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a b s t r a c t 

Eye detection and eye state (close/open) estimation are important for a wide range of applications, in- 

cluding iris recognition, visual interaction and driver fatigue detection. Current work typically performs 

eye detection first, followed by eye state estimation by a separate classifier. Such an approach fails to 

capture the interactions between eye location and its state. In this paper, we propose a method for si- 

multaneous eye detection and eye state estimation. Based on a cascade regression framework, our method 

iteratively estimates the location of the eye and the probability of the eye being occluded by eyelid. At 

each iteration of cascaded regression, image features from the eye center as well as contextual image 

features from eyelid and eye corners are jointly used to estimate the eye position and openness prob- 

ability. Using the eye openness probability, the most likely eye state can be estimated. Since it requires 

large number of facial images with labeled eye related landmarks, we propose to combine the real and 

synthetic images for training. It further improves the performance by utilizing this learning-by-synthesis 

method. Evaluations of our method on benchmark databases such as BioID and Gi4E database as well as 

on real world driving videos demonstrate its superior performance comparing to state-of-the-art methods 

for both eye detection and eye state estimation. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Eye detection aims to estimate the pupil location in a image.

ye state prediction aims to estimate the binary state(open/close)

f eye. Eye detection is becoming an increasingly important re-

earch topic due to its various applications such as iris recogni-

ion, eye gaze estimation and human-robot interaction. Eye state

stimation is critical to detect the individual’s affective state, and

he corresponding pupil location is essential to reflect the individ-

al’s focus attention. Eye state estimation also has extensive appli-

ations in real world including diagnosing neurological disorders,

leep studies and driver drowsiness detection. 

Although much work has been done for eye detection and eye

tate estimation, they still are challenging tasks due to variations

n appearance, illumination and occlusion. In addition, most of the

xisting works only perform eye detection and eye state estimation

eparately and independently. In this paper, we propose a method

or simultaneous eye localization and eye state estimation, on the
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asis of a joint cascaded regression framework. In cascaded regres-

ion framework, eye states and eye locations are updated simulta-

eously. Since it is time-consuming to collect large number of eye

mages with accurate eye related landmark labels for training, we

ropose to learn from the combination of synthetic and real im-

ges. Our main contributions are highlighted as follows: 

• Simultaneity: On the basis of the cascade regression frame-

work, the eye openness and eye locations are updated in each

iteration simultaneously. Different from the conventional se-

quential eye detection and eye state estimation methods, our

method is the first work that performs eye detection and eye

state prediction at the same time. 
• Robustness: The proposed framework relaxes the binary eye

state to be a continuous probability, which measures the de-

gree of openness of eyes. By setting flexible threshold, the eye

states can be robustly predicted. In addition, it can estimate the

location of eyes even when the eyes are closed. 
• Learning-by-synthesis: For learning-based methods, it is time-

consuming to collect various eye images and annotate them

with ground truth. We propose to learn the regression mod-

http://dx.doi.org/10.1016/j.patcog.2017.01.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.01.023&domain=pdf
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els from generated synthetic photorealistic eye images and it

improves the result. 
• Effectiveness and efficiency: By exploiting the cascade regres-

sion and the interactions between eye location and eye state,

our method performs significantly better than other state-of-

the-art methods and can achieve nearly real time. 

The remainder of this paper is arranged as follows. Section 2 re-

views the related work on eye detection and eye state estimation

(open/close). The proposed method is described in Section 3 . Ex-

perimental results are discussed in Section 4 . The conclusion is

drawn in Section 5 . 

2. Related work 

2.1. Eye localization 

Eye detection has been studied for decades and numerous

methods have been proposed. In this section, we focus on review-

ing most of the recent works. A detailed review of earlier tech-

niques devoted to this topic can be found in [1,2] . Generally, On

the basis of captured information, we summarize the representa-

tive eye localization methods into five categories: (i) shape-based,

(ii) appearance-based, (iii) context-based, (iv) structure-based, and

(v) others. 

Shape-based models generally capture the geometric informa-

tion of an iris. Yuille et al. [3] build a parameterized deformable

model formulated by geometric shape with 11 parameters. Their

model considers peaks, edges and valleys by using energy func-

tions. To fit the model to a testing image, it has to optimize in a

large continuous parameter space which covers shape variations.

Based on the elliptical shape of an iris, Hansen and Pece [4] pro-

pose a likelihood model which incorporates neighboring informa-

tion for iris detection and tracking. By using EM and RANSAC

methods, the ellipse is locally fitted to the image. In [5] , the au-

thors use curvature of isophotes in the intensity image to design a

voting-based method for pupil localization. 

Appearance-based methods are based on the photometric ap-

pearance, which is characterized by filter responses and color dis-

tribution. In [6] , the authors propose a method for eye localiza-

tion based on an ensemble of randomized regression trees, which

are trained by using the pixel intensity differences around pupils.

Araujo et al. [7] describe an Inner Product Detector for eye local-

ization based on the correlation filters. Zhang et al. [8] use local

linear SVM for eye center detection, and ASEF-based filters are ap-

plied to select the candidate centers. Wu and Ji [9] propose to

learn deep features to capture the appearance variations of eyes

in uncontrolled conditions. In [10] , the authors apply a discrimina-

tive feature extraction method to 2D Haar wavelet transformation

[11] and use an efficient SVM for fast classification. Support Vector

Regressor (SVR) is used to estimate the distance of patch center to

the pupil center by extracted HoG features in [12] . 

Since eye centers have a stable relationship with other facial

parts in terms of both appearance and shape, it is important to

capture the contextual information to detect the eyes. Yang et al.

[13] propose to detect the pupil by using different Gabor kernels to

convolute with the image, which highlights the eye-and-brow re-

gions. By employing a coarse to fine strategy for robust initializa-

tion, Zhou et al. [14] propose multi-scale nonlinear feature map-

ping based on the Supervised Decent Method (SDM) [15] for eye

detection. They use 14 eye related key points to capture the con-

textual information. 

The structural locations information related to nose, mouth, etc.

is helpful for the eye localization. Pictorial Structure [16] and en-

hanced Pictorial Structure [17] provide a powerful framework to

model the face in terms of its appearance and geometrical rela-
ionship between parts. The pupil is part of face and this model

llows for accurate eye detection by capturing the structural infor-

ation. 

It is a challenge to organize some other methods into a specific

forementioned types. Based on the intensity information, Chen

nd Liu [18] propose to extract eye regions by image enhancement,

abor transformation, cluster analysis, and neighborhood opera-

ion with similarity measures in eye regions for final eye detection.

ome researchers also propose combined models to overcome the

hortcomings of separate model. Timm and Barth [19] propose to

se image gradients and squared dot products to detect the pupils.

he aforementioned model in [17] also combines shape and ap-

earance features in a unified framework. 

.2. Eye state estimation 

After accurate eye detection, eye state estimation can be

chieved. Since pupil is frequently occluded by eyelids, hair and

unglasses, it is crucial to recognize the eye states to decide

hether the pupil is occluded. Although the eye states estima-

ion has received increasing research attention, eye state estima-

ion is still an unsolved problem in uncontrolled scenes. Plenty of

ye state estimation methods have been proposed. Generally, these

ethods are classified into three categories: (i) shape based, (ii)

emplate based, and (iii) learning based. 

Shape-based approaches aim to recognize the eye states based

n geometric relationships or circular shape of visible iris. Kurylyak

t al. [20] set some thresholds for the difference between video

rames in eye region pixel level to detect the eyelid movement.

hen differences of vertical and horizontal projections are used to

etect the degree of eye openness. Another simple and direct way

or eye state estimation is template matching. Feng et al. [21] use

emplate matching for coarse driver eye state estimation followed

y capturing the upper eyelids curvature for fine recognition. By

etting flexible thresholds for the combined model, it can achieve

 reasonable performance on warning system for a driver. Gonza-

ez et al. [22] use projection operation to produce three templates:

pen, nearly closed and closed eyes. Both pair of eye state classi-

er and individual eye state classifier measure similarities between

he templates and the test image. 

Since eye state estimation is a binary classification problem,

achine learning techniques are widely used to tackle this prob-

em and they significantly improve the performance compared

ith the aforementioned methods. Song et al. [23] propose Mul-

iHPOG features to recognize the eye states and made a compar-

son using other features in different datasets. Extensive experi-

ental results show that MultiHPOG are effective and robust. The

uthors also released the Closed eyes in the Wild (CEW) database

hich contains 2423 images with open and closed eyes. In [24] ,

inimum intensity projection is adapted. After histogram equal-

zation, the pixels in vertical and horizontal direction with min-

mum intensity value are chosen to combine the feature vector.

hrough their experiment, a Random Forest classifier performs bet-

er than other tree based classifiers. Another projection operation

ased work is presented in [25] . The authors introduce a discrim-

native feature by projecting the gray value distribution in x and y

irection. In addition, a brightness adjustment based on the mean

alue of color image is proposed to overcome the variation of illu-

ination. 

.3. Learning-by-synthesis 

Learning based cascaded regression framework requires large

cale training data. In our case, there is limited public available

ataset with eye center location labeled under various illumina-

ions and head pose. In addition, it is time-consuming and also
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Algorithm 2 Joint cascaded regression framework for eye detec- 

tion and eye openness estimation. 

Input: 

Give the image I . Left/right eye openness probability is initialized 

as open by p 

0 = 1 . Five key point locations x 0 are initialized by 

the coarse detected eye region and mean eye locations in nor- 

malized eye region. 

Do cascade regression: 

for t=1,2,… ,T do 

Update the eye openness probability given the current key 

point locations x t−1 . 

f t : I , x 
t−1 → �p 

t 

p 

t = p 

t−1 + �p 

t 

Update the key point locations given the current key point lo- 

cations x t−1 and the calculated eye openness p 

t . 

g t : I , x 
t−1 , p 

t → �x t 

x t = x t−1 + �x t 

end for 

Output: 

Estimated eye states based on the eye openness probability p 

T 

and the locations x T of key points. 
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an be unreliable for accurate manual annotation of eye related

andmarks. Motivated by recent work of learning-by-synthesis for

ppearance-based eye gaze estimation and eye detection [26–29] ,

e propose to learn from the synthetic eye images for accurate eye

etection. 

In summary, we realize that utilizing multi types of features is

mportant on eye detection. In addition, capturing appearance fea-

ures and learning classifiers significantly improve eye state esti-

ation performance. Hence, we propose to capture the shape, ap-

earance, structural and contextual information for eye detection

nd eye state estimation. Moreover, we learn from the combina-

ion of real and synthetic images to boost the performance. 

. Proposed method 

The conventional framework for eye state estimation is to lo-

ate the eyes first and then perform the binary classification. Since

upils are very likely to be occluded, general methods can not deal

ith this problem. To the best of our knowledge, there is little re-

earch focusing on eye localization and eye state estimation at the

ame time. In this paper, motivated by our previous work for facial

andmark detection [30] which uses a robust cascaded regression

ethod for facial landmark detection under occlusions and large

ead poses, we propose to simultaneously detect eyes and recog-

ize eye state (open/close) using a joint cascaded regression frame-

ork, on the basis of eye-related shape, appearance, structural and

ontextual information. 

Before we introduce our proposed method, we first review gen-

ral cascaded regression framework which has been successfully

pplied to facial landmark detection [15,31,32] . The overall algo-

ithm is shown in Algorithm 1 . The facial landmark coordinates

re denoted as x t = x t 
1 
, x t 

2 
, . . . , x t 

D 
, where D denotes the number

f landmarks and t denotes the iteration in cascaded regression

ramework. It iteratively predict the location updates �x t based

n the extracted appearance features with regression model g t and

hen adds the current estimated updates �x t to the previous lo-

ations x t−1 to acquire new landmark locations x t . It repeats until

onvergence. 

The coarse-to-fine joint cascaded framework of our proposed

ethod for simultaneous eye detection and eye state estimation

s summarized in Fig. 1 and Algorithm 2 . It should be noted that

e perform eye detection and eye state estimation for left eye

nd right eye separately during training and testing. In the fol-

owing description, we take left eye as example. To capture eye-

elated shape, structural, appearance and contextual information,

e consider five eye-related key points (see green and red points

n Fig. 1 (b)), consisting of two eye corners, two eyelid points and

ne pupil for cascade regression. Since we focus on eye state esti-

ation, we introduce openness probability p ∈ [0 , 1] related to the

andmark of eye center. Before doing cascade regression, the eye
lgorithm 1 General cascaded regression framework. 

Input: 

Give the image I . Facial landmark locations x 0 are initialized by 

mean face. 

Do cascade regression: 

for t=1,2,… ,T do 

Update the key point locations x t given the current key point 

locations x t−1 

g t : I , x 
t−1 → �x t 

x t = x t−1 + �x t 

end for 

Output: 

Landmark locations x T . 
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o
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tate is initialized as open with openness probability 1 as shown in

ig. 1 (b). In addition, to capture the structural information for eye

enter detection, all eye related five key point locations x ∈ � 

2 ·5 

re initialized by the detected eye region and mean location from

raining. In cascade regression, the eye openness probability and

ey point locations are iteratively updated at each iteration. For

pdating the openness probability, a linear regression model f t is

sed to predict the eye openness probability update �p 

t on the

asis of current key point locations x t−1 . For updating the key

oint locations, another regression model g t is used to predict the

ey point location updates �x t based on the current locations x t−1 

nd estimated eye openness probability p 

t . In the following, we

iscuss the major components of the proposed method in the cas-

ade regression framework including initialization, updating eye

penness probability and key point locations. 

.1. Initializaiton 

In general regression based landmark detection framework, it

akes sense to initialize the landmarks by mean face. In our case,

irectly initializing the eye related points by mean face is not ad-

quate because it is not likely to converge to the global optimum

f the initialization is far away from the ground truth. Hence, it is

easonable to focus on eye regions for accurate eye center localiza-

ion and eye state estimation. We firstly extract eye regions based

n 51 landmarks detection using method in [31] . In this paper, we

ormalize the width of two eye outer corners to 25 in pixel. As

hown in Fig. 1 (b), 5 key point locations are initialized by mean

ocations in eye region from training. The eye state is initialized as

pen with openness probability p 

0 = 1 . 

.2. Update probability of eye openness 

Even though eye state estimation is a binary classification prob-

em, there are large variations of appearance for different individu-

ls, especially for individual with glasses or nearly half closed eyes.

xtracting features from whole eye regions is limited to represent

he closed and open eyes. To use more class-specific information

or robust eye state estimation, we propose to relax binary eye

tate to be a continuous eye openness probability, which can be

nferred from pupil appearance features and the related contextual

nformation. Since it is not easy to accurately locate the pupil, we
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Fig. 1. Framework of our proposed approach for simultaneous eye detection and eye state estimation. (a) Face detection and 51 landmark detection. (b) Extracte the eye 

regions based on the detected 51 landmarks and initilaize eye state and 5 key point locations. (c) Output of first iterations. (d) Final estimated location and openness 

probability of eye. ∗Take the left eye as a example. 
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use the cascade regression framework and update the eye open-

ness probability iteratively. 

The eye openness probability p ∈ [0 , 1] is updated at each itera-

tion. To capture the pupil appearance and its related contextual in-

formation, SIFT features of local patches around the pupils, eye cor-

ners and eyelids are used. To capture shape information, the differ-

ences for pairwise points are calculated as shape features. Then the

shape and appearance features are combined to generate a con-

catenated feature vector denoted as Ψ (I, x t−1 ) ∈ � 

5 ·128+5 ·4 , where

I and t denote the input image and iteration index, respectively. 

3.2.1. Learn the eye state prediction model 

To estimate the eye openness probability, we use a linear re-

gression model. For training at each iteration, linear model param-

eters β t and bias b 

t 
are estimated by the standard least-square for-

mulation with closed form solution: 

βt ∗ , b 

t ∗ = arg min 

βt , b 
t 

K ∑ 

i =1 

‖ �p 

t 
i − βt Ψ (I i , x 

t−1 
i 

) − b 

t 
i ‖ 

2 (1)

where K is the number of training samples. Given the train-

ing images with estimated key point locations x t−1 , the feature

Ψ (I i , x 
t−1 
i 

) of i th image can be calculated. The probability update

�p 

t 
i 

can be acquired by subtracting the current probability p 

t−1 
i 

from the ground truth. It is noted that, the eye openness probabil-

ity is labeled as 1 when eye open and 0 when closed. 

3.2.2. Estimate the eye openness probability 

After learning the parameters β and b 

t 
for each iteration, given

the current key point locations, we can estimate the update prob-

ability �p 

t for next iteration by: 

�p 

t = βt Ψ (I, x 

t−1 ) + b 

t 
(2)

Then eye openness probability can be acquired though: 

p 

t = p 

t−1 + �p 

t 

sub ject to : 0 ≤ p 

t ≤ 1 

(3)

3.3. Update point locations 

After estimating the eye openness probability, the 5 key point

locations can be updated. We also use a linear regression model for

point location prediction. Intuitively, when the pupil is occluded

with a low visibility probability, the local appearance features are

less reliable for the localization of pupil. When the eyes are totally

closed, the pupil related SIFT features should be discarded. Based

on this intuition, we modify the regression method with the visi-

bility probability as in Eq. (4 ). 

3.3.1. Learn the eye location prediction model 

For the training, similar to Eq. (1 ), we learn the weight param-

eters αt and bias c t by a standard least-square formulation with

closed form solution: 

αt ∗ , c t 
∗

i = arg min 

αt , c t 
i 

K ∑ 

i =1 

‖ �x 

t 
i − αt [ 

√ 

p 

t 
i 
◦ Ψ (I i , x 

t−1 
i 

)] − c t i ‖ 

2 (4)
here K is the number of training samples and ◦ denotes block-

ise product. It is worth nothing that, eye center related features

re weighted by the corresponding openness probability after ap-

lying block-wise multiplication. Hence, when the eye is partially

ccluded with a low probability, the corresponding pupil features

re less reliable for the eye detection. Given the current point lo-

ations x t−1 , the combined shape and appearance features can be

xtracted. Then the eye openness probability is acquired by Eqs.

2) and (3 ). During training, the update �x t is estimated by sub-

racting the current key point locations x t−1 from the ground truth

ocations. 

.3.2. Infer the eye location 

Given the image I and corresponding key point locations x t−1 ,

ccording to Eqs. (2) and (3) in inference, the current eye openness

robability p 

t can be calculated. After learning the parameters αt 

nd bias c t for each iteration, we can estimate the update location

x t for iteration t by: 

x 

t = αt [ 
√ 

p 

t ◦ Ψ (I, x 

t−1 )] + c t (5)

n Eq. (5) , ◦ denotes block-wise product, and it allows for weight-

ng the pupil related appearance features. As a result, the feature

ector Ψ (I, x t−1 ) is weighted though p 

t such that pupil less likely

o be occluded contributes more to �x t . Then key point locations

or next iteration can be acquired through: 

 

t = x 

t−1 + �x 

t (6)

here the eye center location can be acquired. 

. Experiments and results 

In this section, we firstly describe the implementation details.

hen we evaluate the proposed eye localization and eye state pre-

iction method and compare it with the stat-of-the-art methods

n two benchmark databases including BioID [33] and GI4E [34] .

o verify the robustness of proposed method, we evaluate it on

he extremely challenging real world driving videos [35] . 

.1. Implementation details 

.1.1. Evaluation database 

We train the cascade regression model using 5274 images,

hich consists of 1690 eye images, 2958 face images from MUCT

36] , 594 images with closed eyes from CEW [23] , and 32 images

ith one eye open and another closed collected from the Internet.

n addition, the training images are augmented by perturbing the

cale, rotation angle, and position of the initial eye shape for learn-

ng. 

One test dataset is GI4E [34] . It contains 1236 images of 103

ubjects with 12 different gaze directions. These images have a

esolution of 800 × 600 in pixel and are representative for the

nes that can be acquired by a normal camera. Another test set

s BioID [33] , which is one of the most widely used database for
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Fig. 2. Samples of synthetic eye. (a) Origninal synthetic left eye with landmark lo- 

cation labels. (b) Synthetic eyes with different illuminations, head pose and gaze, 

various eye shape and textures. 
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Table 1 

Eye localization results on BioID( d eye ≤ 0.05) based on different training 

data. 

Training data Real Synthetic Combination 

d eye ≤ 0 .05 90 .3% 88 .6% 91 .2% 

Table 2 

Eye localization comparison using the normalizaed error measure- 

ment on BioID database. 

Method d eye ≤ 0.05 d eye ≤ 0.1 d eye ≤ 0.25 

Campadelli2009 [38] 80 .7% 93 .2% 99 .3% 

Timm2011 [19] 82 .5% 93 .4% 98 .0% 

Valenti2012 [5] 86 .1% 91 .7% 97 .9% 

Chen2014 [18] 87 .3% 94 .9% 99 .2% 

Araujo2014 [7] 88 .3% 92 .7% 98 .9% 

Chen2015 [10] 88 .8% 95 .2% 99 .0% 

Ours 91 .2 % 99 .4 % 99 .8 % 

Table 3 

Eye state estimation comparison on BioID database. 

Method Accuracy 

Cheng2012 [39] 94 .0% 

Song2014 [23] 97 .1% 

Lin2015 [25] 97 .5% 

Ours 98 .1 % 

4

 

t  

t  

d  

a  

i  

d

4

 

o  

t  

l  

t  

t  

c  

f  

s  

t

 

d  

d  

d  

g  

a

 

e  

r  

d  

c  

Z  

f  

f  

b  

e  

i  

e  
ye center localization. It is also widely used for eye state estima-

ion. The BioID database contains 1521 gray images with a resolu-

ion of 384 × 286. This database is very challenging with complex

ackgrounds, various illuminations, different face sizes and head

oses, and subjects with glasses or closed eyes. To verify robust-

ess of our proposed method, 2220 extreme challenging frames

rom Strategic Highway Research Program (SHRP2) [35] database

re chosen and manually labeled for testing. SHRP2 database con-

ists of 44 driving videos with a resolution of 720 × 480. 

.1.2. Synthetic eye 

We use UnityEyes from [26] to generate 1690 synthetic eye im-

ges with landmark labels for training to boost the performance.

n [26] , the authors adopt image-based lighting and rasterizing

ethod to cover the various illumination conditions. By driving 3D

ye region model from 3D face scans, various eyeball texture and

hapes, iris width and color can be generated. In addition, different

ead poses can be generated by using spherical coordinates and

ointing it towards the eye ball center. More details about Uni-

yEyes can be found in [26] and it is public available. Some syn-

hetic eye images are shown in Fig. 2 . Since it only generates left

ye images, we flip them to train models for right eye detection. 

.1.3. Evaluation criteria 

The maximum normalized error [33] is adopted to evaluate the

erformance of eye center localization. It is defined as follows: 

 eye = 

max (d r , d l ) 

‖ C r − C l ‖ 

(7) 

here d r and d l are the Euclidean distances between the estimated

ight and left eye centers and the ones in the ground truth, and C r 
nd C l are the true centers of the right pupil and left pupil re-

pectively. d eye is normalized by the inter-ocular distance. It mea-

ures the error obtained by the worst of both eye estimation. In

his measure, d eye ≤ 0.25 corresponds to the distance between eye

enter and eye corner, d eye ≤ 0.1 corresponds to the range of iris,

nd d eye ≤ 0.05 corresponds to the range of pupil diameter. 

.1.4. Parameters setting 

The OpenCV implementation of boosted cascade face detector

roposed by Viola and Jones [37] is used for face detection. The

inimal face region is set to 50 × 50 and the largest detected face

s chosen as the final detection result. The false negatives from the

est set are discarded. As a result, the face detection rates on BioID

nd GI4E database are 97.5% and 99.4%, respectively. The number

f iterations for the cascade regression model is set to 4. The nor-

alized eye corner distance is 25 pixels. For binary eye state esti-

ation, the threshold is 0.2. That means when the estimated open-

ess probability is below 0.2, the predicted eye state is to be close.
.2. Experimental results 

To verify the effectiveness of learning-by-synthesis for eye de-

ection, we firstly perform training on 3584 real images, 1690 syn-

hetic images and their combination separately and test on BioID

atabase. As show in Table 1 , training on combination of real data

nd synthetic data improves the performance. The following exper-

ments are based on training on combination of real and synthetic

ata. 

.2.1. Test on BioID 

We further compare the performance of the proposed method

n most widely used BioID database in Table 2 and Fig. 4 with

he state-of-the-art eye localization methods. Since there is little

iterature focusing on both eye localization and eye state estima-

ion, separate comparison with existing methods for eye state es-

imation is listed in Table 3 . The best performance for evaluation

riteria is highlighted in bold. As shown in Tables 2 and 3 , the per-

ormance of our proposed method is significant better than other

tate-of-the-art methods both on eye localization and eye state es-

imation. 

Fig. 3 shows some samples of eye localization and eye state pre-

iction by our proposed method on BioID database, where white

ot represents the manual annotation and red dot denotes the pre-

icted eye location. Even though the eye is closed or subject with

lasses, we can still predict the eye locations by the captured shape

nd contextual information. 

Since our proposed framework for eye localization and state

stimation is totally automatic given the input image, it is more

easonable for real application. Some other experiments are con-

ucted given the face or specific eye region. In this paper, another

omparison experiment with a similar work [14] is conducted.

hou et al. [14] improves the basic SDM [15] by extracting SIFT

eatures at first stage and LBP at the following iterations. In [14] ,

or testing, the authors firstly generate the basic eye bounding box

y annotated landmarks. To fairly compare with our method, we

xtract eye regions by annotated eye outer corners, instead of us-

ng the automatically detected outer eye corners as the previous

xperiment. The results are shown in Table 4 . It shows that our
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Fig. 3. Eye localization and eye openness estimation examples of successes on BioID database. The white dot represents the ground truth and red dot represents estimated 

eye locations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Accuracy curve of eye detection rate of the our method on the BioID 

database, in comparison with other state-of-the-art methods. 

Table 4 

Eye localization comparison results with SDM-based methods. 

Method d eye ≤ 0.05 d eye ≤ 0.1 d eye ≤ 0.25 

Basic-SDM [14] 90 .3% 96 .4% 100 .0% 

CF-MF-SDM [14] 93 .8% 99 .8% 99 .9% 

Ours 95 .1 % 99 .9 % 100 .0 % 

Fig. 5. Eye localization and eye openness estimation examples of successes on GI4E 

database. The white dot represents the ground truth and red dot represents esi- 

mated eye locations. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Table 5 

Eye localization comparison on GI4E database. 

Method d eye ≤ 0.05 d eye ≤ 0.1 d eye ≤ 0.25 

Timm2011 [19] 92 .4% 96 .0% a 97 .5% a 

Villanueva2013 [34] 93 .9% 97 .3% a 98 .5% a 

Ours 94 .2 % 99 .1 % 99 .8% 

a Are estimated from the accuracy curves in corresponding paper [34] . 

 

 

 

 

Fig. 6. Eye detection results at each cascaded iteration on BioID database. Y coor- 

dinate denotes the detection rate with the normalized error less than 0.05. It con- 

verges after fourth iteration. 

Fig. 7. Samples of eye detection and eye state estimation results on extreme chal- 

lenging SHRP2 driving database.The faces of the subjects are partially covered as 

this identity information can not be made public under the terms of a data sharing 

agreement. 
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proposed method performs significantly better than the similar ex-

isting work. 

4.2.2. Test on GI4E 

Experimental results on GI4E database are listed in Table 5 .

We only conduct comparisons of eye detection on GI4E because

all the testing images are with open eyes. Our proposed approach
chieves preferable location results compared with other methods.

s shown in Table 5 , a detection rate of 94.2% can be achieved

hen normalized error is d eye ≤ 0.05. Compared with results in

esting on challenging database BioID, results on GI4E are better

ince the testing images are more clear with smaller range of head

ose and illumination changes. Some qualitative results are shown

n Fig. 5 . It is worth nothing that purely learning-by-synthesis can

erform better on GI4E with more synthetic eyes and using more

andmarks. But it is not robust enough to handle the realistic im-

ges like ones from BioID. 
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Fig. 8. Eye location and eye state estimation examples of failures on testing database. The white dot represents the ground truth and red dot represents estimated eye 

locations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 

Eye localization and state estimation results on SHRP2. 

d eye ≤ 0.1 d eye ≤ 0.25 Eye State Accuracy 

83 .8% 98 .2% 91 .4% 
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.2.3. Test on SHRP2 

To verify the robustness of the proposed method, we evalu-

te it on extremely challenging SHRP2 database with the trained

odel in previous experiments. 2220 driving frames are chosen

rom different videos for our quantitative testing. Some examples

re shown in Fig. 7 . The eye detection and state estimation re-

ult are shown in Table 6 . Normalized error less than 0.05 cor-

esponding to pupil diameter is not calculated since even human

an not accurately annotate the pupil location in such low resolu-

ion images. The public available code from [17] is used to test on

his database which can only achieve 43.1% with normalized error

.1. Experimental result show that the proposed method is robust

nough to deal with these challenging images. 

.2.4. Further analysis 

Since cascade regression converges to different eye locations at

ifferent cascade level, we further investigate the convergence of

ascade regression for eye detection. We take the results of BioID

atabase for example, as shown in Fig. 6 , it converges fast at first

wo iterations and to optimal after 4 iterations. We initialize it

y mean eye locations after coarsely extracted eye regions using

ur landmark detection method and achieve only detection rate of

2.3%. After several cascade regression, we can achieve a detection

ate of 91.2%. 

Some eye detection and state estimation results of failure are

hown in Fig. 8 , where white dot represents the ground truth, red

ot represents the prediction and the digit is the estimated open-

ess probability. To capture the contextual information, we com-

ine features of 5 landmark together as the input of regression

odel to estimate the locations and openness probability. Hence,

he feature of eye corners also have effects on final estimation. As

hown in Fig. 8 , for the first case, it yields inaccurate eye detection

nd eye state estimation under strong highlights on the glasses.

or the second case, we fail to estimate the state of right eye due

o the various appearance of eyelashes. Large head pose also leads

o inaccurate openness estimation as shown in Fig. 8 for the third

ase. In addition, false positive of face detection result in false eye

etection and state estimation like the last case shown in Fig. 8 .

t should be noted that we do not discard these images with false

ositives for face detection during testing. 

We also use the SURF features to capture local appearance and

t achieves 85.9% detection rate on Gi4E database where SIFT fea-

ures can achieve 94.2% with normalized error of 0.05. All experi-

ents are conducted with nonoptimized Matlab codes on a stan-

ard PC, which has an Intel i5 3.47 GHz CPU and 16 GB RAM. 15

rames per second can be achieved by our proposed method, which

llows for near real time eye detection. 
.3. Further discussion and future work 

The experimental results demonstrate that our proposed

ethod can achieve preferable results both on eye detection and

ye state estimation on benchmark databases. Based on the cas-

aded framework, it simultaneously updates the eye location and

ye openness probability at each iteration. By further investigation,

s shown in Table 4 , the performance of proposed frame work is

ensitive to eye region detection since the initialization of 5 key

andmarks is important. It can not converge to the global opti-

ization when the initialization of key points is far away from the

round truth. Actually, if we only train on large number of syn-

hetic data using more eye related landmark and test on clear GI4E

mages, it can get improvement. But it performs much worse on

ioID and SHRP2 database. In addition, it can improve the perfor-

ance by using a good face detector. Further work will focus on

hese problems. 

Due to the effectiveness and efficiency of our proposed method,

t can be widely used for real application like iris detection and

ecognition. Moreover, Our proposed method can be applied for vi-

ual analysis for driver like gaze estimation, monitoring the driver

ttention and calculating PERCLOSE for driver fatigue detection. 

. Conclusions 

In this paper, we propose an effective cascade regression

ethod for simultaneous eye localization and eye state estima-

ion. The binary eye state is mapped to a continuous variable de-

oted by eye openness probability. Both eye center position and

ye openness probability are updated during regression iterations

sing captured shape, appearance, structural and contextual infor-

ation. In addition, eye localization relies less on appearance in-

ormation of pupil with low openness probability. Experimental re-

ults show that our proposed method is significantly better than

ther state-of-the-art methods for both eye localization and eye

tate estimation. 

In the future, we will focus on applying the proposed simul-

aneous eye detection and eye state estimation method to other

pplications, such as eye tracking, gaze estimation and driver fa-

igue monitoring. In addition, we will further improve the method

o robustly deal with large head poses in unconstrained scenarios. 
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