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Abstract

Existing eye gaze tracking systems typically require an
explicit personal calibration process in order to estimate
certain person-specific eye parameters. For natural human
computer interaction, such a personal calibration is often
cumbersome and unnatural. In this paper, we propose a
new probabilistic eye gaze tracking system without explicit
personal calibration. Unlike the traditional eye gaze track-
ing methods, which estimate the eye parameter determinis-
tically, our approach estimates the probability distributions
of the eye parameter and the eye gaze, by combining im-
age saliency with the 3D eye model. By using an incremen-
tal learning framework, the subject doesn’t need personal
calibration before using the system. His/her eye parameter
and gaze estimation can be improved gradually when he/she
is naturally viewing a sequence of images on the screen.
The experimental result shows that the proposed system can
achieve less than three degrees accuracy for different peo-
ple without calibration.

1. Introduction

Gaze tracking is the procedure of determining the point-
of-gaze in the space, or the visual axis of the eye. Gaze
tracking systems are primarily used in the Human Comput-
er Interaction (HCI) and in the analysis of visual scanning
pattern. In HCI, the eye gaze can serve as an advanced
computer input [8] to replace the traditional input devices
such as a mouse pointer [19]. Also, the graphic display on
the screen can be controlled by the eye gaze interactively
[20]. Since visual scanning patterns are closely related to
the the person’s attentional focus, cognitive scientists use
the gaze tracking system to study human’s cognitive pro-
cesses [10, 11].

In general, the video-based eye gaze estimation algo-
rithms can be classified into two groups: 2D mapping based
gaze estimation methods [18, 14, 20, 21] and 3D gaze esti-
mation methods [1, 4, 16, 2] which estimate the 3D visual
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axis of the subjects. A survey of eye tracking techniques
may be found in [5]. Recently, the 3D methods are becom-
ing more popular because of their high accuracy under free
head movement. However, current advanced 3D gaze es-
timation systems require a calibration procedure for each
subject in order to estimate his/her specific eye parameter-
s. In this work, we propose a novel method to estimate eye
gaze without explicit calibration procedure. In contrast to
the traditional calibration procedure which asks the subject
to fixate on several points on the screen, we track the eye
gaze when the subject is naturally looking at the images
on the screen. Combining image saliency with the 3D eye
model, our method incrementally estimates the eye param-
eters and the eye gaze naturally without explicit calibration.

2. Related Work

In traditional gaze estimation methods, a 2D mapping
approach learns a polynomial mapping from the 2D fea-
tures, e.g. 2D pupil glint vector [14, 13, 20, 21], or 2D
eye images [ | 8] to the gaze point on the screen.

However, the 2D mapping approach has two common
drawbacks. First, in order to learn the mapping function,
the user has to perform a complex experiment to calibrate
the parameters of the mapping functions. For example, in
the calibration procedure of [7], the subject needs to gaze
at nine evenly distributed points on the screen or gaze at
twelve points for greater accuracy. Secondly, because the
extracted 2D eye image features change significantly with
head position, the gaze mapping function is very sensitive
to head motion. Morimoto and Mimica [14] reported de-
tailed data showing how the gaze tracking systems decay
as the head moves away from the original calibration posi-
tion. Hence, the user has to keep his head unnaturally still
in order to achieve good performance. Methods have also
been proposed to handle head pose changes using Neural
Network [20] or SVM [21]. These methods, however, ei-
ther only consider the in-plane head translation [20] or need
stereo cameras to obtain the 3D eye position [21].

In contrast, the 3D gaze estimation is based on high res-



olution stereo cameras[16, 1, 4, 2] or a single camera with
multiple calibrated light sources [3] to estimate 3D eye fea-
tures (the corneal center, the pupil center, and the optical ax-
is connecting them) directly by the 3D reconstruction tech-
nique. The visual axis is estimated from the 3D features,
and the gaze point on the screen is obtained by intersect-
ing the visual axis with the screen. However, this type of
method still needs the person-specific calibration to esti-
mate the eye parameters. For example, Chen et al. [2] pro-
posed a 3D gaze estimation system with two cameras and
IR light on each camera. Their method starts with the re-
construction of the optical axis of the eye. The visual axis
can be estimated by adding a constant angle to the optical
axis. However, the angle between the visual and optical ax-
es needs to be estimated beforehand through a four-point
personal calibration procedure. Guestrin et al. [4] proposed
to estimate 3D gaze with two cameras and four IR light-
s. Their calibration procedure only required the subject to
look at one point on the screen.

Most recently, some gaze estimation methods that don’t
use calibration have been suggested. Model and Eizenman
[12] proposed to estimate the eye parameters based on the
assumption that the visual axes of two eyes intersect on
the screen. However, because of the noise in optical ax-
is, it is difficult to achieve accurate result. For a standard
40cm x30cm flat monitor, when the noise of the optical ax-
is is one degree, the error of the visual axis is over five de-
grees. Although they proposed the use of a larger mon-
itor (160cmx120cm) or a pyramid observation surface to
reduce the error, these devices are often not available in real
applications.

Sugano et al. [17] offer a 2D appearance-based gaze esti-
mation without calibration. They conduct experiment when
the subject is watching an image or video in the monitor.
Given the saliency map of the image, gaze points are sam-
pled from it and used as training data to train a mapping
function (Gaussian Process Regresser) between eye image
and gaze point. However, because of the large uncertainty in
saliency map, the accuracy of this system is rather low (~ 6
degrees) compared with state-of-the-art techniques [3] (< 1
degree). Furthermore, since this is a 2D mapping method
which doesn’t consider head pose, a chin rest must be used
to fix the head.

In this paper, we propose an incremental probabilistic 3D
gaze estimation method which allows free head movement
and without explicit calibration. This method is based on
combining the saliency map with the 3D eye model. First,
unlike traditional 3D methods, which estimate eye param-
eter and gaze deterministically, the proposed method esti-
mates the probability of eye parameter and eye gaze, and
can better handle the uncertainty in the system. Second, we
proposed an incremental learning method to improve esti-
mation result gradually when the subject is naturally using

the system. In both cases, no explicit calibration process or
calibration targets are used. The experimental result shows
that our system achieves less than three degrees average ac-
curacy for different people.

3. 3D Gaze Estimation

Before introducing our method, we briefly summarize
the 3D gaze estimation techniques.

3.1. 3D Eyeball structure
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Figure 1. The structure of the eyeball.

As shown in Figure 1, the eyeball is made up of the seg-
ments of two spheres of different sizes [15]. The smaller
anterior segment is the cornea. The cornea is transparent,
and the pupil is inside the cornea. The optical axis of the
eye is defined as the 3D line connecting the center of the
pupil (p) and the center of the cornea (c¢). The visual ax-
is is the 3D line connecting the corneal center (¢) and the
center of the fovea (i.e. the highest acuity region of the reti-
na). Since the gaze point is defined as the intersection of
the visual axis rather than the optical axis with the scene,
the relationship between these two axes has to be modeled.
The angle between the optical axis and visual axis is named
kappa (k), which is a constant value for each person. In
traditional methods, « is estimated through a personal cali-
bration.

3.2. Personal Calibration

P /f)ptical axis

Figure 2. The orientation of optical axis.

Here, we implement the 3D gaze estimation system in
[4, 3], where the cornea center ¢ and optical axis o are di-
rectly estimated from a single camera and multiple infrared



lights. The image resolution of our camera is 640x480 pix-
els and the eye size in the image is about 120x60 pixels.
The estimated 3D optical axis can be represented by hori-
zonal and vertical angles (o = (0, ¢)) as shown in Figure.
2. The unit vector of the optical axis is represented as:

cos(y) sin(6)

sin(yp)
— cos(ip) cos(0)

6]

Vo =

The subject’s visual axis is estimated by adding k = («, 3)
to the optical axis:

cos(p + B) sin(0 + «)
sin( + )
—cos(p + B) cos(f + )

2

Vg:

Finally, the gaze point g on the screen is estimated by in-
tersecting v, with the screen. Thus, it is determined by the
optical axis and & :

3)

However, because « varies for different subjects, it needs
to be estimated beforehand through calibration. In tradition-
al methods [3, 2, 4], the subject is asked to look at IV specif-
ic calibration points on the screen: g;,7 = 1,.., V. The eye
parameter can then be estimated by minimizing the distance
between the estimated gaze points and these ground-truth
gaze points:

g = g(0, k).

K* = arg m’gnz lgi —g(o], x|l “4)

where o} is the optical axis when the subject is looking

at the ith gaze point g;. The traditional gaze estimation
method can be represented as Figure 3

Lo f—lx o1 8" |

Calibration

Gaze estimation E7‘V—>

Figure 3. Diagram of traditional 3D gaze estimation. where g™ is
ground-truth gaze.

4. Probabilistic Gaze Estimation

In the traditional methods, in order to acquire the
ground-truth gaze points to estimate ~, the subject has to
look at some specific points. This procedure is often cum-
bersome and unnatural. In this paper, we propose a new
framework to estimate the probability of x and eye gaze
without forcing the subject to looking at specific calibration
points.
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4.1. Proposed Probabilistic Framework

The basic idea is to combine the 3D gaze estimation
method with a visual saliency map. In our experiment, the
subject naturally viewed the images on the screen (in full-
screen mode). We utilized the method in [6] to estimate the
saliency map of each image, which represents the distinc-
tive features in the image. The only assumption we have is
that the user has a higher probability of looking at the salient
regions of the image. Some examples of saliency maps are
shown in Figure 4. The experimental results in [6] shows

Saliency Map: p(glf)

Input Image: [

Figure 4. Examples of saliency map (p(g|7))

remarkable consistency between the saliency map and the
gaze. Thus, given the image (I)on the screen, its saliency
map can be represented as the conditional probability of the
gaze position p(g|I).

Based on this gaze probability, we propose the new gaze
estimation framework shown in Figure 5. Notice the dif-

p(gll)

(e o 1]
p(gl|1,0) x p(g|T)p(olg)

e oAt ]

p(gll)

p*(r) = p(rlo, I)
Probabilistic Eye P

Parameter Estimation

Probabilistic Gaze
Estimation

E} y

plolg) = [ p(olg, k)p"(x)
Figure 5. Diagram of the proposed probabilistic gaze estimation

ferences between our method and the traditional method in
Figure 3:

1. Firstly, the traditional method needs to collect the
ground-truth gaze (g*), when the subject is looking
at specific points during calibration, while our method
only needs the gaze probability p(g|I), when the sub-
ject is viewing the image 1.

. Secondly, the traditional method estimates the eye
parameter k" deterministically. However, without
ground-truth gaze, we cannot estimate the value of x*.
Instead, our method estimates the probability distribu-
tion of k : p* (k).



3. Thirdly, the traditional method estimates gaze only
from the optical axis and x*, while our method first
estimates the gaze likelihood p(o|g) from the optical
axis and p*(k), then combines it with the gaze prior
probability p(g|/) from the saliency map to estimate
the gaze posterior probability.

This framework is mainly composed of two parts: proba-
bilistic eye parameter estimation and probabilistic gaze es-
timation. We discuss them separately in the following two
sections.

4.2. Probabilistic Eye Parameter Estimation

In this section, we discuss the method to estimate eye
parameter (k) probability from gaze probability (saliency
map). Firstly, we introduce a general graphical model to
represent the relationships between the shown image ([),
eye gaze (g), optical axis (0), and the eye parameters (k).

Figure 6. Probabilistic relationships in BN.

Figure 6 is the Bayesian Network (BN) [9] that repre-
sents the probabilistic relationships. The nodes in BN rep-
resent random variables, and the links represent the con-
ditional probabilities (CPDs) of nodes given their parents.
Based on the saliency map and the eye model, we define the
CPDs as follows:

1. p(g|I) : g is a two dimensional vector g = (z,y),
which represents the location of the gaze on the screen
(Based on the resolution of the monitor, the gaze posi-
tion is discrete in the range: 0 < z < 1280,0 < y <
1024. The link I — g is quantified by p(g|I) which is
the saliency map estimated from image.

2. p(o|g, k) : o has two parents g and k. As discussed
above, the camera in a gaze system cannot directly ob-
serve the visual axis and gaze. It can only observe the
optical axis (o) as the measurement of gaze (g). In
the traditional method, o is a deterministic function of
g by subtracting a constant bias . In our proposed
method, considering the noise in the gaze system, we
model the conditional probability as a Gaussian distri-
bution:

p(olg, x) = N(f(g: %), %) ©)

Here, o = (0, ¢) is a two-dimensional vector. f(g, k)
is the inverse function of Eq.3, which estimates the
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optical axis by subtracting x from the visual axis. X
models the noise in the gaze tracking system, which is
estimated from training data. (According to the tests of
our system, we set the standard deviation of the optical
axis as one degree on both 6 and ¢.)

Now, based on the BN model, eye parameter estimation
is solved as an inference problem in the BN, which esti-
mates the posterior probability p(x|o, I) given the optical
axis and the shown image. Based on the conditional inde-
pendencies in the BN model, the probability of x can be
written as:

p(slo,T) / p(glD)p(olg, k) p(x) / p(glDp(olg, x)
g g

(6)
p(gl|I) is the saliency map; p(o|g, «) is the Gaussian distri-
bution as defined in Eq.5. The prior probability of « (p(k))
is initially assumed to be a uniform distribution. Here, Eq.6
is a one-step belief propagation that propagates the proba-
bility from the gaze to x given one optical axis. The gaze
position is discrete in a limited range; thus, the integral in
the above equation can be approximated by summation.

Fig. 7(C) shows an example of the estimated eye param-
eter probability. Here, we collected 40 optical axes when
the subject was looking the image in Fig. 7(A). Thus, the
training optical axes are 01, 40 and their corresponding
shown images I;, 40 are the same. Assuming these op-
tical axes are conditionally independent to each other, we
can derive the x probability as the product of each single
probability:

40
p(kl|o1,.. 40, 11,..40) X H/

i=1

p(gilli)p(oilgi, k) (7)

8i

Figure 7. Probabilistic Eye Parameter Estimation. (A) is the shown
image. (B) is the saliency map p(g|I) of the image. (C) is the
estimated probability distribution of eye parameter p*(x). (x-axis
represents « and y-axis represents /3.)

Based on the biological study, eye parameters should be
in a limited range for normal eyes. Here we restricted the
eye parameter in the range —10° < a < 10° and —10° <
8 < 10°.

4.3. Probabilistic Gaze Estimation

Given the estimated eye parameter probability p*(k),
we can estimate the gaze probability. For consistency, this



derivation is based on the same BN model in Fig.6. Unlike
the eye parameter estimation, the estimated p*(x) is now
used as the prior probability of the x node. Then, the proba-
bility of the gaze, the optical axis and the shown image, can
be written:

p(glo, I) o< p(g|I)p(olg) (8)

where p(g|I) is the prior probability of gaze from the
saliency map of the shown image I, and p(o|g) is the gaze
likelihood, which can be derived from p*(k) as:

p(olg) = [ plolg 0w () ©
Note that all the above derivations are only valid based on
the conditional independencies in the BN model.

Thus, the probabilistic gaze estimation is composed of
the following steps:

1. Firstly, we estimated the gaze prior probability from
the saliency map p(g|I).

Then, we estimated the likelihood gaze map p(o|g),
given the current optical axis and the eye parameter

prior p* (k).

3. Finally, the product p(g|I)p(o|g) represents gaze pos-
terior probability map. The maximum posterior point
is selected as the gaze point.

The results of the three steps are shown in Fig.8. Here
we compare our method with the traditional gaze estimation
method, which uses 9-point calibration to determine the eye
parameter. The peak in our posterior probability map is very
close to the estimated gaze of the traditional method, but our
method does not need any explicit calibration.

4.4. Incremental Learning for Gaze Estimation

The above probabilistic framework includes two stages:
first, p*(k) is estimated when the subject is looking at the
training images. Then his/her gaze is estimated when he/she
is looking at the test images.

In order to provide a more natural user experience, we
propose an incremental learning algorithm for our proba-
bilistic framework. This new framework does not need any
prior training. It can quickly adapt to the user, and incre-
mentally improves gaze estimation accuracy as the subject
uses the system.

We first assume the initial distribution of x as uniform.
When the subject starts to use the system, we record a se-
quence of his optical axes o ;. Given the correspond-
ing shown image sequence I; i, the incremental learn-
ing framework continually updates the estimations of &
and gaze given all previous information, i.e. estimating
p(kel 1y, 1,0¢,..1) and p(g| 1y, 1,0¢,..1). We employ a re-
cursive updating procedure detailed as follows.
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(C) plolg)

(D) p(glo, I) = p(g|Ip(olg)

Figure 8. Probabilistic Gaze Estimation. (A) is the shown image.
(B) is the saliency map p(g|I) of the image. (C) is gaze likelihood
map given optical axis. (D) is the gaze posterior probability map.
The black triangle shows the maximum posterior point. The circle
shows the estimated gaze using traditional method.

Figure 9. DBN for incremental learning.

For incremental learning, we first extend the BN to a dy-
namic BN (DBN) model as shown in Figure 9. The DBN
includes two kind of links. intra-frame links in one time
frame are the same as the BN model, and inter-frame link
from k;_1 to k; capture the temporal relationships. Base
on the anatomy, « cannot vary much over time. Thus, we
model it as a Gaussian distribution:

p(re|lri—1) = N(ki—1,Zk) (10)
where Y, is the covariance matrix which allows x; to vary
in a small range around the previous estimation ;_1. Here,
according to the previous user study, we set the standard

deviations of a; and S, to one degree, i.e. 3, is an identity
matrix.

Given the above temporal relationship, the probability of
 can be updated recursively. Firstly, we predicted the prior
probability of the current x; based on its previous probabil-



ity, as shown in Eq. 11.

Pkl le—1,..1,0¢-1,..1)

p(“t|f{t71)p(ﬁ?t71 |It71,..,1» 0t71,..,1)
Rt—1

Y

where p(ki—1|It—1,.1,04—1,..1) is the x probability from
the previous time frame.  Since the temporal CPD
p(kt|ke—1) is a Gaussian distribution, this integral is imple-
mented by a convolution of previous x probability map with
a Gaussian kernel. In the first time frame, when no prior in-
formation of & is available, we assume p(k1) is uniformly
distributed.

Based on the predicted temporal prior probability of xy,
the current probability of g; and x; can be derived as the
filtering problem in the DBN:

(gl let—1,..,1,08¢—1,...1)
08 p(gtllt) “ i, p(OtIgt, K:t)p(/ftut—l,“,la 0t—1,..,1)
(12)

~—

p(ﬁt\ft,t—l,..,l,0t,t—1,..,1
o [, p(&tlL)p(otlge, ke) - p(kelTe—1,.1,06-1,..1)
(13)
Let p*(k:) = p(ke|lli—1,..1,0¢—1,..,1) and p'(ky)
p(ke|Ly,.. 1,04, 1), the above incremental learning algorith-
m can be summarized as follows:

Algorithm 2 Incremental Gaze Estimation Algorithm
t<1
Set p* (k1) as uniform distribution.

Estimate the first gaze:
p(g1ll1,01) x p(gill1) - [, ploilgr, k1)p™ (k1)

Update ~ probability :
(k1) oc [, p(g1ll1)p(o1lg1, ke)
loop
t+t+1
Temporal belief propagation p’(ki—1) — p*(k¢) :

p* (ki) = p(elre—1)p (K1)

Rt—1
Probabilistic gaze estimation:
p(&tl1t,..1,0¢,..1) o< p(ge|lr) - [, P(0t|&t, ke )p™ (i)

Update ~ probability:

P (ki) o [, (gl l)p(0dlge, ki) - p* (Ke)
end loop

The only difference between the DBN and the BN is that
the DBN considers the temporal prior of x;, and contin-
ues updating it over time. For example, if letting p* (k)
p(Ke|li—1,.1,0¢—1,.1), Eq. 12 is the same as Eq. 8; if let-
ting p(k¢|l¢—1,...1,0¢—1,..,1) be uniform distribution, Eq. 13
is the same as Eq. 6.
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An example of the incremental learning of p'(k:) is
shown in Figure 10. The estimated p’ (1) for the first time
frame has a high probability in multiple regions. By updat-
ing its probability incrementally, it gradually converges to a
single peak after twenty time frames.

(D) t=12

Figure 10. Incremental learning of p’ (k).

5. Experimental Results

To evaluate the traditional gaze estimation method, the
subjects are often asked to look at some points on the
screen. The gaze estimation error can be computed as the
distance between these points and the estimated gaze points.
However, in our method, the user does not need to look at
any specific points. To evaluate our system, we implement
the traditional 3D gaze estimation system [3]. This system
is first calibrated by asking the subject to look at nine points
on the screen. The average accuracy of this system is one
degree for different subjects. We compared our proposed
method with this system.

To evaluate our method, we collected the optical axes of
five subjects while they viewed the images on the screen.
Each image displayed for 3-4 seconds on the screen. We
collected 80 optical axes for each image (our gaze system
captured the video of the eye and estimated the optical axes
at 25 frames per second). To show the advantages of the
incremental learning, we compared the incremental learn-
ing algorithm in Section 4.4 to the batch training method in
Section.4.2.

5.1. Batch Training for Gaze Estimation

For batch training, we divided the 80 time frames when
the subject viewed one image into training data (40 frames)
and testing data (40 frames). Each subject viewed five im-
ages in this experiment, and we used leave-one-image-out
cross validation, i.e. when testing on 40 frames of one im-
age, we first learned the eye parameter probability from the
training data of the other four images (Section.4.2).

For a more effective system, we want to use less train-
ing data, because more training time may make the subject



bored and easily distracted. We tested the dependency on
the training data by using 160, 80, 40, and 20 frames of
training data, i.e. 40, 20, 10, and 5 frames for each training
image.

The average error (over 200 test frames) of each subjec-
t is show in Table 1. Performance did not decrease much
when training frames were reduced to 40. Further reducing
the training data resulted in an increase of error. The aver-
age gaze estimation error of our proposed method achieved
2.40° when there was enough training data (160 frames).

5.2. Incremental Learning for Gaze Estimation

Based on our incremental learning algorithm, the system
doesn’t need to estimate the eye parameter probability be-
forehand using training frames. This system can automati-
cally update the eye parameter probability and estimate the
gaze when the subject start using the system.

The gaze estimation error for the first 10, 20, 40, 80,
120, 160, and 200 frames are shown in Table 2. Although
the error is large for the first few frames (<20 frames), it
decreases quickly as the subject uses the system. Compared
with the batch training, the incremental learning achieves
similar performance for the first twenty frames. However,
when the subject is using the system, incremental learning
keeps improving the performance and can achieve an aver-
age accuracy of 17.07mm (1.77°) for the first 200 frames.
This process is done automatically, naturally, and without
any user knowledge.

Some gaze estimation results (in both the original image
and the saliency map) of subject 1 are shown in Figure 11.
Without calibration, the results of our method are close to
the results of the system with 9-point calibration. The sub-
ject may look at some region with low saliency, such as the
white paper in the person’s hand in Figure 11(A). In this
case, by incrementally improving the eye parameter esti-
mation and by combining gaze likelihood with the saliency
map, our method can still follow the true gaze positions.

Compared to the most recent calibration-free gaze es-
timation method [17], which asks the subject to watch a
ten-minute video for training and achieves an accuracy of
six degree, our proposed method doesn’t need training da-
ta beforehand and can adapt to the user very quickly (in
80 frames or three seconds), and continues to improve the
accuracy when person start using it. The average accura-
cy can achieve 1.77 degrees. Furthermore, in our 3D gaze
estimation framework, the subject can make natural head
movement without a chin-rest.

6. Conclusion

In this paper, we proposed a new probabilistic gaze esti-
mation framework by combining the saliency map with the
3D eye gaze model. Compared to the traditional method,
our proposed approach doesn’t need the cumbersome and
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(A)

(B)

©

(D)

(E)

Figure 11. Probabilistic Gaze Estimation Result. The red rectan-
gles are the results of our proposed method. The blue circles are
the results of traditional method with 9-point calibration.

unnatural personal calibration procedure. Compared with
the most recent calibration-free method [17], our system al-
lows natural head movement. In addition, by considering
the uncertainties of eye parameter and gaze in our proba-
bilistic framework, our system significantly improves the
accuracy from six degrees to less than three degrees. By
using a novel incremental learning framework, our system
doesn’t need any training data from the subject beforehand.
It can adapt to the user quickly and improves its perfor-
mance as the subject naturally using the system.



Table 1. Gaze estimation error of 5 subjects with different training data size. Eye parameters are trained though batch training.

Training data size [ 160 frames 80 frames 40 frames 20 frames
[mm] | [deg.] || [mm] | [deg.] || [mm] | [deg.] || [mm] | [deg.]
Subject 1 21.00 | 2.18 [[ 23.13 | 240 [[ 2336 | 243 |[ 23.59 | 245
Subject 2 1855 | 1.93 [ 1849 | 1.92 [[ 1757 | 1.83 |[ 19.03 | 1.98
Subject 3 1547 | 161 [ 1576 1.64 || 1599 | 1.66 || 16.38 | 1.70
Subject 4 2784 | 2.89 [[ 2668 | 2.77 || 28.17 | 2.93 || 28.43 | 2.95
Subject 5 3273 | 340 |[ 32.15 | 3.34 || 32.61 | 339 || 33.04 | 3.43
Average 2311 [ 240 [ 2324 [ 241 [[ 2354 ] 245 [[24.09 | 250 |

Table 2. Gaze estimation results of 5 subjects for the first N frames (N=10,20,40,80,120,160,200). Eye parameters are automatically

updated after each frame.

[ 10 frames 20 frames 40 frames 80 frames 120 frames 160 frames 200 frames
[mm] | [deg.] || [mm] | [deg.] || [mm] | [deg.] || [mm] | [deg.] || [mm] | [deg.] || [mm] | [deg.] || [mm] | [deg.]
Subject 1 23.57 245 16.66 1.73 19.25 2.01 19.89 2.07 19.64 2.04 18.20 1.89 17.32 1.80
Subject 2 3291 342 24.03 2.50 19.79 2.06 18.32 1.90 17.73 1.84 18.20 1.89 17.33 1.80
Subject 3 16.46 1.71 15.42 1.60 15.16 1.57 14.85 1.54 14.48 1.50 15.36 1.59 15.36 1.59
Subject 4 26.57 2.76 39.36 4.09 28.42 2.95 21.18 2.20 18.41 1.91 19.85 2.06 19.92 2.07
Subject 5 28.41 2.95 28.34 2.95 27.07 2.81 20.11 2.09 16.20 1.68 15.40 1.60 15.41 1.60

[ Average || 2558 | 2.66 || 24.76 | 2.57 || 21.94 | 228 || 18.87 | 1.96 [| 17.29 | 1.80 || 17.40 | 181 | 17.07 [ 177 |
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