labels using an existing image-driven recognition
method based on training data. In this work, the face registration
is performed using the detected feature points firstly, and then the
movements of the feature point between the neutral and apex
images are used as the image features. After that, for AU re-
cognition, a SVM is used as the classifiers to obtain the initial AU
measurements and expression measurements. For AU intensity
estimation, multi-class SVM and support vector regression (SVR)
have been used as the predictors to extract expression measure-
ments and AU measurements respectively.

3.2. Expression-dependent AU recognition

In order to model the semantic relationships among AUs and
expressions, a BN model is utilized in this work. As a probabilistic
graphical model, BN can effectively capture the dependencies
among variables in data. In our work, each node of the BN is an AU
or expression label, and the links and their conditional prob-
abilities capture the probabilistic dependencies among AUs and
expressions, as shown in Fig. 2.

3.2.1. BN structure and parameters learning for incomplete Aus' label
A BN is a directed acyclic graph (DAG) Λ= ( )G E, , where

{ }Λ λ=
=
+

i i

n

1

1 represents a collection of +n 1 nodes and E denotes a
collection of arcs.
Fig. 1. The framewor
Given the dataset of multiple target labels λ= { }TD ij , where
= … +i n n1, 2, , , 1 is an index to the number of nodes, and
= …j m1, 2, , is index to the number of samples. The structure

and parameter learning is to find a structure G that maximizes a
score function. In this work, we employ the Bayesian information
criterion (BIC) score function which is defined as Eq. (5), and the
BN structural learning algorithm proposed by de Campos and Ji
[29] is employed.

By exploiting the decomposition property of the BIC score
function, this method allows learning an optimal BN structure
efficiently and it guarantees to find the global optimum structure,
independent of the initial structure. Furthermore, the algorithm
provides an anytime valid solution, i.e. the algorithm can be
stopped at any-time with a best current solution found so far and
an upper bound to the global optimum. Representing state of the
art method in BN structure learning, this method allows auto-
matically capturing the relationships among expressions. Details
of this algorithm can be found in [29]. Examples of the trained BN
structure are shown in Figs. 2 and 4.

After the BN structure is constructed, parameters can be
learned from the training data. Learning the parameters in a BN

means finding the most probable values θ̂ for θ that can best
explain the training data. Here, let λi denotes a variable of BN, and
θilk denotes a probability parameter for BN, then,

( )( )θ λ λ= | ( )P pa 1ilk i
k l

i

where ∈ { … + }i n1, , 1 , ∈ { … }l r1, , i and ∈ { … }k s1, , i . Here n
denotes the number of variables (nodes in the BN); ri represents
the number of the possible parent instantiations for variable λi, i.e.
the number of the possible instantiations of λ( )pa i ; si indicates the
number of the state instantiations for λi. Hence, λik denotes the kth
state of variable λi.

Based on the Markov condition, any node in a BN is con-
ditionally independent of its non-descendants, given its parents.
The joint probability distribution represented by BN can be de-
noted as: λ λ λ λ λ( ) = ( … ) = ∏ ( | ( ))+P P P pa, , n i i i1 1 . In this work, the
“fitness” of parameters θ and training data D is quantified by the
log likelihood function θ( ( | ))P Dlog , denoted as θ( )LD . Assuming the
training data are independent, based on the conditional in-
dependence assumptions in BN, the log likelihood function is
shown in the following equation:

∏ ∏ ∏θ θ( ) =
( )=

+

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟L log

2
D

i

n

l

r

k

s

ilk
w

1

1

1 1

i i
ilk

where wilk indicates the number of elements in D containing both
λik and λ( )pal

i .
For fully labeled training data, maximum likelihood estimation

(MLE) method can be described as a constrained optimization
problem, which is shown in the following equation:
k of our method.



Fig. 2. The BN model for expression and AUs on the CKþ database. (The unshaded nodes are the hidden nodes we want to infer and the shaded nodes are the corresponding
measurement obtained by a traditional image-driven method.)
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where gil imposes the constraint that the parameters of each node
sums to 1 over all the states of that node. Solving the above
equations, we can get θ = ∑ilk

w
w
ilk

k ilk
.

When AU labels are incomplete, the above structural learning
algorithm cannot be used directly, therefore, the SEM algorithm is
adopted to address incomplete labels. In SEM, we iterate over a
pair of steps until convergence, i.e. model likelihood raises to be 1.
In the E-step, we use the current model to generate a completed
data set, based on which we compute expected sufficient statistics.
In the M-step, we use these expected sufficient statistics to im-
prove our model, including both parameters and structure using
the above structural learning algorithm. The detailed learning al-
gorithm is summarized in Algorithm 1.

Algorithm 1. The SEM algorithm for structure and parameter
learning of the BN model.
1. I

rep
2. E

3. M
nitialize the structure G0 and the parameter set
θ λ λ λ= { ( ( )| ) ( )}P pa P,i i i

0 , ( λ( )pa i is the parent of λi) for the
BN model-based on the incomplete training data, in which
the missing AU elements are regarded as absence for the
initialization in this step. This structure is initialized with
expression label and AU labels from the complete portion of
the dataset using an existing BN learning algorithm [29].
eat
-step Using the new BN structure and parameters to infer
the missing labels of the incomplete samples and update the
training set D.
-step
θ θ θ{ } = ( )
( )θ

− −G Q G G, argmax , : ,
4

t t

G

t t

,

1 1
In which, θ θ( )⋆ ⋆Q G G, : , is the expectation of the Bayesian in-
formation criterion (BIC) score of any BN θ{ }G, calculated using
a distribution of the data θ( | )⋆ ⋆P D G , , which is defined as
following:

θ θ θ( ) = [ ( | )] − ( )
( )θ

⁎ ⁎ ⁎ ⁎Q G G E P D G
Dim G

N, : , log ,
2

log 5
BIC

G ,

where the first term is the log-likelihood function of structure G
with respect to data D, representing how well G fits the data. The
second term is a penalty relating to the complexity of the net-
work. N represents the number of samples in the training set. The
equation of ( )Dim G is given by:

∑( ) = | ∥ − |
( )=

Dim G Pa X 1
6i

n

i i
1

where n is the number of nodes in the graph | |G X, i is the number
of possible values of node i, and | |Pai is the number of possible
values of parent node of node i.
til converges
un

After the BN structure and parameter learning among the tar-
get labels, each of the node is connected with its measurement
node. Using the ground truth of target labels and their measure-
ments obtained by a traditional image-driven method, it is easy to
get the conditional probability distribution (CPD) for each node.

Let λi and λ̂i, ∈ { … + }i n n1, , , 1 , respectively denote the label
variable and the corresponding measurement, the CPD of node i is

represented as λ λ(^ | )P i i .

3.2.2. BN inference
During the BN inference, the posterior probability of categories

can be estimated by combining the likelihood from measurement
with the prior model. Most probable explanation (MPE) [30] in-
ference is used to estimate the joint probability.
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1

n

n n

1

1 1

where λ( )pa i is the parent of λi. The condition probabilities in the
equation are learned from training set. In the work, the inferred
labels are assigned to be the values λ λ( … ), , n1 with the highest

probability given λ λ λ(^ … ^ ^ )+, , ,n n1 1 .
4. Experiments

4.1. Experimental conditions

Experiments of both AU recognition and AU intensity estima-
tion are conducted to validate our method.

4.1.1. AU recognition
For AU recognition, the extended Cohn–Kanade dataset (CKþ)

[3] which provides 7 expression categories (i.e. anger, contempt,
disgust, fear, happy, sadness and surprise), 30 AU labels and 68
normalized vertex points (as shown in Fig. 3(a)) for its samples is
adopted. The displacement of 68 normalized landmark points
between the apex frame and the onset frame is used as a feature
vector. Finally, 327 posed samples with both expression category
and FACS labels are selected, and 13 AUs whose frequencies of all
the selected samples are more than 10% are considered, which are:
AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU12, AU17, AU23, AU24,
AU25, and AU27.

To validate the supplementary role of the expression in as-
sisting AU recognition, three experiments are conducted: the im-
age-driven AU recognition, the model-based method that models
only AU relations and our proposed method. Our proposed
method considers both the relations among AUs, and the relations
among AUs and expressions. The image-driven AU recognition is
the same as the initial AU measurement extraction discussed in
Section 3.1.

To illuminate the effectiveness of our constructed AU classifier
under incomplete AU annotation, we miss each AU label at ran-
domwith certain probabilities, i.e. 5%, 10%, 15%, 20%, 25%, 30%, 35%,
40%, 45% and 50%. We compare our proposed method with image-
driven method, and the model-based method that models only AU
relations. Both our proposed method and model-based method
considering only AU relations handle incomplete labels by SEM,
while the image-driven method are trained with only the com-
plete portion of the data. 10-fold cross-validation is adopted.
Fig. 3. The schematic diagram of the feature points labeled on the face.
Furthermore, in order to evaluate the generalization ability of
the proposed method, the cross-database AU recognition experi-
ments are conducted. We train the BN models using the AU and
expression labels from the CKþ database, and then combine the
learned BN model and the obtained measurements from the ISL
database [31]. The ISL database is collected under real-world
conditions with uncontrolled illumination and background, as well
as moderate head motion. The 19 frontal view video clips for
7 subjects displaying facial expressions are adopted in this work.
For this database, we manually selected onset and apex frame for
each clip, and labeled 28 feature points on each selected frames
using Tong et al. 's [32] algorithm, as shown in Fig. 3(b). Similarly,
the normalized vertex point's movement between the apex frame
and onset frame is used as feature vector.

AU recognition is a multi-label classification problem, whose
evaluation metric is different from that of single label classifica-
tion, since for each instance there are multiple labels which may
be classified as partly correct or partly incorrect. Thus, there are
two kinds of commonly used metrics, example-based and label-
based measures [33], evaluating the multi-label classification
performance from the view of instances and labels respectively.
We adopt both metrics in this work. Let Yj

i denote the ground
truth for the ith label of instance j, which is a binary vector, and Zj

i

is the predicted value for the ith label of instances j, m represents
the number of the instances and n is the number of labels.

The example-based measure Hamming Loss, and the label-
based measure averaged F1 score, are defined in Eqs. (8) and (9)
respectively. Hamming Loss calculates the fraction of the wrong
labels to the total number of labels. It is a loss function and it is
upper bounded by the 0–1 loss function. Thus the lower Hamming
Loss represents the better performance. F1 score considers both
the precision and the recall to evaluate the performance. F1 score
reaches its best value at 1 and worst at 0. We expect that higher F1
score yields better performance.

=
∑ ( )

× ( )
=HammimgLoss

xor Y Z

m n

,
8
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1 2
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j
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j
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1
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4.1.2. AU intensity estimation
For AU intensity estimation, we conduct experiments on the

BP4D-Spontaneous database [34]. The database consists of 328
videos which are captured from 41 subjects. Each subject is asked
to attend 8 emotion-elicitation experiments. 5 AUs (AU6, AU10,
AU12, AU14 and AU17) are coded with intensities ranged from 0 to
5. FERA 2015 [23] has provided baseline results for the AU in-
tensity estimation task on the BP4D database, and we adopt the
316-dimensional geometric features and experimental settings
mentioned in [23] for a fair comparison. The database is divided
into 2 partitions. The training partition contains samples from 21
subjects, i.e. F001, F003, F005, F007, F009, F011, F013, F015, F017,
F019, F021, F023, M001, M003, M005, M007, M009, M011, M013,
M015 and M017. The test partition contains the other 20 subjects,
i.e. F002, F004, F006, F008, F010, F012, F014, F016, F018, F020,
F022, M002, M004, M006, M008, M010, M012, M014, M016 and
M018.

The training samples used at measurement extraction step and
BN training step are different in our experiments. We need ex-
pression labels at BN training step, so we adopt apex frames as
samples. While at the AU measurement extraction step, the ex-
pression labels are not required. We define the apex frames of a
video sequence as the frames with largest sum of AU intensity
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values and then pick out the apex frames from each video se-
quence as experimental samples, resulting in 2993 samples in the
training partition for BN training and 3561 samples in the test
partition. As to the samples that are used at the measurement
extraction step, we use all the frames in the database instead of
adopting the same samples as [23]. Their training samples are
subsampled from all the frames to approach a balanced number of
positive and negative samples, but they do not give a clear state-
ment about the proportion of sampling and the exact number of
the samples of each AU. Furthermore, it is hard to balance the
number of samples corresponding to each possible intensity value
because the higher intensity values appear much less than the
lower ones. If we force balancing the samples, the number of
samples will decrease dramatically.

Similar to AU recognition experiments, to validate the supple-
mentary role of expression categories in assisting AU intensity
estimation, three experiments are conducted: the image-driven
AU intensity estimation, the model-based method that models
only AU relations and our proposed method. The image-driven AU
intensity estimation is the same as the initial AU measurement
estimation discussed in Section 3.1.

To illuminate the effectiveness of our constructed AU intensity
estimation under incomplete AU annotation, we leave out each AU
intensity at random with 10 varying proportions, i.e. from 5% to
50%. We compare our proposed method with the image-driven
method, and the model-based method that models only AU rela-
tions. Both our proposed method and the model-based method
handle incomplete labels with the SEM, while the image-driven
method is trained with the incomplete data. We adopt Pearson
correlation coefficient (PCC) and intraclass correlation coefficient
(ICC) as measures in order to compare our results with the base-
line ones in [23]. The mean square error (MSE) is not adopted
because [23] views the AU intensity estimation task as a regression
problem while we see it as a classification problem. The equations
of adopted measures are shown as follows:
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Table 1
Dependencies among labels on the CKþ database (each entry aij represents λ λ( = |P 1j i

λi λj

AU1 AU2 AU4 AU5 AU6 AU7

AU1 Null 0.762 0.315 0.646 0.023 0.038
AU2 1.000 Null 0.121 0.788 0.000 0.000
AU4 0.336 0.098 Null 0.156 0.180 0.508
AU5 0.913 0.848 0.207 Null 0.033 0.043
AU6 0.032 0.000 0.232 0.032 Null 0.347
AU7 0.063 0.000 0.785 0.051 0.418 Null
AU9 0.000 0.000 0.623 0.016 0.295 0.574
AU12 0.063 0.050 0.038 0.050 0.838 0.075
AU17 0.252 0.087 0.800 0.078 0.174 0.478
AU23 0.116 0.070 0.814 0.163 0.163 0.605
AU24 0.023 0.023 0.721 0.000 0.070 0.605
AU25 0.558 0.497 0.144 0.470 0.387 0.099
AU27 0.986 0.986 0.014 0.833 0.000 0.000
Anger 0.000 0.000 0.889 0.133 0.178 0.711
Contempt 0.056 0.056 0.056 0.000 0.000 0.000
Disgust 0.000 0.000 0.610 0.000 0.305 0.559
Fear 0.880 0.400 0.840 0.640 0.120 0.240
Happy 0.000 0.000 0.000 0.000 0.957 0.101
Sad 0.929 0.250 0.821 0.000 0.000 0.036
Surprise 0.976 0.976 0.012 0.843 0.000 0.000

The bold values indicate the co-current ( λ λ( | ) >P 0.70j i ) and extremely mutually exclus
σ
=

∑ ( − ( ))( − ( ))
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PCC measures the linear correlation between two vectors →x and
→y with a value between 0 and 1. The value 1 represents total positive
correlation and �1 represents total negative correlation. ICC de-
scribes how strongly variables in the same group resemble each
other. The value of ICC ranges from 0 to 1. We expect an ICC value
that is greater than 0.6 for a reliable result. Since PCC only measures
the linear correlation, ICC can be a good supplement for it.

4.2. Experimental results of AU recognition

Section 4.2 is organized as follows: Section 4.2.1 focuses on
analyzing the dependencies modeling by the BN. The experimental
results are shown in Sections 4.2.2 and 4.2.3. Section 4.2.2 ana-
lyzes the results under complete data, and Section 4.2.3 analyzes
the ones under incomplete data. The comparison with related
work is discussed in Section 4.2.4. In Section 4.2.5, we show the
results of cross-database experiments.

4.2.1. Results and analysis of AUs and expressions dependencies
modeling by the BN on the CKþ database

We quantify the dependencies among different AUs and the
dependencies among AUs and expressions using a conditional
probability of λ λ( | )P j i , as shown in Table 1, which measures the
probability of label λj happens, given label λi happens. From Ta-
ble 1, we can find that there exist two kinds of relationships
among AUs, and among AUs and expressions: co-occurrence and
mutual exclusion. For example, ( | )P AU AU1 2 is 1.00, which shows
AU1 is always coexistent with AU2. ( | )P AU surprise25 is 0.988, in-
dicating that AU25 is an important AU to express surprise.

( | )P AU AU1 9 and ( | )P AU happy1 are 0.00, which means AU1 never
coexists with AU9, and AU1 is rarely active when users express
happiness. The proportions of the co-occurrence and mutual ex-
clusion relations among AUs and expressions are larger than those
among AUs. Specifically, 39.6% and 22.0% relations among AUs and
expressions are extremely mutually exclusive (i.e. λ λ( | ) =P 0.00j i )
and co-occurrence (i.e. λ λ( | ) >P 0.70j i ) respectively while there is
only 14.7% relations among AUs are extremely mutual exclusion
= )1 ).

AU9 AU12 AU17 AU23 AU24 AU25 AU27

0.000 0.038 0.223 0.038 0.008 0.777 0.546
0.000 0.040 0.101 0.030 0.010 0.909 0.717
0.311 0.025 0.754 0.287 0.254 0.213 0.008
0.011 0.043 0.098 0.076 0.000 0.924 0.652
0.189 0.705 0.211 0.074 0.032 0.737 0.000
0.443 0.076 0.696 0.329 0.329 0.228 0.000
Null 0.033 0.705 0.082 0.148 0.148 0.000
0.025 Null 0.025 0.000 0.025 0.900 0.038
0.374 0.017 Null 0.304 0.278 0.052 0.000
0.116 0.000 0.814 Null 0.581 0.023 0.023
0.209 0.047 0.744 0.581 Null 0.000 0.000
0.050 0.398 0.033 0.006 0.000 Null 0.398
0.000 0.042 0.000 0.014 0.000 1.000 Null
0.067 0.022 0.867 0.800 0.733 0.000 0.000
0.000 0.278 0.278 0.056 0.111 0.000 0.000
0.983 0.034 0.695 0.034 0.119 0.153 0.000
0.000 0.080 0.120 0.000 0.000 0.920 0.000
0.000 0.971 0.000 0.000 0.000 0.971 0.000
0.000 0.000 0.964 0.107 0.036 0.000 0.000
0.000 0.036 0.000 0.012 0.000 0.988 0.867

ive ( λ λ( | ) =P 0.00j i ) relation.



Fig. 4. The BN model for AUs on the CKþ database. (The unshaded nodes are the hidden nodes we want to infer and the shaded nodes are the corresponding measurement
obtained by a traditional image-driven method.)

Table 2
Experimental results with complete AU annotations.

Method CKþ Cross-database BP4D

Hamming F1 score Hamming F1 score PCC ICC

Image-driven 0.1006 0.738 0.105 0.834 0.552 0.603
Model-based 0.100 0.793 0.101 0.844 0.576 0.617
Proposed 0.096 0.800 0.097 0.846 0.600 0.632
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and co-occurrence. It indicates that the relations among AUs and
expressions may be stronger that those among AUs.

To systematically capture dependencies among AUs, and de-
pendencies among AUs and expressions, we learned two BNs,
shown in Fig. 2 and Fig. 4 respectively. In Fig. 2, expression variable
takes 7 values representing 7 types of expression. The links in the
structure represent the dependencies among labels. Comparing
two learned BNs with the dependency tables, we find that the
label pairs whose conditional probabilities are top ranked or bot-
tom ranked are linked in the BNs in most cases. It demonstrates
the effectiveness of the BN structure learning method which can
effectively capture the mutually exclusive and co-existent re-
lationships among multiple labels. Comparing Fig. 2 with Fig. 4, we
find that by adding the expression node, many links among AUs
are removed. Specifically, in Fig. 4, each AU node is connected with
at least two other AU nodes, while in Fig. 2, all of the 13 AUs nodes
are connected with the expression node directly or indirectly and
most AUs are conditionally independent given the expression. It
further confirms that the relations among AUs and expressions are
stronger than those among AUs. It also says that AU relations are
mostly expression-dependent or AUs are more likely to relate to
each other via the expression. Specifically, AU dependencies can be
classified into two types: expression-dependent and expression-
independent. While links among AUs capture the direct relation-
ships among AUs, AUs linked through the expression node capture
the expression-dependent AU relationships. For Fig. 4, the two
types of AU relationships are all captured by the direct links
among AUs. As a result, the model is denser. While in Fig. 2, by
introducing the expression node, many inherent links among AUs
disappear. This means AUs are mostly dependent on each other
through the facial expression, i.e. most of the AU relationships are
expression-dependent. The remaining direct links among AUs in
Fig. 2 capture the expression-independent AU dependencies, i.e.
AU dependencies as a result of the underlying facial anatomy,
taking the link between AU1 and AU2 for example, both AU1 and
AU2 are related to frontalis facial muscle [35]. Therefore, the AU
recognition performance may be better improved by considering
both the relations among AUs, and the relations among AUs and
expressions.
4.2.2. Results and analysis of AU recognition with complete AU an-
notations on the CKþ database

The experimental results of AU recognition are shown in
Table 2. From the table, we can obtain the following observations:

1. The image-driven method performs worst among the three
methods, since its Hamming Loss is the highest, and the F1 score
is the lowest. The image-driven method predicts each AU in-
dependently from the image features only. However, the AUs
are not totally independent. There exist co-occurrent and mu-
tually exclusive relations among AUs, and the relations among
AUs and expressions are even much stronger as discussed
above. The two learned BNs systematically capture these rela-
tions. Our AU recognition methods capturing expression-de-
pendent AU relations and combining it with AU measurements
improve the performance.

2. The AU recognition by considering both AUs' relations and AU-
expression relations performs better than the model-based
method only considering AU relations, with lower Hamming
Loss and higher F1 score. It suggests that the stronger relations
among AUs and expressions can facilitate AU recognition better
than using the AU relations only, even when the expression
labels are only used during training.



Fig. 5. AU recognition results on CKþ database under 10 different missing proportions.
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Table 3
Comparison with current model-based method on the CKþ database (in F1 score).

AUs Proposed [16] [15]

1 0.945 – 0.825
2 0.935 – 0.870
4 0.785 – 0.792
5 0.798 – 0.735
6 0.776 – 0.728
7 0.601 – 0.575
9 0.911 – 0.879
12 0.847 – 0.875
17 0.837 – 0.868
23 0.689 – 0.673
24 0.447 – 0.510
25 0.952 – 0.918
27 0.977 – 0.911
Average 0.800 0.792 0.781

The bold values denote the best experimental results among methods listed in a
Table.

Table 4
Comparison with current image-driven AU recognition works on the CKþ database
(in F1 score).

AUs Proposed [27] [37] [38] [11] [12]

1 0.945 0.779 0.622 0.88 0.91 0.900
2 0.935 0.801 0.762 0.92 0.88 0.930
4 0.785 0.775 0.691 0.89 0.90 –

5 0.798 0.636 – – 0.74 –

6 0.776 0.771 0.796 0.93 0.91 0.742
7 0.601 0.624 0.791 – – 0.667
9 0.911 0.788 – – 0.82 –

12 0.847 0.900 0.772 0.90 0.90 0.807
17 0.837 0.811 0.843 0.76 0.75 0.835
23 0.689 – – – – 0.743
24 0.447 0.601 – – – 0.659
25 0.952 0.889 – 0.73 0.76 –

27 0.977 0.995 – – – –

Average 0.800 0.780 0.754 0.859 0.841 0.785

The bold values denote the best experimental results among methods listed in a
Table.
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To demonstrate that the performance improvement is statisti-
cally significant, we conducted 10-fold cross-validation 10 times
and a Wilcoxon signed-rank test. The p-value of model-based vs.
image-driven, ours vs. image-driven, ours vs. model-based in
terms of Hamming Loss and F1 with complete AU labels are all less
than 0.05, showing that the performance improvement is statis-
tically significant.

4.2.3. Experimental results with incomplete AU annotations on the
CKþ database

To investigate robustness of the proposed method with respect
to missing AUs, we conducted the 10-fold cross-validation seven
times, and the average results are summarized in Fig. 5. From
Fig. 5, we can conclude the following:

1. The image-driven method performs worst among the three
methods in most cases, since it is trained based complete AU
data and ignores incomplete AU data. It indicates that the
learned BN structure and proposed EM algorithm can effectively
handle missing labels.

2. Our method considering both AUs' relations and AU-expression
relations outperforms the model-based AU recognition con-
sidering only AUs relations in eight cases, i.e. AU1, AU2, AU6,
AU9, AU12, AU23, AU24 and AU27. The performance of the
former is almost similar as that of the latter on three AUs,
including AU5, AU7 and AU17. For AU4 and AU25, the perfor-
mance of the former is slightly weaker than that of the latter.
Therefore, in general, expressions can better help AU recogni-
tion with incomplete AU annotation, due to the stronger rela-
tions among AUs and expressions.

3. The performances of AU9 and AU23 degrade severely with the
model-based method when the missing ratio increases. We
analyze the experimental data and find that the AU9 and AU23
are the least present two AUs. Among all the 327 samples of the
CKþ database, AU9 is present in only 61 samples and AU23 is
present in only 43 samples. We consider that this imbalance
leads to the biased dependency among AUs modeled by the
model-based method and hence unsatisfactory performance for
AU9 and AU23. When our method is performed, the expression
information can compensate for this imbalance and lead to the
much better results than both of the model-based method and
the image-driven method.

4.2.4. Comparison with related AU recognition work
Although many studies have been done on AU recognition, and

achieved good performance, only a small part of the studies ex-
ploit the dependencies among AUs as described in Section 2.
Among the three model-based works, Tong et al. [36] conducted
the experiments on the CK database. Since they do not report the
experimental results on the CKþ database, we cannot compare
with their work directly. However, the AU recognition considering
AU relations only is similar to Tong et al.'s [36] work. From
Section 4.2.2, we can find that our proposed method using ex-
pression to assist AU recognition performs better than Tong et al.'s
[36] work, when the AU annotation is complete. The other two
model-based works, Wang et al. [16] and Eleftheriadis et al. [15]
validated their proposed methods on the CKþ database, therefore,
we list their results in Table 3. In Wang et al.'s [16] work, the re-
sults corresponding to each AU are plotted onto the figures and
not listed numerically. Therefore, we just compare the average
result. From Table 3 we can find that our average result outper-
forms the two reference works.

There exists lots of image-driven AU recognition works that
evaluate on the CKþ databases. Since the used samples (all sam-
ples [37] or part of samples [27,38]), the recognized AUs (8 AUs
[37], 9 AUs [38] and 13 AUs [27]), and the validation strategy (such
as n-fold cross-validation [37,38] or leave-one-subject-out [27])
vary with methods, it is hard to compare our results with theirs
fairly. We only compare the experimental results as a reference.
Furthermore, we list current fixed AU combination works [11,12]
in Table 4. Table 4 reports the comparison of the proposed method
with the reference works, which also used F1 score as the eva-
luation metric. From Table 4 we can find that among 13 AUs, the
results of 5 AUs are the best among the reference works. Although
the average F1 scores of [38,11] are higher than ours, [38] only
consider 7 AUs and [11] considers 9 AUs, while our work considers
13 AUs. The average F1 score of such 7 AUs using our method is
0.868, which is higher than [38]. If we calculate the average F1
score under the same condition with [11], our result is 2.4% higher
than theirs. It shows that for complete AU annotation, our method
outperforms the current image-driven method.

For comparison under incomplete AU annotation, we per-
formed two comparisons. First, we compare the model-based
method considering only AU relations with our method modeling
both AU relations as well as AU and expression relations trained
using only the complete portions of the training data. Second, we
compare the two methods using all training data. The average
results of the first study are summarized in Table 5, which again
shows that our model outperforms Tong's model. It demonstrates
once again that adding the expression label can improve AU



Table 5

Comparison experimental results on the CKþ database under 10 different missing proportions (⁎ −10 1).

Mis 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

H Im Ave 0.875 0.877 0.877 0.877 0.877 0.879 0.880 0.881 0.881 0.882
Std 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02

B1 Ave 0.860 0.860 0.861 0.860 0.858 0.862 0.860 0.865 0.862 0.865
Std 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01

B2 Ave 0.855 0.854 0.856 0.854 0.855 0.857 0.856 0.860 0.857 0.859
Std 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01

F Im Ave 8.065 8.061 8.062 8.060 8.058 8.054 8.054 8.047 8.048 8.043
Std 0.04 0.02 0.03 0.04 0.03 0.05 0.04 0.05 0.07 0.08

B1 Ave 8.097 8.096 8.095 8.097 8.097 8.090 8.093 8.078 8.084 8.080
Std 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.03

B2 Ave 8.103 8.104 8.100 8.106 8.103 8.098 8.102 8.091 8.098 8.093
Std 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.03 0.03

“Mis” represents “missing proportions”, “H” represents “Hamming Loss”, “ F” represents “F1 score”, “Im” represents ”Image-driven”, “B1” represents “BN structure considering
only AUs without EM algorithm”, “B2” represents “BN structure considering both AUs and expression without EM algorithm”, “Ave” represents “average”, and “Std” represents
“standard error”.
The bold values denote the best experimental results among methods listed in a Table.
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recognition even under insufficient fully labeled AU data. For the
second study, since Tong's model cannot handle incomplete data,
we extend Tong's model to handle incomplete data using EM al-
gorithm. From Section 4.2.3, we can find that our method con-
sidering both AUs' relations and AU-expression relations outper-
form the model-based AU recognition considering only AUs rela-
tions when the AU annotation is incomplete. Thus, our method
outperforms the current model-based AU recognition for both
complete and incomplete AU annotations.

4.2.5. Cross-database AU recognition experiments
Tables 2 and 6 show the cross-database AU recognition results

under complete and incomplete AU annotations respectively. From
the two tables, we can find that the performance of the proposed
method is better than that of the model-based method consider-
ing AU relations only for both complete and incomplete AU an-
notations, with lower hamming distance and higher F1 score. Our
method performs more stably than the model-based method
considering AU relations only, since our method has the lower
standard deviation of the two parameters. Therefore, the cross-
database experiments demonstrate the generalization ability and
the robustness of our method.

4.3. Experimental results of AU intensity estimation

Section 4.3 is organized as follows: Section 4.3.1 focuses on
analyzing the dependencies modeling by the BN. The experimental
results are shown in Sections 4.3.2 and 4.3.3. Section 4.3.2 ana-
lyzes the results under complete data and Section 4.3.3 analyzes
the ones under incomplete data. The comparison with related
Table 6

Average of 13 AUs recognition results on the ISL database under different missing prop

Mis 5% 10% 15% 20%

H M Ave 1.004 0.995 0.997 1.000
Std 0.03 0.06 0.05 0.06

P Ave 0.975 0.984 0.978 0.985
Std 0.01 0.02 0.02 0.04

F M Ave 8.434 8.427 8.404 8.404
Std 0.04 0.11 0.10 0.07

P Ave 8.453 8.437 8.448 8.439
Std 0.02 0.04 0.04 0.06

“Mis” represents “missing proportions”, “H” represents “Hamming Loss”, “ F” represents “F
“Ave” represents “average”, and “Std” represents “standard error”.
The bold values denote the best experimental results among methods listed in a Table.
work is discussed in Section 4.3.4

4.3.1. Results and analysis of AU intensity and expression de-
pendencies modeling by a BN

After validating the effectiveness of our method on AU occur-
rence data, we extend the method to the AU intensity estimation
task. To systematically capture relationships among AU intensities,
and relations among AU intensities and the expression labels, i.e.
the expressions on the BP4D database, we have learned 2 BNs that
are shown in Fig. 6.

From Fig. 6 we can obtain the similar observations to those on
the CKþ database. There are totally six directed edges among AU
nodes in the AUs' model, while after adding expression node to the
model, about half of the directed edges are replaced by those of
the expression-dependent relations. It further confirms that the
relations between expressions and AUs are stronger than those
among AUs. From Fig. 6(b), we can find that the expression node is
connected to 4 out of 5 AUs, which shows strong relationship
among expressions and AUs.

4.3.2. Results and analysis of AU intensity estimation with complete
annotations

We perform experiments with complete AU labels on the BP4D
database 10 times, then we take the average results in order to
avoid the errors caused by randomly initial parameters. We cal-
culate the variance of the 10 results and it is of the order of −e1 2,
which demonstrates the stability of our method. The experimental
results are shown in Table 2.

From the BP4D part of Table 2, we can conclude that for AU
intensity estimation, our method outperforms both the image-
ortions (⁎ −10 1).

25% 30% 35% 40% 45% 50%

1.022 1.011 1.019 0.997 1.032 1.022
0.04 0.04 0.06 0.08 0.05 0.05
0.988 0.976 0.995 0.980 0.975 0.979
0.04 0.02 0.05 0.03 0.04 0.03

8.360 8.375 8.342 8.386 8.330 8.340
0.09 0.08 0.13 0.09 0.09 0.10
8.416 8.439 8.410 8.444 8.431 8.434
0.08 0.04 0.08 0.06 0.08 0.05

1 score”, “ M” represents “Model_based method”, “ P” represents “Proposed method”,



Fig. 6. The BN models on the BP4D database.

Table 7
Comparison with [23] on the BP4D database.

Measure Method AU6 AU10 AU12 AU14 AU17 Average

ICC [23] 0.690 0.696 0.653 0.453 0.278 0.554
Proposed 0.768 0.662 0.839 0.198 0.530 0.600

PCC [23] 0.699 0.715 0.706 0.472 0.365 0.592
Proposed 0.781 0.671 0.843 0.289 0.577 0.632

The bold values denote the best experimental results among methods listed in a
Table.
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driven and the model-based methods on the BP4D database. It
further demonstrates that capturing the dependencies among AUs
and expressions instead of capturing the ones among AUs can
improve the performance of the model. The dependencies highly
supplement AU intensity estimation.

To further validate the improvement of our method to image-
driven and model-based methods, we perform Wilcoxon signed-
rank test on the 10 group results, and the p-value of ours vs. im-
age-driven and ours vs. model-based in terms of PCC and ICC with
complete AU labels are all less than 0.05, showing that the per-
formance improvement is statistically significant.

4.3.3. Comparison with the baseline work on the BP4D database
There exist several works that estimate AU intensity on the

BP4D database [23,39–42]. In this part, we focus on comparing our
results on the database with [23] because our experimental con-
ditions are much the same. The adopted features in our experi-
ments are provided by Valstar [23]. We also use the same metrics
and cross validation partitions to evaluate the performance as [23],
which makes the comparison relatively fair. The detailed com-
parison is shown in Table 7. Combining Tables 7 and 2 we are able
to not only compare the experimental results but also make it
clear that how our method improves at the basis of the SVR
results.

From Tables 7 and 2, we can find that the results corresponding
to the image-driven method, the model-based method and our
method are gradually increased. The model-based method cap-
tures the dependencies among AUs at the basis of image-driven
method, which improves the performance. Our method not only
captures dependencies among AUs but also captures the ones
among AUs and expression, which introduces more useful in-
formation to the model. Therefore, our method further improves
the performance.

From Table 7 we can conclude that our approach generally
outperforms the work [23], since the performance of most AUs
and the average results are much better than those of [23]. When
comparing to the SVR results referred in [23], we can find that our
results of AU6, AU12 and AU17 are better than theirs. Since the
experimental conditions are similar, the comparison results are
convictive. In other words, our method can outperform [23] under
the same experimental conditions.

Since the measurements are important components of our
method, the final results still have improvement space if we get
better measurement results, which has been confirmed during the
parameter adjustment process.

4.3.4. Experimental results with incomplete AU intensity annotations
The results of AU intensity estimation with incomplete AU la-

bels are shown in Fig. 7. From Fig. 7, we can find that our proposed
method outperforms both the image-driven method and the
model-based method under most of the missing ratios, since the
ICC of our method is the highest in most cases, verifying the ef-
fectiveness of our proposed method. Compared with the proposed
method and model-base method, the performance of image-dri-
ven method decreases much faster along with the increase of the
missing ratio. It demonstrates that the relations among AUs, as
well as the relations among AUs and expressions, are benefit for
the robustness of AU intensity estimation.
5. Conclusion

Current AU recognition requires complete AU annotation for
training. However, the efforts for training human experts and
manually annotating the AUs are expensive and time consuming.
Furthermore, the reliability of manual AU annotation is inherently
attenuated by the subjectivity of human coder, especially for the AUs
that are difficult to label. In contrast, expressions are much easier to
annotate with great accuracy. Therefore, we design an AU recognition
method with the assistance of expression labels under incomplete
AU labeling. We propose to construct a BN model to capture the
dependencies not only among AUs but also among AUs and ex-
pressions. During training, the image features and expression labels
are complete, while the AU labels may be missing. SEM is adopted to
learn the structure and parameters of the BN. The traditional image-
driven method is adopted to obtain the expression and AU mea-
surements. During testing, the AUs are inferred by combining the
measurements and the AU relations in the BN model. Both within
database and cross-database experiments, as well as both AU oc-
currence prediction and AU intensity estimation are conducted to
compare our method with image-driven method and model-based
method. The experimental results of within database show that our
method outperforms the state of art model-based AU recognition
methods for both complete and incomplete AU annotations, as well



Fig. 7. AU recognition results on the BP4D database under 10 different missing proportions.
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as both binary AU occurrences and continuous AU intensities. The AU
recognition assisted by expression performs better than the current
image-driven method for complete AU annotations. The cross-data-
base experimental results demonstrate that our method has better
generalization ability and is more robust compared with current
model-based and image-driven methods.

Since the proposed BN is learned from ground truth of AU and
expression labels, it can handle not only posed but also sponta-
neous expressions, assuming that the ground truth of expression
labels are representative of the ground truth of AU labels.

The proposed approach is expression-dependent AU
recognition. The expressions we study in this work are a small yet
the most generic set of prototype expressions. They are universally
true in most databases. Our method may not work well for other
infrequent expressions. Even AUs can be formed independent of
expressions, most AUs are formed in order to perform certain kind
of expressions. Moreover, by using the readily available expression
during training, we implicitly impose a prior on AUs and hence
help improve AU recognition. The prior, of course, can be wrong if
the expressions are different from those in the database.

Besides the spatial dependency among AU and expression, the
temporary dependency is also crucial for AU analyses. Because of
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the need of significance theoretical development, we do not con-
sider the dynamic relationships modeling in this work. We will
investigate this issue in the future.
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