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Abstract

We describe a novel method that simultaneously clusters
and associates short sequences of detected faces (termed as
face tracklets) in videos. The rationale of our method is
that face tracklet clustering and linking are related prob-
lems that can benefit from the solutions of each other. Our
method is based on a hidden Markov random field model
that represents the joint dependencies of cluster labels and
tracklet linking associations . We provide an efficient algo-
rithm based on constrained clustering and optimal match-
ing for the simultaneous inference of cluster labels and
tracklet associations. We demonstrate significant improve-
ments on the state-of-the-art results in face tracking and
clustering performances on several video datasets.

1. Introduction
Reliably tracking and clustering of faces in uncon-

strained videos is a challenging problem, which is com-

plicated by drastic changes in backgrounds, illuminations,

view points, camera movements and occlusions that fre-

quently occur in actual videos. Most previous works treat

these two problems separately, as either a face tracking
problem where sequences of face images are associated

[14, 18] or a face clustering problem where face images are

partitioned into different clusters [3, 22, 23].

We address in this paper the problem of simultaneously
clustering and linking of short sequences of detected faces

(termed as face tracklets) in videos. We argue that it is ad-

vantageous to solve the two problems simultaneously – they

provide useful information and constraints to each other,

thus can bootstrap and improve the performances of each

other. Figure 1 exemplifies the benefits of simultaneous

face clustering and tracklet linking: in the first case (top

Figure 1. The benefit of simultaneous face clustering and track-
let linking. Detected face tracklets are indicated by bounding
boxes connected with solid lines (we only highlight a few detected
tracklets for the sake of presentation). Linkings and cluster la-
bels of tracklets are indicated by the dashed curves and numbers
over the bounding boxes, respectively. (Top) Without considering
clustering labels, tracklets of different clusters are linked incor-
rectly. (Bottom) Without considering tracklet linking, tracklets in
the same track are incorrectly partitioned into different clusters.

row), linking tracklets without considering their cluster la-

bels leads to incorrect association tracklets from cluster 1

and 2 together. In the second case (bottom row), incorrect

clustering of faces (in this case, separation of faces of the

same person into two clusters 1 and 2) can be avoided with

the knowledge that there is a high likelihood that they are in

the same long track.

The basis of our method is a novel hidden Markov ran-

dom field (HMRF) 1 model [8] that jointly models the face

cluster labels and face tracklet associations. We formu-

late the problem of simultaneously clustering and linking

of tracklets as a Bayesian inference problem based on this

model, and provide an efficient coordinate-descent solu-

tion. Specifically, from detected face tracklets with similar

1As the constraints used in our problem are un-directed correlations,

HMRF is a better choice than the directed models such as HMM or DBN.
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Figure 2. Overall workflow of our method for simultaneous face clustering and tracklet linking. With an input video, we first detect all faces
in each frame, and then form face tracklets from adjacent frames. The face tracklets are iteratively clustered and linked into longer tracks
in a bootstrapping manner, with the final output of the algorithm being the complete long tracks of detected faces with cluster labels.

appearances and adjacent spatial locations in consecutive

frames, our method iterates between two steps:

• finding long tracks of faces that are consistent in mo-

tion and appearance using the intermediate tracklet

clustering as an important cue,

• recovering face cluster labels using constrained clus-

tering with constraints given by the intermediate face

tracklet linking step.

This procedure is illustrated in Figure 2. The contributions

of this work are thus three-fold:

• We present a systematic approach of jointly solving

two related tasks, i.e., face clustering and face tracklet

linking, taking advantage of the additional information

from each task to boost their overall performances.

• We formulate the problem as a unified hidden Markov

random field model and provide an efficient algorithm.

• Our face tracking and clustering performances im-

proves on the state-of-the-art results for three data sets.

The rest of the paper is organized as follows. After re-

viewing relevant previous works in Section 2, we describe

the HMRF model and its optimization in Section 3, and pro-

vide further implementation details in Section 4. Experi-

mental evaluations and comparisons of our method are re-

ported in Section 5 and Section 6 concludes the paper with

discussion and future works.

2. Related Works
Face clustering in videos has been the topic of many pre-

vious works, e.g., [1, 4, 5, 6, 19]. These methods com-

monly treat faces from different video frames as a set of

still images, and apply conventional clustering algorithms

based on similarities in appearance and poses. A few re-

cent works also study the use of pairwise constraints that

are distinct for detected faces in videos [3, 22, 23]: faces in
the same tracklet should be must-linked, while faces from a
pair of overlapped tracklets should be cannot-linked. How-

ever, these methods still suffer from the frequent changes

in pose and illumination, and the intrinsic low resolution of

video frames. As shown in the bottom row of Figure 1, be-

cause of the pose change and low resolution, two tracklets

of the same person are easily to be grouped into different

clusters. If given a pair of non-overlapped tracklets belongs

to the same track, many more pairwise constraints can be

obtained, which are expected to further enhance the perfor-

mance of constrained face clustering.

Recently, many works in video tracking explore the

methodology based on short consecutive tracked locations

(known as tracklets) that can be reliably obtained (e.g.,

[10, 15, 24, 17]). These methods then proceed by linking

the tracklets into longer tracks, which is achieved by first

constructing pairwise similarities between tracklets (based

on appearance as in [15, 10], motion smoothness [24] or

entry/exit maps [24]) followed by optimally matching (us-

ing the Hungarian algorithm [9] for optimal matching of bi-

partite graph [7, 17] or as a Bayesian inference [15]). Com-

pared to traditional monolithic tracking solutions, the track-

let based methods are more robust and suitable for tracking

multiple objects in heavily occluded scenes. Furthermore,

the tracklet-based methodology has also been employed for

face tracking in [14, 18]. Though bootstrapping clustering

and tracklet linking has been discussed in the context of

simplified context with fixed camera (e.g., [20, 17]), to our

best knowledge, no previous work has explore this approach

in a more challenging scenario with many camera motions

and occlusions for the clustering and tracking of faces.

3. Method
3.1. Problem Formulation

We assume that a long video has been processed to ob-

tain a set of face tracklets U = (u1,u2, · · · ,un) (details

given in Section 5). Each tracklet ui is represented as a list

of triples collected from a sequence of ni continuous video

frames, as ui = {t(i)j ,x
(i)
j , l

(i)
j }ni

j=1, where t
(i)
j is the frame

index, x
(i)
j corresponds to appearance features, and l

(i)
j rep-

resents the location and scale of the bounding box of each

detected face, respectively. We use t(i), X(i) and L(i) to

represent the ensemble of t
(i)
j , x

(i)
j and l

(i)
j of tracklet ui,

respectively. We also compute similarities between every

pair of tracklets (details to be described in Section 4.2), and

save them in an n× n matrix M .

Our goal is to simultaneously link the tracklet into longer
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Figure 3. The graphical model of the hidden Markov random field
(HMRF) model. The open and closed circles represent latent and
observable variables, respectively. The top layer represents the
cluster label variables, while the bottom layer denotes the link-
ing variables. The lines between nodes represent their relations.
Note that the linking variables in the same row/column are fully
connected, and the links between two non-adjacent cluster label
variables are omitted for clarity.

tracks and partition the face images into distinct clusters,

based on cues from face appearances and motion trajecto-

ries. For simplicity, we assume in this work that the total

cluster number ofK is known a priori2. We denote the clus-

ter labels of the tracklets as a vector y = (y1, y2, · · · , yn)
with each yi ∈ {1, 2, . . . ,K}. The linking relations of

tracklets are represented with a matrix O ∈ {0, 1}n×n

where Oij = 1 if and only if tracklets ui and uj are ad-

jacent in a track with ui precedes uj , and Oii = 1 if and

only if tracklet ui is the last tracklet in a long track. Table 1

summarizes all major notations used in this work.

We model the probabilistic inter-dependencies between

U , M , y and O with a hidden Markov random field

(HMRF) [8], in which y and O are latent variables and

U and M are observable variables. A brief illustration

of the HMRF is shown in Figure 3. Their joint prob-

ability distribution, along with model parameters θ =
({μi}Ki=1, {Σi}Ki=1, β) (to be specified in the following), is

defined as:

P (U,M,y, O; θ) = P (U |y; θ)P (M |O)P (y, O), (1)

where we assume conditional independence between U and

M given the latent variables. Specifically, we model the

likelihood of the appearances of the face images in the

tracklets given their cluster labels with a simple Gaussian

model,

P (U |y; θ) =
n∏

i=1

ni∏
j=1

N (x
(i)
j |μyi

,Σyi
), (2)

where parameters μyi
and Σyi

correspond to the cluster-

specific means and covariance matrices, respectively and

are estimated during the inference of y (described in Sec-

tion 4.1). The other likelihood term, P (M |O), which cap-

tures the relation beween tracklet similarities and their link-

2For example, for videos from TV episodes, K can be determined using

the number of major cast.

Symbols Descriptions

U = (u1,u2, · · · ,un) a set of face tracklets

ui = {t(i)j ,x
(i)
j , l

(i)
j }ni

j=1 one tracklet of ni faces

t(i) = (t
(i)
1 , t

(i)
2 , · · · , t(i)ni )

′ frame indexes of the bounding

boxes

X(i) = (x
(i)
1 ,x

(i)
2 , · · · ,x(i)

ni ) appearance of the bounding

boxes

L(i) = (l
(i)
1 , l

(i)
2 , · · · , l(i)ni ) locations and scales of the

bounding boxes

y = (y1, y2, · · · , yn) the cluster labels of tracklets

yi ∈ {1, 2, . . . ,K} K is the number of clusters

V ∈ {−1, 0, 1}n×n the relations between y

O ∈ {0, 1}n×n the linking matrix

M = {Mij} ∈ Rn×n the observation matrix for O

Mij = f(ui,uj) the similarity between ui and uj

Table 1. Main notations used in this paper.

ing relations in long tracks, is defined as:

P (M |O) =
1

Z1

n∏
i=1

n∏
j=1

exp(λ1OijMij), (3)

with Z1 =
∑

M

∏n
i=1

∏n
j=1 exp(λ1OijMij) being the par-

tition function. The tuning of parameter λ1 will be pre-

sented in Section 4.2. Term P (y, O) represents the depen-

dencies between y and O, and is defined as:

P (y, O; θ) =
1

Z2

( n∏
i=1

ψ1(yi, yj)
n∏

i=1

∏
j �=i

ψ2(yi, yj , Oij)

n∏
i=1

ψ3(

n∑
j=1

Oij ,
∑
j �=i

Oji)

)β

, (4)

with Z2 being the partition function. The model param-

eter β controls the weight between logP (y, O; θ) and

log(P (U |y; θ)P (M |O)). It will be learned automatically

during the optimization (described in Section 3.2.1). The

first potential function ψ1 is defined as

ψ1(yi, yj) = e

[∑
Vij≥0 Vij(I(yi=yj)−1)+

∑
Vij<0 VijI(yi=yj)

]
,

(5)

where I is the indicator function, whose value is 1 if the ar-

gument is true, and 0 otherwise. The pre-computed matrix

V = {Vij |i, j = 1, . . . , n} ∈ Rn×n embeds the relations

among the cluster labels y: Vij > 0 indicates positive cor-

relation between yi and yj , i.e., they are more likely to take

the same value; Vij < 0 indicates negative correlation be-

tween yi and yj , i.e., they are more likely to take different

values; Vij = 0 represents the cluster labels being inde-

pendent. More details about the computation of V will be

described in Section 4.1. Potential function ψ2 is defined as

ψ2(yi, yj , Oij) = exp
(
λ2Oij(I(yi = yj)− 1)

)
, (6)

and corresponds to the following constraint between y and

O: if yi �= yj , then the configuration Oij = 1 will be dis-
couraged, and vice versa. The tuning of λ2 will be dis-
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Algorithm 1 Overall algorithm for simultaneous face clustering
and tracklet linking.
Input: tracklets U , their similarity M , number of clusters K
Output: cluster labels y and tracklet linking relation O

Initialize O based on M , using Hungarian algorithm;

while not converge do
optimizing y and θ with fixed O (Section 3.2.1);

optimizing O with fixed y (Section 3.2.2);

end while
return y� and O�

cussed in Section 4.1. Potential function ψ3 models the de-

pendencies among components of O and is defined as

ψ3(

n∑
j=1

Oij ,

n∑
j �=i

Oji) = I(

n∑
j=1

Oij = 1)I(

n∑
j �=i

Oji < 1).

(7)

3.2. Optimization

With the HMRF formulation, our task of simultaneous

clustering and tracklet linking of face images can be formu-

lated as a Bayesian inference problem, where we seek for

maxy,O,θ logP (y, O|U,M ; θ) ≡ (8)

maxy,O,θ logP (U |y; θ) + logP (M |O) + logP (y, O; θ),

where θ corresponds to the model parameters (μyi ,Σyi , β).
In this work, we solve this optimization problem with

coordinate-descent, and the overall algorithm is summa-

rized in Algorithm 1.

3.2.1 Optimizing y and θ with Fixed O

The objective function of this step is

(y�, θ�) = argmax
y,θ

(logP (U |y; θ) + logP (y, O; θ)) ,

where the objective function can be further simplified by

dropping constant terms to obtain
n∑

i=1

ni∑
j=1

logN (x
(i)
j |μyi

,Σyi
) + β

n∑
i=1

( ∑
Vij<0

VijI(yi = yj)+

∑
Vij>0

Vij [I(yi = yj)− 1] + λ2
∑
j �=i

Oij [I(yi = yj)− 1]

)
.

(9)

With O fixed, this reduces to a constrained clustering prob-

lem, where the first term encourages tightness within each

cluster, and the remaining terms specify constraints over

y that are provided in V and O. Specifically, the second

term incorporates the cannot-link constraint: given Vij < 0,

the result yi = yj will be penalized, because the objec-

tive function (9) will decrease by −β|Vij | in this case. The

third term embeds the must-link constraint: given Vij > 0,

the result yi �= yj will be penalized, because Equation (9)

will also decrease by −β|Vij |. Similarly, the last term also

serves as the must-link constraint: given Oij = 1, the re-

sult yi �= yj will be penalized, because (9) will decrease by

−βλ2|Oij |. Note that these constraints are softly incorpo-

rated in our model, since the penalty degrees of violating

these constraints are finite values, i.e., β|Vij | or βλ2|Oij |3.

This soft manner can be understood as: it is possible that

some cluster labels will violate the given constraints in V
and O, and it allows the possible errors in some constraints,

which is often the case in practice.

This constrained clustering problem can be directly

solved by the simulated filed algorithm [2, 23], in which the

inference of y and the learning of parameters θ = (μ,Σ, β)
are performed alternatively. More details on obtaining V
and the tuning of λ2 will be described in Section 4.1.

3.2.2 Optimizing O with Fixed y

This step is achieved with the following objective function:

O� = argmax
O∈{0,1}n×n

logP (M |O) + logP (y, O;β),

which is further simplified by dropping constant terms to

yield
n∑

i=1

n∑
j=1

Oij [λ1Mij + βλ2(I(yi = yj)− 1)]

+ β
n∑

i=1

log[I(

n∑
j=1

Oij = 1)I(

n∑
j �=i

Oji ≤ 1)] (10)

Equation (10) can be considered as a matching problem of a

weighted bipartite graph, which can be solved by the Hun-

garian algorithm [9]. Specifically, [λ1Mij + βλ2(I(yi =
yj) − 1)] denotes the edge weight, and if this edge is se-

lected, then Oij = 1. Obviously in the setting of bipartite

matching, the constraints embedded in I(
∑n

j=1Oij = 1)

and I(
∑n

j �=iOji ≤ 1) are satisfied automatically.

Note that in linking the tracklets, we also incorpo-

rate constraints from the clustering results with the term

βλ2(I(yi = yj) − 1) in Equation (10): if yi �= yj , then

the similarity between ui and uj will be reduced by βλ2;

consequently, the probability of Oij = 1 will decrease. De-

tails of this algorithm will be described in Section 4.2.

4. Implementation
4.1. Constrained Clustering

Here we describe more details about the optimization of

Equation (9). We augment the HMRF-based constrained

clustering proposed in [23] by incorporating additional con-

straints obtained from tracklet linking results. The pairwise

constraints used in the original HMRF-based clustering in-

clude two types: (1) faces in one tracklet should belong to

the same cluster; (2) faces from two overlapped tracklets

(some faces of them co-exist in the same frame) should be-

long to different clusters. As mentioned in Section 3.2.1,

3Note that if we set |Vij | = ∞ and λ2 = ∞, then they become hard
constraints.
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the constraints are softly embedded when Vij is set as a fi-

nite value. Without loss of generality, we set |Vij | = 1
when a constraint exists. Specifically, Vij = 1 means a soft

must-link constraint; Vij = −1 represents a soft cannot-link

constraint; Vij = 0 indicates no constraint.

The additional constraints are derived from tracklet link-

ing: if two tracklets ui and uj are linked after tracklet link-

ing, faces from them should grouped into the same clus-

ter. Besides, considering the transitivity of must-link con-

straints, additional cannot-link constraints can also be ob-

tained. For example, given ui and uj are linked, if uj is

overlapped with another tracklet uk, then faces from ui and

uk should also be cannot-linked.

Such obtained constraints V and O are usually very

sparse with many zero entries. Following [23], the ini-

tial constraints are propagated based on the constraint-level

smoothness [12, 13]: given a must-link (cannot-link) be-
tween two faces x1 and x2, if x3 is close to x2 in ap-
pearance, then it is assumed that there is also a must-link
(cannot-link) between x1 and x3. The propagated con-

straints are formulated as follows [13]:

V = (1− α)2(I − αL)−1V (I − αL)−1, (11)

O = (1− α)2(I − αL)−1O(I − αL)−1, (12)

L = D−
1
2AD−

1
2 , Aij = exp−d2

a(xi,xj)/σiσj , (13)

where A is the affinity matrix, L is the normalized affinity

matrix, and α ∈ (0, 1) is a pre-determined. The degree ma-

trix D is diagonal, and Dii =
∑n

j=1Aij . The local kernel

sizes σi and σj are determined following the strategy de-

scribed in [16]. In each iteration, we replace V and O by

the propagated matrices V and O, which are then adopted

in the simulated filed algorithm (see Section 3.2.1).

To reduce the computation of clustering, we adopt the

approximation framework in [23], which is based on the

observation that faces in adjacent frames of the same track-

let are very similar. Its main process is summarized as fol-

lows: (1) randomly sampling a fixed number of faces from

each tracklet to obtain a subset of ns faces; (2) running con-

strained clustering on this subset; (3) determining the labels

of all faces based on the labels of faces in the subset. As

a simple example, if 5 faces are sampled from one tracklet,

and their labels are (3, 2, 3, 3, 1) after clustering, then the

label of this tracklet is determined as the mode value 3. All

faces in this tracklet are also relabeled as 3. The cluster la-

bels of tracklets are called as tracklet-level clustering, while

labels of all faces are referred to as face-level clustering.

Since the number of frames in each tracklet is not equal, the

clustering accuracies of these two levels may be different.

Last, as β is learned during the optimization, the only pa-

rameter we need to adjust is the ratio λ2, which controls the

relative weight between the constraints in V and O. Since

the constraints in V are always correct, while the constraints

inO that from tracklet linking may have some errors, we set

λ2 < 1. Besides, the tracklet linking results are believed to

become more accurate as the iteration proceeds, leading to

more reliable constraints in O. So we gradually increase λ2
during the whole optimization process.

4.2. Tracklet Linking

A key component for tracklet linking is the tracklet sim-

ilarity represented in matrix M . As reported in some pre-

vious works [24, 17], the tracklet similarity takes account

of three aspects, including the temporal adjacency, appear-

ance affinity and motion smoothness. The overall similarity

measure is given as follows:

Mij =

{
e−dt(t

(i),t(j))−η1da(x
(i),x(j))−η2dm(l(i),l(j)) i �= j

c i = j
(14)

with constants η1 and η2 in Equation(14) are two trade-off

parameters, which will be determined by cross-validation.

Specifically, distance dt enforces the temporal con-

straint: if uj occurs before ui or they are overlapped in
some frames, then Oij = 0. Here t(i) = (ti1, . . . , tini

)′ is

a column vector containing the frame indices of all faces in

tracklet ui. Similar to the work in [17], we define dt as:

dt(t
(i), t(j)) =

{
0, if 0 < �tij < t0,
∞, otherwise,

where �tij = t
(j)
1 − t

(i)
ni indicates the temporal differ-

ence between ui and uj and t0 is a pre-defined threshold

to avoid linking two tracklets with a large frame gap. Dis-

tance da measures appearance affinity. Following [17], the

appearance of each detected face is represented as a 24-

dimensional vector by concatenating 8 bins of each HSV

channel. A tracklet is further represented by the average

vector of the included faces. Then the Bhattacharyya dis-

tance is computed as da(x
(i),x(j)). Last, distance dm re-

flects motion smoothness. In particular, denote l
(i)
j ∈ R4×1

as the location and scale of the jth bounding box in tracklet

ui, represented by the horizontal and vertical coordinate of

the central pixel and the width and height of the box. Treat-

ing each face l
(i)
j as a point, then one tracklet can be seen as

a sequence of discrete points in a 4-dimensional space. We

fit this sequence through the polynomial curve fitting and

the fitted curve s(i)(·) can be used to predict the bounding

boxes of the other tracklet uj . The difference between the

predicted bounding box and the true box is utilized to define

dm, as follows:

dm(l(i), l(j)) =
∑

r∈{1,2,3}
||s(i)(t(j)r )− l(j)r || (15)

+
∑

r∈{ni−2,ni−1,ni}
||s(j)(t(i)r )− l(i)r ||,

where s(i)(t
(j)
r ) denotes the predicted bounding box at

frame t
(j)
r on the curve s(i) (see Figure 4).
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Figure 4. Definition of dm. The two central curves correspond to
s(i) and s(j). The solid circles correspond to detected faces in one
tracklet, while the dashed circles are those predicted by the fitted
trajectory. We match detected faces that are highlighted in blue
color. For simplicity, here we only show one dimension of l(i)j , and
the computations for the other three dimensions are similar.

The diagonal value Mii is set as a constant value to indi-

cate the end of a track, as shown in Equation(14). The value

c will influence the final number of tracks and the lengths of

tracks: if c is large, then many short tracks will be obtained;

otherwise fewer but longer tracks will be presented. In prac-

tice, c can be adjusted according to the user’s demand. In

our experiments, c is determined as the 3 times of the mode

value among the off-diagonal values in M , excluding the

infinite values. The ratio βλ2

λ1
is adjusted to control the rela-

tive weight between the constraints and tracklet similarities.

In our experiments, we initially set βλ2

λ1
= 0.1c. Since the

clustering results are expected to become more accurate as

the iteration proceeds, we gradually increase βλ2

λ1
.

5. Experiments
Our experiments are based on three publicly available

videos: Frontal and Turning data sets in [14], and BBT01

data set in [18]. These datasets correspond to different chal-

lenges for face tracking and clustering. The first two short

videos are recorded with a fixed camera view point. In

Frontal, there are frequent occlusions and fast movements

that make tracklet linking difficult. The Turning video has

frequent occlusions and many profile faces that make clus-

tering challenging. The BBT01 video is a whole episode

from the TV sitcom Big Bang Theory (Ep. 01-01). This

video is significantly longer (23 mins) with many small

faces due to the full scene shots. Another difficulty repre-

sented in this video is the frequent changes of camera view

and scene. Some statistics of datasets are shown in Table 2.

5.1. Tracklet Generation

With a given input video, we extract reliable face track-

ets by first applying the Viola-Jones face detector [21] in

each frame. The detected faces in adjacent frames are then

linked, based on similarities in their appearances, locations

and scales of the bounding boxes. To further avoid iden-

tity switches, we set a threshold on the matching score of

detected faces. Specifically, if the similarity between two

faces is smaller than the threshold, then they will not be

Data time frame person track tracklet face

Front [14] 51s 1277 4 9 43 4267

Turning [14] 40s 1007 4 4 50 2799

BBT01 [18] 1373s 32977 5 73 182 11525

Table 2. Basic statistics of the data sets used in our experiments.

linked. The small tracklets which include less than 10 faces

are deleted in Frontal and Turning, while tracklets including

less than 20 faces are deleted in BBT01.

5.2. Performance Evaluation Criteria

For face clustering, we use accuracies computed from

the confusion matrix between the predicted labels and the

ground-truth labels. In particular, we evaluate clustering

performances at two levels: the face-level clustering gives

the cluster label for each detected face; the tracklet-level

clustering outputs the cluster label for each tracklet, which

is determined based on the face-level clustering, as men-

tioned in Section 4.1.

For tracklet linking, we adopt the following metrics used

in [11]: the number of predicted tracks (PT, i.e., the long

tracks after linking), mostly tracked tracks (MT, larger is

better), Fragments (Frag, smaller is better) and ID switch

(IDS, smaller is better). Since we just focus on the perfor-

mance of tracklet linking, rather than tracking, the metric of

the mostly lost tracks (ML) is not used here. Besides, the

ground-truth tracks (GT) is predefined based on a threshold

of the frame gap t0: firstly, for the same person, we link all

tracklets based on temporal correlations; then, if the frame

gap between two adjacent tracklets is larger than t0, they

will be cut to different tracks. In this paper we set t0 = 150.

5.3. Comparisons

For face clustering, we compare the proposed method

with HMRF-pc 4 [23], which corresponds to only us-

ing the clustering step in our framework without the con-

straints from tracklet linking. For tracklet linking, we com-

pare a baseline tracklet linking method (denoted as Basic-

Linking), corresponding to only running the tracklet linking

step in our framework without constraints from clustering

results. Besides, we also compare with the state-of-the-art

method in the literature of face tracklet linking [18]5.

4To highlight the benefits of the additional constraints from tracklet

linking, in our experiments the label-level local-smoothness used in [23] is

not considered. So it is denoted as HMRF-pc, rather than HMRF-com.
5The original method of [18] uses cues from face poses. However, be-

cause the code of this method is not directly available to us and our purpose

here is to highlight the difference between the subsequent clustering and

tracklet linking steps, our implementation of [18] is simplified to use only

appearance and motion cues consistent with other methods compared. An-

other related work [24] considers human body tracking in the fixed scene

or the scene with only camera motion. It is not suitable for the dynamic

scene, so we did not compare with it.
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Figure 5. Illustration of the output face clustering and tracklet linking from our method on (Top) Turning and (Bottom) BBT01. The
colored numbers indicate the different cluster labels. The solid curves connect detected faces of the same tracklet. The dashed curves
represent linking of tracklets.

5.4. Results

The experiment results on face tracklet linking and clus-

tering are summarized in Table 3 and 4.As shown in Table 3,

HMRF-pc performs well on the Frontal video due to the dis-

criminative appearance information of frontal faces. Since

the room to improve is small, the tracklet linking fails to

help further enhance the clustering result based on HMRF-

pc. On the Turning video, because the existence of non-

frontal faces, HMRF-pc shows poor performance. On the

other hand, including the tracklet linking improves the clus-

tering accuracies significantly by 22% and 25% in tracklet-

level and face-level respectively. On BBT01, the clustering

results on both levels are also improved over HMRF-pc.

For tracklet linking, Roth et al.[18] and the Basic-

Linking show the same performance on the Frontal video

(Table 4). This may be due to the fact that the classifiers

trained on local appearance models from each pair of over-

lapped tracklets in [18] become less effective, as the appear-

ances of frontal faces are sufficiently distinct in this video.

However, constraints originated from the clustering results

aids the linking step and reduces errors due to the fast move-

ment. Our method shows improvements on MT and IDS,

with a small cost of Frag. On the Turning video, Roth et
al. [18] performs better than Basic-Linking, because the

classifier cue can overcome the difficulty of pose change.

With the help of clustering results, good improvements in

all metrics are gained over the Basic-Linking. On BBT01,

both Roth et al. [18] and our method show better perfor-

mance than Basic-Linking. Roth et al. performs better in

Frag, while our model gives much smaller IDS.

Some results of the proposed method over Turning and

BBT01 are shown in Figure 5. The presented frames show

different challenges for clustering and tracklet linking, in-

cluding: changes in poses, shots, backgrounds, camera

movements and occlusions. These results demonstrate the

robustness of our method.

The computational cost of the proposed method consists

of two parts, including constrained clustering and tracklet

linking. For one iteration of clustering, the computational

complexity is O(KN2), where N =
∑n

i=1 ni denotes the

total number of detected faces. However, utilizing the ap-

proximation algorithm mentioned in Section 4.1, it can be

significantly reduced. Specifically, the empirical time of

constrained clustering is 4.62s, 6.28s and 58.5s, for Frontal,

Turning and BBT01 respectively. For one iteration of track-

let linking, the main cost is the Hungarian algorithm. As

such, its cost is similar with other linking methods. The

proposed method oftentimes converges in less than 10 iter-

ations between clustering and linking in our experiments.

6. Conclusions and Discussions

We describe a novel method that simultaneously clus-

ters and associates faces of distinct humans in long video

sequences for identity maintenance. Our method is based

on a hidden Markov random field model that represents the

joint dependencies of cluster labels and tracklet linking re-

lations. We provide an efficient algorithm, based on con-

strained clustering with the simulated field algorithm and

optimal matching for the simultaneous inference of clus-

ter labels and tracklet associations. We show improvements

on the state-of-the-art results in face tracking and clustering

performances on several challenging video datasets.

There are a few future directions we would like to fur-

ther explore. As shown in the top row of Figure 5, a miss-

ing and a false positive detection occur in frame 137, due

to the pose change. Consequently, the two tracklets in red

color fail to be linked. It demonstrates that the performance

of the face clustering and tracklet linking can benefit with

more sophisticated face detection methods that robust to

pose, orientation or illumination changes. Furthermore, we

will also investigate more efficient optimization procedures

of the constrained clustering and matching problems, and

incorporating the simultaneous face clustering and linking

into an overall system for video summarization.
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Frontal [14] Turning [14] BBT01 [18]

tracklet-level face-level tracklet-level face-level tracklet-level face-level

HMRF-pc [23] 90.70 94.95 68.40 67.83 62.64 59.61

Ours 90.70 94.95 90.00 92.57 66.48 66.77

Table 3. Clustering accuracies on three videos. Tracklet-level clustering means the cluster labels of each tracklet, while face-level clustering
represents the cluster labels of each face.

Frontal [14] Turning [14] BBT01 [18]

PT MT Frag IDS PT MT Frag IDS PT MT Frag IDS

Roth et al. [18] 11 4 24 13 5 2 8 4 72 68 81 10

Basic-Linking 11 4 24 13 6 3 11 7 74 64 82 9

Ours 15 5 25 10 5 4 8 5 79 68 83 4

Table 4. Experiment results of tracklet linking on three videos. PT: number of predicted tracks. MT: mostly tracked tracks (larger is better).
Frag: number of fragments (smaller is better). IDS: number of ID switch (smaller is better).
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