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Abstract

Most eye trackers based on active IR illumination require distinctive bright pupil effect to

work well. However, due to a variety of factors such as eye closure, eye occlusion, and external

illumination interference, pupils are not bright enough for these methods to work well. This

tends to significantly limit their scope of application. In this paper, we present an integrated

eye tracker to overcome these limitations. By combining the latest technologies in appear-

ance-based object recognition and tracking with active IR illumination, our eye tracker can

robustly track eyes under variable and realistic lighting conditions and under various face ori-

entations. In addition, our integrated eye tracker is able to handle occlusion, glasses, and to

simultaneously track multiple people with different distances and poses to the camera. Results

from an extensive experiment shows a significant improvement of our technique over existing

eye tracking techniques.
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1. Introduction

As one of the salient features of the human face, human eyes play an important

role in face detection, face recognition, and facial expression analysis. Robust non-

intrusive eye detection and tracking is a crucial step for vision based man-machine
interaction technology to be widely accepted in common environments such as

homes and offices. Eye tracking has also found applications in other areas including

monitoring human vigilance [1], gaze-contingent smart graphics [2], and assisting

people with disability. The existing work in eye detection and tracking can be clas-

sified into two categories: traditional image-based passive approaches and the active

IR based approaches. The former approaches detect eyes based on the unique inten-

sity distribution or shape of the eyes. The underlying assumption is that the eyes ap-

pear different from the rest of the face both in shape and intensity. Eyes can be
detected and tracked based on exploiting these differences. The active IR based ap-

proach, on the other hand, exploits the spectral (reflective) properties of pupils under

near IR illumination to produce the bright/dark pupil effect. Eye detection and track-

ing is accomplished by detecting and tracking pupils.

The traditional methods can be broadly classified into three categories: template

based methods [3–9,8,10,11], appearance based methods [12–14] and feature based

methods [15–23]. In the template based methods, a generic eye model, based on

the eye shape, is designed first. Template matching is then used to search the image
for the eyes. Nixon [10] proposed an approach for accurate measurement of eye

spacing using Hough transform. The eye is modeled by a circle for the iris and a ‘‘tai-

lored’’ ellipse for the sclera boundary. Their method, however, is time-consuming,

needs a high contrast eye image, and only works with frontal faces. Deformable tem-

plates are commonly used [3–5]. First, an eye model, which is allowed to translate,

rotate and deform to fit the best representation of the eye shape in the image, is de-

signed. Then, the eye position can be obtained through a recursive process in an en-

ergy minimization sense. While this method can detect eyes accurately, it requires the
eye model be properly initialized near the eyes. Furthermore, it is computationally

expensive, and requires good image contrast for the method to converge correctly.

The appearance based methods [12–14] detect eyes based on their photometric

appearance. These methods usually need to collect a large amount of training data,

representing the eyes of different subjects, under different face orientations, and un-

der different illumination conditions. These data are used to train a classifier such as

a neural network or the support vector machine and detection is achieved via clas-

sification. Pentland et al. [12] extended the eigenface technique to the description
and coding of facial features, yielding eigeneyes, eigennoses, and eigenmouths. For

eye detection, they extracted an appropriate eye templates for training and con-

structed a principal component projective space called ‘‘Eigeneyes.’’ Eye detection

is accomplished by comparing a query image with an eye image in the eigeneyes

space. Huang et al. [13] also employed the eigeneyes to perform initial eye positions

detection. Huang et al. [14] presented a method to represent eye image using wavelets

and to perform eye detection using RBF NN classifier. Reinders et al. [21] proposed

several improvements on the neural network based eye detector. The trained neural
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network eye detector can detect rotated or scaled eyes under different lighting con-

ditions. But it is trained for the frontal view face image only.

Feature based methods explore the characteristics (such as edge and intensity of

iris, the color distributions of the sclera and the flesh) of the eyes to identify some

distinctive features around the eyes. Kawato et al [16] proposed a feature based
method for eyes detection and tracking. Instead of detecting eyes, they proposed

to detect the point between two eyes. The authors believe the point is more stable

and easier to detect than the eyes. Eyes are subsequently detected as two dark parts,

symmetrically located on each side of the between-eye-point. Feng et al. [8,9] de-

signed a new eye model consisting of six landmarks (eye corner points). Their tech-

nique first locates the eye landmarks based on the variance projection function

(VPF) and the located landmarks are then employed to guide the eye detection.

Experiment shows their method will fail if the eye is closed or partially occluded
by hair or face orientation. In addition, their technique may mistake eyebrows for

eyes. Tian et al. [19] proposed a new method to track the eye and recover the eye

parameters. The method requires to manually initialize the eye model in the first

frame. The eye�s inner corner and eyelids are tracked using a modified version of

the Lucas–Kanade tracking algorithm [24]. The edge and intensity of iris are used

to extract the shape information of the eye. Their method, however, requires a high

contrast image to detect and track eye corners and to obtain a good edge image.

In summary, the traditional image based eye tracking approaches detect and track
the eyes by exploiting eyes� differences in appearance and shape from the rest of the

face. The special characteristics of the eye such as dark pupil, white sclera, circular

iris, eye corners, eye shape, etc. are utilized to distinguish the human eye from other

objects. But due to eye closure, eye occlusion, variability in scale and location, dif-

ferent lighting conditions, and face orientations, these differences will often diminish

or even disappear. Wavelet filtering [25,26] has been commonly used in computer vi-

sion to reduce illumination effect by removing subbands sensitive to illumination

change. But it only works under slight illumination variation. Illumination variation
for eye tracking applications could be significant. Hence, the eye image will not look

much different in appearance or shape from the rest of the face, and the traditional

image based approaches can not work very well, especially for faces with non-frontal

orientations, under different illuminations, and for different subjects.

Eye detection and tracking based on the active remote IR illumination is a simple

yet effective approach. It exploits the spectral (reflective) properties of the pupil un-

der near IR illumination. Numerous techniques [27–31,1] have been developed based

on this principle, including some commercial eye trackers [32,33]. They all rely on an
active IR light source to produce the dark or bright pupil effects. Ebisawa et al. [27]

generate the bright/dark pupil images based on a differential lighting scheme using

two IR light sources (on and off camera axis). The eye can be tracked effectively

by tracking the bright pupils in the difference image resulting from subtracting the

dark pupil image from the bright pupil image. Later in [28], they further improved

their method by using pupil brightness stabilization to eliminate the glass reflection.

Morimoto et al. [29] also utilize the differential lighting scheme to generate the

bright/dark pupil images, and pupil detection is done after thresholding the
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difference image. A larger temporal support is used to reduce artifacts caused mostly

by head motion, and geometric constraints are used to group the pupils.

Most of these methods require distinctive bright/dark pupil effect to work well.

The success of such a system strongly depends on the brightness and size of the pu-

pils, which are often affected by several factors including eye closure, eye occlusion
due to face rotation, external illumination interferences, and the distances of the sub-

jects to the camera. Figs. 1 and 2 summarize different conditions under which the

pupils may not appear very bright or even disappear. These conditions include eye

closure (Fig. 1A) and oblique face orientations (Figs. 1B–D), presence of other

bright objects (due to either eye glasses glares or motion) as shown in Figs. 2A

and B, and external illumination interference as shown in Fig. 2C.

The absence of the bright pupils or even weak pupil intensity poses serious prob-

lems to the existing eye tracking methods using IR for they all require relatively sta-
ble lighting conditions, users close to the camera, small out-of-plane face rotations,

and open and un-occluded eyes. These conditions impose serious restrictions on the

part of their systems as well as on the user, and therefore limit their application

scope. Realistically, however, lighting can be variable in many application domains,
Fig. 1. The disappearance of the bright pupils due to eye closure (A) and oblique face orientations (B),

(C), and (D).

Fig. 2. (A) Original image, (B) the corresponding thresholded difference image, which contains other

bright regions around the real pupil blobs due to either eye glasses glares and rapid head motion, (C) Weak

pupils intensity due to strong external illumination interference.
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the natural movement of head often involves out-of-plane rotation, eye closures due

to blinking, and winking are physiological necessities for humans. Furthermore,

thick eye glasses tend to disturb the infrared light so much that the pupils appear

very weak. It is therefore very important for the eye tracking system to be able to

robustly and accurately track eyes under these conditions as well.
To alleviate some of these problems, Ebisawa [28] proposed an image difference

method based on two light sources to perform pupil detection under various lighting

conditions. The background can be eliminated using the image difference method

and the pupils can be easily detected by setting the threshold as low as possible in

the difference image. They also proposed an ad hoc algorithm for eliminating the

glares on the glasses, based on thresholding and morphological operations. How-

ever, the automatic determination of the threshold and the structure element size

for morphological operations is difficult; and the threshold value cannot be set as
low as possible considering the efficiency of the algorithm. Also, eliminating the

noise blobs just according to their sizes is not enough. Haro [31] proposed to perform

pupil tracking based on combining eye appearance, the bright pupil effect, and mo-

tion characteristics so that pupils can be separated from other equally bright objects

in the scene. To do so, they proposed to verify the pupil blobs using conventional

appearance based matching method and the motion characteristics of the eyes.

But their method cannot track the closed or occluded eyes or eyes with weak pupil

intensity due to external illuminations interference. Ji et al. [1] proposed a real time
subtraction and a special filter to eliminate the external light interferences. But their

technique fails to track the closed/occluded eyes. To handle the presence of other

bright objects, their method performs pupil verification based on the shape and size

of pupil blobs to eliminate spurious pupils blobs. But usually, spurious blobs have

similar shape and size to those of the pupil blobs as shown in Fig. 2 and make it dif-

ficult to distinguish the real pupil blobs from the noise blobs based on only shape

and size.

In this paper, we propose a real-time robust method for eye tracking under var-
iable lighting conditions and face orientations, based on combining the appearance-

based methods and the active IR illumination approach. Combining the respective

strengths of different complementary techniques and overcoming their shortcomings,

the proposed method uses an active infrared illumination to brighten subject�s faces
to produce the bright pupil effect. The bright pupil effect and the appearance of eyes

are utilized simultaneously for eyes detection and tracking. The latest technologies in

pattern classification recognition (the support vector machine) and in object tracking

(the mean-shift) are employed for pupil detection and tracking based on eyes appear-
ance. Some of the ideas presented in this paper have been briefly reported in [34,35].

In this paper, we report our algorithm in details.

Our method consists of two parts: eye detection and eye tracking. Eye detection is

accomplished by simultaneously utilizing the bright/dark pupil effect under active IR

illumination and the eye appearance pattern under ambient illumination via the sup-

port vector machine. Eye tracking is composed of two major modules. The first mod-

ule is a conventional Kalman filtering tracker based on the bright pupil. The Kalman

filtering tracker is augmented with the support vector machine classifier [36,37] to



Fig. 3. The combined eye tracking flowchart.
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perform verification of the detected eyes. In case Kalman eye tracker fails due to

either weak pupil intensity or the absence of the bright pupils, eye tracking based

the on mean shift is activated [38] to continue tracking the eyes. Eye tracking returns

to the Kalman filtering tracker as soon as the bright pupils reappear since eye track-

ing using bright pupils is much more robust than the mean shift tracker, which, we

find, tends to drift away. The two trackers alternate, complementing each other and
overcoming their limitations. Fig. 3 summarizes our eye tracking algorithm.
2. Eye detection

To facilitate subsequent image processing, the person�s face is illuminated using a

near-infrared illuminator. The use of infrared illuminator serves three purposes: first

it minimizes the impact of different ambient light conditions, therefore ensuring im-
age quality under varying real-world conditions including poor illumination, day,

and night; second, it allows to produce the bright/dark pupil effect, which constitutes

the foundation for the proposed eye detection and tracking algorithm. Third, since

near infrared is barely visible to the user, this will minimize any interference with the

user�s work. According to the original patent from Hutchinson [39], a bright pupil

can be obtained if the eyes are illuminated with a near infrared illuminator beaming

light along the camera optical axis at certain wavelength. At the near infrared wave-

length, pupils reflect almost all infrared light they receive along the path back to the
camera, producing the bright pupil effect, very much similar to the red eye effect in



Fig. 4. The bright (A) and dark (B) pupils images.

Fig. 5. Eye detection block diagram.
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photography. If illuminated off the camera optical axis, the pupils appear dark since

the reflected light will not enter the camera lens. This produces the so called dark

pupil effects. An example of the bright/dark pupils is given in Fig. 4. Details about

the construction of the IR illuminator and its configuration may be found in [40].

Given the IR illuminated eye images, eye detection is accomplished via pupil

detection. Pupil detection is accomplished based on both the intensity of the pupils

(the bright and dark pupils) and on the appearance of the eyes using the support vec-

tor machine. Specifically, pupil detection starts with preprocessing to remove exter-
nal illumination interference, followed by searching the whole image for pupils in

terms of pupil intensity and eye appearance. Therefore, multiple pupils can be de-

tected if there exist more than one person. The use of support vector machine

(SVM) avoids falsely identifying a bright region as a pupil. Fig. 5 gives an overview

of the eye detection module.

2.1. Initial eye position detection

The detection algorithm starts with a preprocessing to minimize interference from

illumination sources other than the IR illuminator. This includes sunlight and ambi-

ent light interference. A differential method is used to remove the background inter-

ference by subtracting the dark eye image (odd field) from the bright eye image (even

field), producing a difference image, with most of the background and external illu-
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mination effects removed, as shown in Fig. 6. For real time eye tracking, the image

subtraction must be implemented efficiently in real time. To achieve this, we devel-

oped circuitry to synchronize the outer ring of LEDs and inner ring of LEDs with

the even and odd fields of the interlaced image, respectively, so that they can be

turned on and off alternately. When the even field is being scanned, the inner ring
of LEDs is on and the outer ring of LEDs is off and vice versa when the even filed

is scanned. The interlaced input image is subsequently de-interlaced via a video de-

coder, producing the even and odd field images as shown in Figs. 6A and B. More on

our image subtraction circuitry may be found in [40].

The difference image is subsequently thresholded automatically based on its his-

togram, producing a binary image. Connected component analysis is then applied

to the binary image to identify the binary blobs. Our task is then to find out which

of the blobs actually is the real pupil blob. Initially, we mark all the blobs as poten-
tial candidates for pupils as shown in Fig. 7.
Fig. 6. Background illumination interference removal (A) the even image field obtained with both ambient

and IR light; (B) the odd image field obtained with only ambient light; (C) the image resulted from

subtraction (B) from (A).

Fig. 7. The thresholded difference image marked with pupil candidates.
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2.2. Eye verification using support vector machine

As shown in Fig. 7, there are usually many potential candidates of pupils. Typi-

cally, pupils are found among the binary blobs. However, it is usually not possible to

isolate the pupil blob only by picking the right threshold value, since pupils are often
small and not bright enough compared with other noise blobs. Thus, we will have to

make use of information other than intensity to correctly identify them. One initial

way to distinguish the pupil blobs from other noise blobs is based on their geometric

shapes. Usually, the pupil is an ellipse-like blob and we can use an ellipse fitting

method [41] to extract the shape of each blob and use the shape and size to remove

some blobs from further consideration. It must be noted, however, that due to scale

change (distance to the camera) and to variability in individual pupil size, size is not

a reliable criterion. It is only used to to remove very large or very small blobs. Shape
criterion, on the other hand, is scale-invariant. Nevertheless, shape alone is not suf-

ficient since there are often present other non-pupil blobs with similar shape and size

as shown in Fig. 8, where we can see that there are still several non-pupil blobs left

because they are so similar in shape and size that we can not distinguish the real pu-

pil blobs from them. So we have to use other features. We observed that the eye re-

gion surrounding pupils has a unique intensity distribution. They appear different

from other parts of the face in the dark pupil image as shown in Fig. 4B. The appear-

ance of an eye can therefore be utilized to separate it from non-eyes. We map the
locations of the remaining binary blobs to the dark pupil images and then apply

the support vector machine (SVM) classifier [36,37] to automatically identify the bin-

ary blobs that correspond to eyes as discussed below.

2.2.1. The support vector machine

SVM is a two-class classification method that finds the optimal decision hyper-

plane based on the concept of structural risk minimization. Ever since its introduc-

tion, SVM [36] has become increasingly popular. The theory of SVM can be briefly
summarized as follows. For the case of two-class pattern recognition, the task of
Fig. 8. The thresholded difference image after removing some blobs based on their geometric properties

(shape and size). The blobs marked with circles are selected for further consideration.
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predictive learning from examples can be formulated as follows. Given a set of func-

tions fa and an input domain RN of N dimensions:

ffa : a 2 Kg; fa : RN ! f�1;þ1g;
(K is an index set) and a set of l examples:

ðx1; y1Þ; . . . ðxi; yiÞ; . . . ; ðxl; ylÞ; xi 2 RN ; yi 2 f�1;þ1g;
where xi is an input feature vector and yi represents the class, which has only two

values �1 and +1. Each (xi,yi) is generated from an unknown probability distribu-

tion p (x,y), the goal is to find a particular function f �
a which provides the smallest

possible value for the risk:

RðaÞ ¼
Z

jfaðxÞ � yjdpðx; yÞ: ð1Þ

Suppose that there is a separating hyper-plane that separates the positive class from
the negative class. The data characterizing the boundary between the two classes are

called the support vectors since they alone define the optimal hyper-plane. First, a set

(xi,yi) of labeled training data are collected as the input to the SVM. Then, a trained

SVM will be characterized by a set of Ns support vectors si, coefficient weights ai for
the support vectors, class labels yi of the support vectors, and a constant term w0.

For the linearly separable case, the linear decision surface (the hyperplane) is de-

fined as

w � xþ w0 ¼ 0; ð2Þ
where x is a point the hyperplane, ‘‘Æ’’ denotes dot product, w is the normal of the

hyperplane, and w0 is the distance to the hyperplane from the origin. Through the

use of training data, w can be estimated by

w ¼
XNs

i¼1

aiyisi; ð3Þ

Given w and w0, an input vector xi can be classified into one of the two classes,

depending on if w Æx + w0 is larger or smaller than 0.
Classes are often not linearly separable. In this case, SVM can be extended by

using a kernel K (.,.), which performs a non-linear mapping of the feature space to

a higher dimension, where classes are linearly separable. The most common SVM

kernels include Gaussian kernel, Radial-based kernel, and polynomial kernel. The

decision rule with a kernel can be expressed as

XNs

i¼1

aiyiKðsi; xÞ þ w0 ¼ 0: ð4Þ
2.2.2. SVM training

To use SVM, training data are needed to obtain the optimal hyper-plane. An eye
image is represented as a vector I consisting of the original pixel values. For this



Fig. 9. (A) The thresholded difference image superimposed with possible pupil candidates. (B) The dark

image marked with possible eye candidates according to the positions of pupil candidates in (A).
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project, after obtaining the positions of pupil candidates using the methods men-

tioned above, we obtain the sub-images from the dark image according to those posi-

tions as shown in Fig. 9.

Usually, the eyes are included in those cropped images of 20 · 20 pixels. The

cropped image data are processed using histogram equalization and normalized to
a [0,1] range before training. The eye training images were divided into two sets: po-

sitive set and negative set. In the positive image set, we include eye images of different

gazes, different degrees of opening, different face poses, different subjects, and with/

without glasses. The non-eye images were placed in the negative image set. Figs. 10

and 11 contain examples of eye and non-eye images in the training sets, respectively.

After finishing the above step, we get a training set, which has 558 positive images

and 560 negative images. In order to obtain the best accuracy, we need to identify the

best parameters for the SVM. In Table 1, we list three different SVM kernels with
various parameter settings and each SVM was tested on 1757 eye candidate images

obtained from different persons.

From the above table, we can see that the best accuracy we can achieve is

95.5037%, using a Gaussian kernel with a r of 3.

2.2.3. Retraining using mis-labeled data

Usually, supervised learning machines rely only on the limited labeled training

examples and cannot reach very high learning accuracy. So we have to test on thou-
sands of unlabeled data and pick up the mis-labeled data, then put them into the cor-

rect training sets and retrain the classifier again. After performing this procedure on



Fig. 10. The eye images in the positive training set.

Fig. 11. The non-eye images in the negative training set.

Table 1

Experiment results using 3 kernels with different parameters

Kernel type Deg Sigma r # Support vectors Accuracy

Linear 376 0.914058

Polynomial 2 334 0.912351

Polynomial 3 358 0.936255

Polynomial 4 336 0.895845

Gaussian 1 1087 0.500285

Gaussian 2 712 0.936255

Gaussian 3 511 0.955037

Gaussian 4 432 0.9465

Gaussian 5 403 0.941377
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the unlabeled data obtained from different conditions several times, we can boost the

accuracy of the learning machine at the cost of extra time needed for re-training.

Specifically, we have eye data set from 10 people, which are obtained using the

same method. We choose the first person�s data set and label the eye images and

non-eye images manually, then we train the Gaussian SVM on this training set
and test Gaussian SVM on the second person�s data set. We check the second per-

son�s data one by one, pick up all the mis-labeled data, label them correctly and

add them into the training set. After finishing the above step, we retrain the SVM



Fig. 12. (A,B) The images marked with identified eyes. Compared with images in Fig. 9B, many false

alarms have been removed.
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on this increased training set and repeat the above step on the next person�s data set.

The whole process then repeats until the classification errors stabilize. Through the

retraining process, we can significantly boost the accuracy of the Gaussian SVM.

2.2.4. Eye detection with SVM

During eye detection, we crop the regions in the dark pupil image according to the

locations of pupil candidates in the difference image as shown in Fig. 9B. After some
preprocessing on these eye candidate images, they will be provided to the trained

SVM for classification. The trained SVM will classify the input vector I into eye class

or non-eye class. Fig. 12 shows that the SVM eye classifier correctly identifies the real

eye regions as marked.

Pupil verification with SVM works reasonably well and can generalize to people

of the same race. However, for people from a race that is significantly different from

those in training images, the SVM may fail and need to be retrained. SVM can work

under different illumination conditions due to the intensity normalization for the
training images via histogram equalization.
3. Eye tracking algorithm

Given the detected eyes in the initial frames, the eyes in subsequent frames can be

tracked from frame to frame. Eye tracking can be done by performing pupil detec-

tion in each frame. This brute force method, however, will significantly slow down
the speed of pupil tracking, making real time pupil tracking impossible since it needs

to search the entire image for each frame. This can be done more efficiently by using

the scheme of prediction and detection. Kalman filtering [42] provides a mechanism

to accomplish this. The Kalman pupil tracker, however, may fail if pupils are not

bright enough under the conditions mentioned previously. In addition, rapid head

movement may also cause the tracker to lose the eyes. This problem is addressed

by augmenting the Kalman tracker with the mean shift tracker. Fig. 13 summarizes

our eye tracking scheme. Specifically, after locating the eyes in the initial frames,



Fig. 13. The combined eye tracking flowchart.
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Kalman filtering is activated to track bright pupils. If it fails in a frame due to dis-

appearance of bright pupils, eye tracking based on the mean shift will take over. Our

eye tracker will return to bright pupil tracking as soon as bright pupil appears again

since it is much more robust and reliable tracking. Pupil detection will be activated if

the mean shift tracking fails. These two stage eye trackers work together and they

complement each other. The robustness of the eye tracker is improved significantly.
The Kalman tracking, the mean shift tracking, and their integration are briefly

discussed below.
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3.1. Eye (pupil) tracking with kalman filtering

A Kalman filter is a set of recursive algorithms that estimate the position and

uncertainty of moving targets in the next time frame, that is, where to look for

the targets, and how large a region should be searched in the next frame around
the predicted position in order to find the targets with certain confidence. It recur-

sively conditions current estimate on all of the past measurements and the process

is repeated with the previous posterior estimates used to project the new a priori esti-

mates. This recursive nature is one of the very appealing features of the Kalman filter

since it makes practical implementation much more feasible.

Our pupil tracking method based on Kalman filtering can be formalized as fol-

lows. The state of a pupil at each time instance (frame) t can be characterized by

its position and velocity. Let (ct, rt) represent the pupil pixel position (its centroid)
at time t and (ut,vt) be its velocity at time t in c and r directions, respectively. The

state vector at time t can therefore be represented as Xt = (ct rt ut vt)
t.

According to the theory of Kalman filtering [43], Xt+1, the state vector at the next

time frame t+1, linearly relates to current state Xt by the system model as follows:

X tþ1 ¼ UX t þ W t; ð5Þ
where U is the state transition matrix and Wt represents system perturbation. Wt is
normally distributed as p (Wt) � N (0,Q), and Q represents the process noise

covariance.

We further assume that a fast feature extractor estimates Zt ¼ ðĉt; r̂tÞ, the detected
pupil position at time t. Therefore, the measurement model in the form needed by the

Kalman filter is

Zt ¼ HX t þMt; ð6Þ
where matrix H relates current state to current measurement and Mt represents mea-

surement uncertainty. Mt is normally distributed as p (Mt) � N (0,R), and R is the

measurement noise covariance. For simplicity and since Zt only involves position,

H can be represented as

H ¼
1 0 0 0

0 1 0 0

� �
:

The feature detector (e.g., thresholding or correlation) searches the region as deter-

mined by the projected pupil position and its uncertainty to find the feature point at

time t+1. The detected point is then combined with the prediction estimation to pro-

duce the final estimate.

Specifically, given the state model in Eq. (5) and measurement model in Eq. (6) as

well as some initial conditions, the state vector Xt+1, along with its covariance ma-
trix Rt+1, can be updated as follows. For subsequent discussion, let us define a few

more variables. Let X�
tþ1 be the estimated state at time t+1, resulting from using the

system model only. It is often referred to as the prior state estimate. Xt+1 differs from

X�
tþ1 in that it is estimated using both the system model Eq. (5) and the measurement

model Eq. (6). Xt+1 is usually referred as the posterior state estimate. Let R�
tþ1 and
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Rt+1 be the covariance matrices for the state estimates X�
tþ1 and Xt+1, respectively.

They characterize the uncertainties associated with the prior and posterior state esti-

mates. The goal of Kalman filtering is therefore to estimate Xt+1 and Rt+1 given Xt,

Rt, Zt, and the system and measurement models. The Kalman filtering algorithm for

state prediction and updating may be summarized below.

1. State prediction

Given current state Xt and its covariance matrix Rt, state prediction involves two

steps: state projection ðX�
tþ1Þ and error covariance estimation ðR�

tþ1Þ as summarized

in Eq. (7) and Eq. (8).

X�
tþ1 ¼ UX t; ð7Þ

R�
tþ1 ¼ URtU

t þ Qt: ð8Þ

Given the prior estimate X�
tþ1, its covariance matrix R�

tþ1, pupil detection is per-

formed to detect the pupil around X�
tþ1, with the search area determined by R�

tþ1.

In practice, to speed up the computation, the values of R�
tþ1½0�½0� and R�

tþ1½1�½1� are
used to compute the search area size. Specifically, the search area size is chosen as

20þ 2�R�
tþ1½0�½0� pixels and 20þ 2�R�

tþ1½1�½1� pixels, where 20 · 20 pixels is the basic
window size. This means the larger the R�

tþ1½0�½0� and R�
tþ1½1�½1� are, the more uncer-

tainty of the estimation is, and the larger the search area is. The search area is there-

fore adaptively adjusted. Therefore, the pupil can be located quickly.

2. State updating

The detected pupil position is represented by Zt+1. Then, state updating can be

performed to derive the final state and its covariance matrix. The first task during

state updating is to compute the Kalman gain Kt+1. It is done as follows:

Ktþ1 ¼
R�

tþ1H
T

HR�
tþ1H

T þ R
: ð9Þ

The gain matrix K can be physically interpreted as a weighting factor to determine

the contribution of measurement Zt+1 and prediction HX�
tþ1 to the posterior state

estimate Xt+1. The next step is to to generate a posteriori state estimate Xt+1 by

incorporating the measurement into Eq. (5). Xt+1 is computed as follows:

X tþ1 ¼ X�
tþ1 þ Ktþ1ðZtþ1 � HX�

tþ1Þ: ð10Þ

The final step is to obtain the posteriori error covariance estimate. It is computed as

follows:

Rtþ1 ¼ ðI � Ktþ1HÞR�
tþ1: ð11Þ

After each time and measurement update pair, the Kalman filter recursively condi-

tions current estimate on all of the past measurements and the process is repeated

with the previous posterior estimates used to project a new a priori estimate.

The Kalman filter pupil tracker works reasonably well under frontal face rotation

with the eye open. However, it will fail if the pupils are not bright due to either face
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orientation or external illumination interferences. The Kalman filter also fails when a

sudden head movement occurs due to incorrect prediction because the assumption of

smooth head motion has been violated. In each case, Kalman filtering fails because

the Kalman filter detector can not detect pupils. We propose to use the mean shift

tracking to augment Kalman filtering tracking to overcome this limitation.

3.2. Mean shift eye tracking

Due to the IR illumination, the eye region in the dark and bright pupil images

exhibits strong and unique visual patterns such as the dark iris in the white part. This

unique pattern should be utilized to track eyes in case the bright pupils fail to appear

on the difference images. This is accomplished via the use of the mean shift tracking.

Mean shift tracking is an appearance based object tracking method. It employs mean
shift analysis to identify a target candidate region, which has the most similar

appearance to the target model in terms of intensity distribution.

3.2.1. Similarity measure

The similarity of two distributions can be expressed by a metric based on the

Bhattacharyya coefficient as described in [38]. The derivation of the Bhattacharyya

coefficient from sample data involves the estimation of the target density q and

the candidate density p, for which we employ the histogram formulation. Therefore,
the discrete density q̂ ¼ fq̂ugu¼1���m (with

Pm
u¼1q̂u ¼ 1) is estimated from the m-bin his-

togram of the target model, while p̂ðyÞ ¼ fp̂uðyÞgu¼1���m (with
Pm

u¼1p̂u ¼ 1) is estimated

at a given location y from the m-bin histogram of the target candidate. Then at loca-

tion y, the sample estimate of the Bhattacharyya coefficient for target density q and

candidate density p (y) is given by

qðyÞ � q p̂ðyÞ; q̂½ � ¼
Xm
u¼1

ffiffiffiffiffiffiffiffiffi
p̂uq̂u

p
: ð12Þ

The distance between two distributions can be defined as

dðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q p̂ðyÞ; q̂½ �

p
: ð13Þ
3.2.2. Eye appearance model

To reliably characterize the intensity distribution of eyes and non-eyes, the

intensity distribution is characterized by two images: even and odd field images,
resulting from de-interlacing the original input images. They are under different

illuminations, with one producing bright pupils and the other producing dark pu-

pils as shown in Fig. 14. The use of two channel images to characterize eye
Fig. 14. The eye images: (A,B) left and right bright pupil eyes, (C,D) corresponding left and right dark

pupil eyes.
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appearance represents a new contribution and can therefore improve the accuracy

of eye detection.

Thus, there are two different feature probability distributions of the eye target cor-

responding to dark pupil and bright pupil images respectively. We use a 2D joint his-

togram, which is derived from the grey level dark pupil and bright pupil image spaces
with m = l · l bins, to represent the feature probability distribution of the eyes. Be-

fore calculating the histogram, we employ a convex and monotonic decreasing kernel

profile k to assign a smaller weight to the locations that are farther from the center of

the target. Let us denote by fxigi¼1���nh the pixel locations of a target candidate that

has nh pixels, centered at y in the current frame. The probability distribution of

the intensity vector I = (Ib, Id), where Id and Ib represent the intensities in the dark

and bright images, respectively, in the target candidate is given by

p̂uðyÞ ¼
Pnh

i¼1kðk
y�xi
h k2Þd½bðxiÞ � u�Pnh

i¼1kðk
y�xi
h k2Þ

where u ¼ 1; 2; . . . ;m ð14Þ

in which the b (xi) is the index to a bin in the joint histogram of the intensity vector I
at location xi,h is the radius of the kernel profile and d is the Kronecker delta func-

tion. The eye model distribution q can be built in a similar fashion.

3.2.3. Algorithm

After locating the eyes in the previous frame, we construct an eye model q̂ using

Eq. (14) based on the detected eyes in the previous frame. We then predict the loca-

tions y0 of eyes at current frame using the Kalman filter. Then we treat y0 as the ini-

tial position and use the mean shift iterations to find the most similar eye candidate
to the eye target model in the current frame using the following algorithm:

1. Initialize the location of the target in the current frame with y0, then compute the

distribution fp̂uðy0Þgu¼1���m using Eq. (14) and evaluate similarity measure (Bhatta-

charyya coefficient) between the model density q̂ and target candidate density p̂

q½p̂ðy0Þ; q̂� ¼
Xm
u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂uðy0Þq̂u

p
: ð15Þ

2. Derive the weights fwigi ¼ 1���nh according to

wi ¼
Xm
u¼1

d½bðxiÞ � u�
ffiffiffiffiffiffiffiffiffiffiffiffi
q̂u

p̂uðy0Þ

s
: ð16Þ

3. Based on the mean shift vector, derive the new location of the eye target

y1 ¼
Pnh

i¼1xiwigðk y0�xi
h k2ÞPnh

i¼1wigðk y0�xi
h k2Þ

; ð17Þ

where g (x) = �k0 (x) and then update fp̂uðy1Þgu¼1���m, and evaluate

q½p̂ðy1Þ; q̂� ¼
Xm ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂uðy1Þq̂u
p

: ð18Þ

u¼1
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4. While q½p̂ðy1Þ; q̂� < q½p̂ðy0Þ; q̂�. Do y1 ‹ 0.5 (y0 + y1). This is necessary to avoid the

mean shift tracker moving to an incorrect location.

5. If iy1 � y0i < e, stop, where e is the termination threshold Otherwise, set y0 ‹ y1
and go to step 1.

The new eye locations in the current frame can be achieved in a few iterations com-

pared to the correlation based approaches, which must perform an exhaustive search

around the previous eye location. Due to the simplicity of the calculations, it is much

faster than correlation. Fig. 15B plots the surface for the Bhattacharyya coefficient of

the large rectangle marked in Fig. 15B. The mean shift algorithm exploits the gradi-

ent of the surface to climb, from its initial position, to the closest peak that represents

the maximum value of the similarity measure.
Fig. 15. (A) The image frame 13; (B) Values of Bhattacharyya coefficient corresponding to the marked

region (40 · 40 pixels) around the left eye in frame 13. Mean shift algorithm converges from the initial

location (*) to the convergence point (s), which is a mode of the Bhattacharyya surface.

Fig. 16. The error distribution of tracking results: (A) error distribution vs. intensity quantization values

and different window sizes; (B) error distribution vs. quantization levels only.
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3.2.4. Mean shift tracking parameters

The mean shift algorithm is sensitive to the window size and the histogram quan-

tization value. In order to obtain the best performance of the mean shift tracker for a

specific task, we have to find the appropriate histogram quantization value and the

proper window size. We choose several image sequences and manually locate the left
eye positions in these frames. Then we run the mean shift eye tracker under different
Fig. 17. Mean shift tracking both eyes with initial search area of 40 · 40 pixels, as represented by the large

black rectangle. The eyes marked with white rectangles in frame 1 are used as the eye model and the

tracked eyes in the following frames are marked by the smaller black rectangles.
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window sizes and different histogram quantization values, we evaluate the perfor-

mance of mean shift eye tracker under those conditions using the following criterion:

aerror ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyiðtrackedÞ � y0iðmanualÞ

p
Þ2=N ; ð19Þ

where N is the number of image frames and yi (tracked) is the left eye location

tracked by mean shift tracker in the image frame i; y0iðmanualÞ is the left eye location
manually located by the person in the image frame i. We treat the manually selected

eye locations as the correct left eye locations.

The intensity histogram is scaled in the range of 0–255/(2q), q is the quantization

value. The results are plotted in Fig. 16. From Figs. 16A and B, we can determine the

optimal quantization level to be 25 while the optimal window size is 20 · 20 pixels.

Fig. 17 shows some tracking results with these parameters.
The mean-shift tracker, however, is sensitive to its initial placement. It may not

converge or converge to a local minimum if placed initially far from the optimal

location. It usually converges to the mode, closest to its initial position. If the initial

location is in the valley between two modes, the mean shift may not converge to any

(local maxima) peaks as shown in Fig. 18. This demonstrates the sensitivity of mean-

shift tracker to initial placement of the detector.

3.2.5. Experiments on the mean shift eye tracking

To study the performance of the mean-shift tracker, we apply it to sequences that

contain images with weak or partially occluded or no bright pupils. We noticed when

bright pupils disappear due to either eye closure or face rotations as shown in Fig.

19, the Kalman filter fails because there are no bright pupil blobs in the difference
Fig. 18. (A) Image of frame 135, with the initial eye position marked and initial search area outlined by

the large black rectangle. (B) Values of Bhattacharyya coefficient corresponding to the marked region

(40 · 40 pixels) around the left eye in (A). Mean shift algorithm can not converge from the initial location

(s) (which is in the valley of two modes) to the correct mode of the surface. Instead, it is trapped in the

valley.



Fig. 19. Bright pupil based Kalman tracker fails to track eyes due to absence of bright pupils caused by

either eye closure or oblique face orientations. The mean shift eye tracker, however, tracks eyes

successfully as indicated by the black rectangles.
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images. However the mean shift tracker compensates for the failure of bright pupil
tracker because it is an appearance based tracker that tracks the eyes according to

the intensity statistical distributions of the eye regions and does not need bright pu-

pils. The black rectangles in Fig. 19 represent the eye locations tracked by the mean

shift tracker.
4. Combining Kalman filtering tracking with mean shift tracking

The mean shift tracking is fast and handles noise well. But it is easily distracted by

nearby similar targets such as the nearby region that appears similar to the eyes. This

is partially because of the histogram representation of the eyes appearance, which

does not contain any information about the relative spatial relationships among pix-

els. The distraction manifests primarily as errors in the calculated center of the eyes.

The mean shift tracker does not have the capability of self-correction and the errors

therefore tend to accumulate and propagate to subsequent frames as tracking pro-

gresses and eventually the tracker drifts away. Another factor that could lead to er-
rors with eye tracking based on mean shift is that the mean shift tracker cannot

continuously update its eye model despite the fact that the eyes look significantly dif-

ferent under different face orientations and lighting conditions as demonstrated in

the left column of Fig. 20. We can see that the mean shift eye tracker cannot identify

the correct eye location when the eyes appear significantly different from the model

eyes images due to face orientation change.

To overcome these limitations with mean shift tracker, we propose to combine

the Kalman filter tracking with the mean shift tracking to overcome their respective



Fig. 20. An image sequence to demonstrate the drift-away problem of the mean shift tracker as well as the

correction of the problem by the integrated eye tracker. Frames (a, b, d, e, and f) show the drift away case

of the mean Shift eye tracker; for the same image sequences, (A, B, D, E, and F) shows the improved

results of the combined eye tracker. White rectangles show the eyes tracked by the Kalman tracker while

the black rectangles show the tracked eyes by the mean shift tracker.
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limitations and to take advantage their strengths. The two trackers are activated

alternately. The Kalman tracker is first initiated, assuming the presence of the bright

pupils. When the bright pupils appear weak or disappear, the mean shift tracker is
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activated to take over the tracking. Mean shift tracking continues until the reappear-

ance of the bright pupils, when the Kalman tracker takes over. To avoid the mean

shift tracker drift away, the target eye model is continuously updated by the eyes suc-

cessfully detected by the Kalman tracker. The right column of Fig. 20 shows the re-

sults of tracking the same sequence with the integrated eye tracker as the one shown
on left column. It is apparent that the integrated tracker can correct the drift prob-

lem of the mean shift tracker.
5. Experimental results

In this section, we will present results from an extensive experiment we conducted

to validate the performance of our integrated eye tracker under different conditions.

5.1. Eye tracking under significant head pose changes

Here, we show some qualitative and quantitative results to demonstrate the per-

formance our tracker under different face orientations. Fig. 21 visually shows the

typical tracking results for a person undergoing significant face pose changes, where

the black rectangles represent the mean-shift tracker while the white rectangles rep-

resent the Kalman filter tracker.
Additional results for different subjects under significant head rotations are shown

in Fig. 22. We can see that under significant head pose changes, the eyes will be either

partially occluded or the appearance of eyes will be significantly different from the

eyes with frontal faces. But the two eye trackers alternate reliably, detecting the eyes

under different head orientations, with eyes either open, closed or partially occluded.

To further confirm this quantitatively, we manually located the positions of the

eyes for two typical sequences and they serve as the ground-truth eye positions.

The tracked eye positions are then compared with the ground-truth data. The results
are summarized in Tables 2 and 3. From the tracking statistics in Tables 2 and 3, we

can conclude that the integrated eye tracker is much more accurate than the Kalman

filter pupil tracker, especially for the closed eyes and partially occluded eyes due to

face rotations. These results demonstrate that this combination of two tracking tech-

niques produces much better tracking results than using either of them individually.

5.2. Eye tracking under different illuminations

In this experiment, we demonstrate the performance of our integrated tracker un-

der different illumination conditions. We vary the light conditions during the track-

ing. The experiment included first turning off the ambient lights, followed by using a

mobile light source and positioning it close to the people to produce strong external

light interference. The external mobile light produces significant shadows as well as

intensity saturation on the subject�s faces. Fig. 23 visually shows the sample tracking

results for two individuals. Despite these somewhat extreme conditions, our eye

tracker managed to track the eyes correctly. Because of the use of IR, the faces



Fig. 21. Tracking results of the combined eye tracker for a person undergoing significant face pose change.

White rectangles show the eyes tracked by the Kalman tracker while the black rectangles show the eyes

tracked by the mean shift tracker.
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are still visible and eyes are tracked even under darkness. It is apparent that illumi-

nation change does not adversely affect the performance of our technique as much.

This may be attributed to the simultaneous use of active IR sensing, image intensity

normalization for eye detection using SVM, and the dynamic eye model updating for

the mean shift tracker.

5.3. Eye tracking with glasses

The significant eye appearance changes with glasses. Furthermore, the glares on

the glasses caused by light reflections present significant challenges to eye tracking

with glasses. In Fig. 24, we show the results of applying our eye tracker to persons

wearing glasses. We can see that our eye tracker can still detect and track eyes



Fig. 22. Tracking results of the combined eye tracker for four image sequences (A), (B), (C), and (D)

under significant head pose changes. White rectangles show the eyes tracked by the Kalman tracker while

the black rectangles show the eyes tracked by the mean shift tracker.

Table 2

Tracking statistics comparison for both trackers under different eyes conditions (open, closed, and

occluded) on the first person

Image 600 frames Bright pupil tracker Combined tracker

Left eye (open) 452 frames 400/452 452/452

Left eye (closed) 66 frames 0/66 66/66

Left eye (occluded) 82 frames 0/82 82/82

Right eye (open) 425 frames 389/425 425/425

Right eye (closed) 66 frames 0/66 66/66

Right eye (occluded) 109 frames 0/109 109/109

Table 3

Tracking statistics comparison for both trackers under different eyes conditions (open, closed, and

occluded) on the second person

Image Sequence 1 600 frames Bright pupil tracker Combined tracker

Left eye (open) 421 frames 300/421 410/421

Left eye (closed) 78 frames 0/78 60/78

Left eye (occluded) 101 frames 0/101 60/101

Right eye (open) 463 frames 336/463 453/463

Right eye (closed) 78 frames 0/78 78/78

Right eye (occluded) 59 frames 0/59 59/59
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Fig. 23. Tracking results of the combined eye tracker for two image sequences (A) and (B) under

significant illumination changes. White rectangles show the eyes tracked by the Kalman tracker while the

black rectangles show the eyes tracked by the mean shift tracker.

Fig. 24. Tracking results of the combined eye tracker for two image sequences (A,B) with persons wearing

glasses. White rectangles show the eyes tracked by the Kalman tracker while the black rectangles show the

eyes tracked by the mean shift tracker.
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robustly and accurately for people with glasses. However, our study shows that when

the head orientation is such that the glares completely occludes the pupils, our track-

er will fail. This is a problem that we will tackle in the future.

5.4. Eye tracking with multiple people

Our eye tracker not only can track the eyes of one person but also can track multi-
ple people�s eyes simultaneously. Here, we show the results of applying our eye track-
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er to simultaneously track multiple people�s eyes with different distances and face

poses to the camera. The result is presented in Fig. 25. This experiment demonstrates

the versatility of our eye tracker.

5.5. Occlusion handling

Eyes are often partially or completely occluded either by face due to oblique face

orientations or by hands or by other objects. A good eye tracker should be able to

track eyes under partial occlusion and be able to detect complete occlusion and re-

detect the eyes after the complete occlusion is removed. In Fig. 26, two persons are

moving in front of the camera, and one person�s eyes are occluded by another�s head
when they are crossing. As shown in Fig. 26, when the rear person moves from right

to left, the head of the front person starts to occlude his eyes, beginning with one and
then two eyes getting completely occluded. As shown, our tracker can still correctly

track an eye even though it is partially occluded. When both eyes are completely oc-

cluded, our tracker detects this situation. As soon as the eyes reappear in the image,

our eye tracker will capture the eyes one by one immediately as shown in Fig. 26.

This experiment shows the robustness of our method to occlusions.
Fig. 25. Tracking results of the combined mean eye tracker for multiple persons. White rectangles show

the eyes tracked by the Kalman tracker while the black rectangles show the eyes tracked by the mean shift

tracker.

Fig. 26. Tracking results of combined eye tracker for an image sequence involving multiple persons

occluding each other�s eyes. White rectangles show the eyes tracked by the Kalman tracker while the black

rectangles show the eyes tracked by the mean shift tracker.
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6. Summary

In this paper, we present an integrated eye tracker to track eyes robustly under var-

ious illuminations and face orientations. Our method performs well regardless of

whether the pupils are directly visible or not. This has been achieved by combining
an appearance based pattern recognition method (SVM) and object tracking (Mean

Shift) with a bright-pupil eye tracker based on Kalman filtering. Specifically, we take

the following measures. First, the use of SVM for pupil detection complements with

eyes detection based on bright pupils from IR illumination, allowing to detect eyes

in the presence of other bright objects; second, two channels (dark-pupil and bright-

pupil eye images) are used to characterize the statistical distributions of the eye, based

on which a Mean Shift eye tracker is developed. Third, the eye model is continuously

updated by the eye successfully detected from the last Kalman tracker to avoid error
propagation with the mean shift tracker. Finally, the experimental determination of

the optimal window size and quantization level for mean shift tracking further en-

hances the performance of our technique. Experiments show these enhancements have

led to a significant improvement in eye tracking robustness and accuracy over existing

eye trackers, especially under various conditions identified in Section 1. Furthermore,

our integrated eye tracker is demonstrated to be able to handle occlusion, people with

glasses, and to simultaneously track multiple people of different poses and scales.

The lessons we learn from this research are: (1) perform active vision (e.g., active
IR illumination) to produce quality input images and to simplify the subsequent im-

age processing; (2) combine different complementary techniques to utilize their

respective strengths and to overcome their limitations, leading to a much more ro-

bust technique than using each technique individually.
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