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Abstract—We introduce an immersive system prototype that
integrates face, gesture and speech recognition techniques to
support multi-modal human-computer interaction capability.
Embedded in an indoor room setting, a multi-camera system is
developed to monitor the user facial behavior, body gesture and
spatial location in the room. A server that fuses different sensor
inputs in a time-sensitive manner so that our system knows
who is doing what at where in real-time. When correlating
with speech input, the system can better understand the user
intention for interaction purpose. We evaluate the performance
of core recognition techniques on both benchmark and self-
collected datasets and demonstrate the benefit of the system in
various use cases.

Keywords-human-computer interaction system; multi-modal
sensor fusion

I. INTRODUCTION

Human-scale immersive system provides unique experi-
ence in human-computer interaction by presenting user a
virtual environment vividly. The potential application of
immersive system covers a variety of domains including
education, entertainment, business, health care to name
a few. Existing systems rely heavily on the display and
visualization techniques to realize the immersive experience.
However, the interaction between the system and the user is
often limited to conventional point-and-click or tactile inter-
faces which require the user to actively operate dedicated
equipment. This can be a distraction for immersive expe-
rience. In addition, the system can only passively receive
the command from user and lack cognitive capability to
interact with the user in a proactive manner. There is an
increasing need to integrate natural interaction methods to
the immersive system.

In this work, we developed a system prototype which we
call Cognitive Immersive Room (CIR) that supports multi-
modal interaction without needing to use extra interactive
equipment by leveraging on computer vision techniques. The
use of multiple modalities allows the system to fuse the
recognition results in action, identity, attention and speech
transcription to understand or disambiguate the intention of
the user. This also allows the system to be proactive in at-
tending the user’s need. More importantly, by keeping track
of the spatial and temporal context, our system provides the
foundation for higher level cognitive tasks such as emotion
understanding, social behavior analysis, reasoning, etc.

As a concrete example, CIR has been applied to an educa-
tion application for second language learning e.g. Mandarin.
By letting the students immerse in the environment that
looks like a real Chinese restaurant, we expect them to
absorb the language better through visual context and natural
interaction with the virtual environment [25]. Figure 1 shows
a student pointing at an item displayed on the screen when
she has difficulty speaking out the item by name. The system
can then help with the pronunciation by voice prompt.

Figure 1. Language learning use case in CIR.

In order to support different application scenarios, we
design an architecture that separates generic modules from
application dependent modules, since different use cases
may share the same visual recognition function, natural
language understanding function, output device, etc. We
construct each recognition unit as an independent module
which can be easily added or removed. A dedicated sensor-
fusion module merges the information and supply them as
spatio-temporal context to an application dependent cogni-
tive module, which will then generate output for interaction.
For instance, voice prompt can be generated to remind users
to pay attention by monitoring their head pose and position
change during the event.

Our contributions are as follows. First, we developed a
stack of gesture recognition and face analysis techniques
in the context of human-computer interaction in immersive
environment. Second, we developed an integrated system
that allows fusion of multi-modal inputs to support natural
interaction. Finally, we demonstrate the flexibility of the
system in supporting different use cases.

II. RELATED WORK

Immersive rooms have been used in different applications
for medical training [20], education [23], entertainment
[8] and business purpose. For example, Limniou et al.
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[23] applied the full immersive environment CAVE [15] to
education in chemistry by visualizing 2D and 3D chemical
animations through large screens and headsets. Immersive
environment adds additional advantage to education appli-
cation by providing more information through multimedia
and visualization at human scale. As we recognize this,
we facilitate CIR with large projector screens and audio-
visual output. Early work like [9] provided an example of
immersive interaction by jointly using voice and gesture
commands, where the system can understand ambiguous
commands to the room such as “put that there” and resolve
the words “that” and “there” by recognizing the pointing
gesture of the user. Pentland [26] described a design of
smart room where computer vision is used to recognize
faces and gestures for natural interaction. However, only
component technology is discussed and an integrated system
implementation remain illusive. Bobick et al. [8] built an
immersive environment called KidsRoom which guides the
kids through story-telling and interacts with kids based on
position tracking, action recognition. We share a similar
design objective with KidsRoom in supporting unobstruc-
tive interaction and multiple users. However, we have a
generic design so that the system can be applied to different
use cases. We also have improved multi-modal recognition
which does not heavily rely on contextual information
like story-telling narrative used in KidsRoom. Coen [14]
described an embedded software agent system and techno-
logical architectures to build an intelligent room. However,
they focused on design of monolithic and distributed control
systems and the interaction scheme remained primitive.

In our research, we step away from the conventional point-
and-click interface and variants of it like tactile interfaces
which enable the Windows Icons Menus Pointers (WIMP)
style of interaction. Furthermore, we add cognition to the
room so that it can understand natural human ways of
interaction through verbal and nonverbal cues with minimal
attached hardware. Additionally, we construct the system to
be highly re-configurable so that CIR becomes available to
researchers who have the space and commodity equipment
to set up the system. We also fuse sensor data in a way that
the room adapts to addition or deletion of hardware without
requiring additional programming, giving us the leverage to
scale the sensor-identifiable environment in the room.

III. COGNITIVE IMMERSIVE ROOM

In this section, we first describe the overall set-up of CIR
and then discuss different technologies that we developed for
multi-modal interaction. Finally, we discuss the architecture
and integration of different components.

A. System Overview

Our system is placed in a studio of size 15m×20m. To set
up an immersive environment, we used three large projector
screens to display visual contents. The largest screen is of

size 7.2m × 4.0m and is placed in the center of the room.
Two smaller screens each with size 4.8m×2.7m are placed
on left-hand and right-hand side of the main screen. The
region surrounded by the screens are available for user-
system interaction. Two speakers are placed at the far edges
of the left and right screen. The overall room layout from
top-view is shown in Figure 2.
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Figure 2. Layout of CIR from top-view. Black rectangles are screen. Tips
of triangles are Kinect cameras. Red dot is PTZ camera. Green region is
operational space. (Best view in color)

The sensing devices we utilized in the system include
Kinect cameras, Pan-Tilt-Zoom (PTZ) camera and Lapel
microphones. We place the Kinect cameras underneath the
screen for minimum intrusion to the interaction space. In
order to cover a large area as in our case, multiple cameras
are used. As shown in Figure 2, each shaded triangle region
is the field of view of one Kinect and the tip of triangle is the
location of camera. The region where at least two Kinects
share field of view is called operational space as shown by
the green region in Figure 2. The circle in the middle of the
central screen is the location of PTZ camera. The rotation
and enlarge capability of PTZ camera allows us to zoom in
to view a specific location in the operational space. Lapel
microphone is used by each individual user in the room to
collect audio signals and transcribe the speech. We limit the
activity in operational space, which is of size about 16m2.
The system can be extended to larger coverage area since we
provide an expandable architecture with modular function
design. For content display and voice prompt, one computer
is used to drive all the projectors and speakers. We test the
system with up to 4 users simultaneously.

B. Scene Calibration

By scene calibration, we mean estimating the relative
location and orientation of cameras and screens in the room,
i.e. pose, with respect to a reference coordinate system
(RCS), which we define later. Given the 2D (color images)
and 3D (depth images/skeleton positions) obtained by cam-
eras, we use calibrated pose information of cameras and
screens to estimate the relative spatial relationship between
users and screens. For instance, when a user points at the
screen, we can locate the position being pointed at. We focus
on describing the process of pose estimation of cameras. The
extension to pose estimation of screens is straightforward,
leveraging on the fact that a screen is a flat surface.



Camera calibration has been studied intensively in com-
puter vision community [37], [18], [19], [31]. The two pri-
mary tasks of camera calibration is to estimate the intrinsic
parameters and extrinsic parameters of the camera. Here we
focus on estimating extrinsic parameters namely pose. We
use Zhang’s calibration algorithm [37] to estimate intrinsic
parameters of all color and depth cameras. For the remaining
section, we assume intrinsic parameters are known.

First of all, we need to define the RCS. In our system,
we use the bottom-left corner of the central screen as the
origin of RCS. The ray pointing towards bottom-right corner
is positive x-axis and the ray pointing towards top-left
corner is positive y-axis. The positive z-axis is orthogonal
to xoy plane and the direction follows right-hand system
convention. An illustration is shown in Figure 3. Notice that
the central screen corresponds to a surface on xoy plane.

Figure 3. RCS illustration. Black surface indicates screen. Color coded
arrow indicates axis and its positive direction. Origin of RCS is located at
the bottom-left corner of central screen.

We now discuss the pose estimation of camera with
respect to RCS. The challenge is that the screen is not in
the view of camera due to the placement of camera being
underneath the screen. We address this challenge by using a
second auxiliary camera, which can see the screen. The key
is that we estimate the relative pose between two cameras
and the pose of the second camera with respect to RCS. Then
we can obtain the pose of the first camera with respect to
RCS through simple linear transformation.

We place the second camera in a location where it can see
the screen and has overlapping field of view with the first
camera. First, we establish the relative pose between the
two cameras by calibrating them against the same auxiliary
coordinate system (ACS). In our practice, we use a flat
surface attached with a printed checkboard pattern as xoy
plan of the ACS. The surface is placed in a location visible to
both cameras. Then the pose of the first camera with respect
to the ACS is given by

pc1 = Rb1pb + T b1 (1)

where pc1 = [xc1 , yc1 , zc1 ]T indicates point in the first
camera coordinate and pb = [xb, yb, zb]

T indicates point in
ACS. {Rb1, T b1} can be solved given corresponding image
corner points and their physical size measure by exploiting

the fact that the 3D points are coplanar and the intrinsic
parameters of cameras are known.

Second, by similar process to the first step, we perform
pose estimation of the second camera with respect to the
ACS. The same board of step 1 is used. Furthermore, its
position should remain the same so that ACS is not changed.
Then we obtain {Rb2, T b2}.

Third, by similar process to the first step, we compute the
pose of the second camera with respect to RCS, {Rs2, T s2 }.
In our practice, a checkerboard pattern is projected onto the
central screen with image size measured manually.

Finally, we compute the pose of the first camera with
respect to the RCS using poses obtained in previous three
steps with straightforward matrix manipulation.

Rs1 = Rb1(Rb2)−1Rs2 (2)

T s1 = Rb1(Rb2)−1(T s2 − T b2 ) + T b1 (3)

Now we have obtained the pose of the color camera with
respect to RCS. Notice that we also need to estimate the pose
of depth camera. This can be done by treating the calibrated
color camera as the auxiliary camera and repeat the process
described earlier.

To estimate the pose of the side screen, we can treat
it as another calibration board and project checkerboard
pattern onto it. We use a color camera with known intrinsic
parameters to take pictures of both screens from the same
location. Then we can estimate the pose of camera with
respect to each screen, from which we can estimate the pose
of side screen with respect to central screen. In fact, this
process can be applied to obtain pose of any flat surface.

C. Gesture Recognition

We consider two types of gesture recognition tasks in
our system. The first type is defined by meaningful static
pose. One example of particular interest is pointing gesture,
where user stretches arm and point at a target location.
This is a common way for people referring to an object
with non-verbal language. The second type is defined by
dynamic motion pattern such as waving hands and clapping
hands. The motion pattern can convey rich meaning during
interaction. Here we focus on recognizing pre-defined mo-
tion categories mainly for interaction purpose. Leveraging
on recent progress on depth sensing equipment and real-
time 3D pose estimation technique [30], we develop a
gesture recognition system based on 3D skeleton joints data
collected via Kinect. We now describe each individual step.

1) Data Collection: We utilize Microsoft Kinect SDK to
perform skeleton tracking, which can track up to 6 people
simultaneously and provide 25 skeleton joint positions at the
speed of 30 frames per second. The data is supplied in an
online fashion, our algorithm always use the latest T = 20
frames of data for recognition purpose.



2) Data Preprocessing: The skeleton position provided
by Kinect SDK is specified with respect to camera coordi-
nate system. Given the camera pose estimated in Section
III-B, we convert all the positions into RCS. Then we
normalize the data by subtracting torso position from all
joint positions for spatial invariance. Finally, we scale the
skeleton to have same bone length as a reference skeleton.
This normalization accounts for variation in body size.

3) Feature Extraction: Given the normalized joint posi-
tion, we compute the speed of each joint as the difference
between consecutive frames. Then we concatenate both
position and speed of each joint as motion representation
at each time frame.

4) Recognition:
Pointing Location Estimation: For static pose type of

gesture, we focus on pointing location estimation. We first fit
a line in 3D using position of six joints along the arm pi, i =
1, ..., 6 (shoulder, elbow, wrist, palm, thumb and hand tip).
We can represent a 3D line using a tuple (pm, v) where pm
is a point on the line and v is a vector that is parallel to the
line. It can be shown that when pm = 1/6

∑6
i=1 pi i.e. mean

point and v being the eigenvector of the largest eigenvalue
of the covariance Σ = 1/6

∑6
i=1(pi − pm)(pi − pm)T , the

average Euclidean distance from all points to the line is
minimized. Given the fitted line (pm, v), we compute the
intersection point p of the line with the screen surface s.
Since all the quantities are specified in RCS, the solution
can be found by solving a linear system. Notice that we use
unnormalized data for pointing estimation. Figure 4 shows
the human skeleton and line fitting of a pointing gesture.

Figure 4. Pointing position estimation. The green dots show the line fit
to the arm joints. The black surface is screen with white dot showing the
target location.

Dynamic Pattern Recognition: We treat dynamic mo-
tion recognition as a classification problem and use machine
learning based approach to handle it. We define a set of
gestures that can be used for interaction purpose, including
one-hand swiping left, one-hand swiping right, two hands
open and close, right hand wave and hands clapping. We
collect a dataset including these types of gestures in CIR
from 8 subjects including 4 females and 4 males. Each
subject performed each gesture 4 times. We call this CIR
dataset. We also validate our recognition method on another

publicly available dataset UTD [12] which contains 27
actions performed by 8 subjects. Each subject performed
each action 4 times. We only use the skeleton data in the
dataset and process them in the same way described earlier.

We adopt hidden Markov model (HMM) [28] for classifi-
cation due to its capability to capture variation in dynamics
and efficient inference algorithm exists to support real-time
application. HMM is a probabilistic dynamic model that has
been widely used in modeling time-series data [35], [11],
[13], [27]. We use a generative training process, which fits
one HMM to each action type by maximizing the marginal
loglikelihood of training data from the same action.

θ∗i = arg max
θ

logP (Xij |θ) (4)

where Xij represents the jth sequence of ith class. We
use Gaussian as emission probability distribution since our
observation are continuous-valued. The learning is done
using EM algorithm [7]. For classification, we evaluate the
testing data marginal loglikelihood using each HMM and
decide the class label y as the one with largest value i.e.

y∗ = arg max
i

logP (X|θ∗i ) (5)

D. Face Detection and Facial Landmark Tracking

1) Face Detection: We applied two face detectors. One
is the classic face detector from OpenCV [10], and the
other is the advanced RCNN face detector [29]. OpenCV
face detector works reasonably well and can detect face
at the speed of 10 fps, but fails to detect under large
poses (> 45◦). On the other hand, RCNN face detector
works much more robustly under large head poses (even
90 degrees). However, RCNN is relatively slow due to the
deep architecture (2.5 fps), which does not meet our real-
time processing requirement. We therefore propose to query
RCNN face detector when OpenCV face detector fails, this
meets our efficiency requirement and also improves the
detection rate.

2) Facial Landmarks Detection: We adopt the cascade
regression framework ([34], [33]) to detect the facial land-
marks. Denote pτ = {pτi }Ni=1 as the 2D positions of N facial
landmarks on the face for the τ th iteration. The cascade
framework iteratively estimates the position update ∆pτ of
the landmarks in a coarse-to-fine manner:

∆pτ = f(I,pτ−1)wτ + bτ (6)

where I is the face image and f(·) is a local feature extractor.
The idea is that by extracting local features around landmark
positions from last iteration, we can learn a regression
function to map the features to the position update. The
regression parameters {wτ ,bτ}Tτ=1 need to be learned for
the T cascade phases. The algorithm starts by using mean
landmark positions p0 as initialization, and keep using (6)
to estimate position update until convergence.
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Figure 5. PTZ camera configuration.

E. Face Recognition

1) Data Collection: The user face is captured by a PTZ
camera, which can cover a large area so that users can enter
the room from different positions. As shown in Figure 5,
when a person enters the room at position [x, y, z], the
PTZ camera needs to pan and tilt to a proper position so
that we can capture a near-frontal face around the view
center. To achieve that, we first compute the pan angle
(φ = arctan(x/z)) and tilt angle (γ = arctan(y/z)).

Since our PTZ camera can only be controlled with com-
mand like “pan to the left”, “tilt to up”, “stop”, etc., we
need to compute the time of executing each command with
the information of pan/tilt speed (degree/second). After that,
the person appears around the center of the camera view.
Next we need to zoom the camera to capture a face with
enough resolution. We first compute the distance between
subject and camera d =

√
x2 + y2 + z2, and the zoom time

is proportional to the distance. The proportion is calculated
offline to ensure face images are larger than 150×150 pixels.

2) Feature Extraction: From face image, we extract five
different features: EigenFace [32], FisherFace [6], LBP [4],
HoG [16] and SIFT [24].

3) Classification: We use 1-Nearest-Neighbor (1-NN)
classifier [5] for its simplicity and efficiency given a moder-
ate number of users we have. Specifically, five 1-NNs clas-
sifiers are constructed correspond to the five features. Each
1-NN will output the prediction and the confidence score
(distance in feature space). If the distance is smaller than
an empirical threshold, we accept the prediction otherwise
discard the prediction. All predictions from five 1-NNs are
fused by majority vote to produce the final prediction.

F. Head Pose Estimation

Figure 6. Head pose and the Focus of Attention (FoA).

Head pose can be used to indicate focus of attention.
Given the tracked N facial landmarks, we can estimate the
head rotation and translation {R, T} with the help of a
deformable 3D face model (DFM). The N facial landmarks
in 3D space p ∈ R3N×1 can be uniquely represented by the
DFM:

p = p̄ +

K∑
k=1

dkbk (7)

where DFM consists of p̄ and {bk}Kk=1, representing mean
positions and a series of basis positions. From camera
projection model, we know that:

λW (Rpi + T ) = p2D,∀i = 1, ..., N (8)

where pi is the ith landmark in p. The unknown coefficients
α and the head pose {R, T} can be solved alternately with
proper initializations. The head rotation R is an orthonormal
matrix and has 3 degrees of freedom, we can transform it to
three angles pitch = α1, yaw = β1 and roll = ψ1. Next we
need to covert the angles to a unit vector v in RCS. Note that
current head pose is relative to the moved camera position
(See Figure 5), we need to get the angles relative to the
default camera position by adding the pan and tilt angles:
α = α1 + γ, β = β1 + φ and ψ = ψ1. The unit vector can
then be computed as: [cos(α) sin(β), cos(α) cos(β), sin(α)].
Finally as shown in Figure 6, we can intersect v with the
screen and obtain the location of Focus of Attention (FoA).

G. Speech Recognition

We use two services provided by IBM Bluemix [1], a
cloud-based platform for speech recognition. First, a tran-
scription service listens to the microphones and sends the
audio buffer to the cloud which then sends us back the
text. Second, we send the transcribed text to a conversation
service that first maps the text to a pre-defined set of intents
and then generates proper response based on the identified
intents. For instance, a user could say “hello” or some
variation of it and the conversation service will map the
intent as “greeting”. This allows flexibility in terms of what
users can say in conveying their intent to the system.

H. System Integration

An integrated system takes raw visual and audio signals as
input and generate proper response to interact with user. The
interaction can be both passive and active. To achieve this
goal, we design an architecture that supports: a) bottom-up
fusion metadata of different sensory modules; b) top-down
query of sensory modules for specific recognition request;
c) encapsulation of recognition functionalities to use case
dependent executor.



1) Architecture: The overall system architecture can be
summarized by a three-layer hierarchy. At the bottom level,
each visual sensory device used in the CIR is attached to
a computer that processes the raw sensor data and perform
recognition, resulting metadata such as user location, ges-
ture label, face identity etc. The recognition modules are
independent of each other, where the information fusion is
handled at a higher level. Such modularization design allows
additional devices to be added easily without affecting the
overall system. At the middle level, a dedicate context
server is used to fuse metadata submitted by bottom level.
Specifically, it merges the positions and gestures of multiple
Kinects to represent the same user. It correlates speech
collected from microphones, face identity with user position.
It logs relevant information (e.g. user IDs) with events (e.g.
user A pointed at user B at time t). It will also send queries to
bottom level for probing specific information. For instance,
to recognize a user at a specific location, context server will
send the location in a request to the face recognition module
which will then drive PTZ camera to perform recognition
as described in Section III-E. At the top level, application
executors use information provided by the context server
to add a higher level of understanding about the users, as
well as adjusting the visual and audio output. For example,
displaying an avatar on screen following a user in the room
and pan the avatar’s speech with it.

2) Communication: The computers are attached to a
network via Ethernet cables, where each sensor computer
sits close to the sensor they process. The computer hosting
the context server may be placed anywhere within reach of
the network. For ease-of-use on a network with Dynamic
Host Configuration Protocol (DHCP), the context server
broadcasts the IP address of the machine it is hosted on
over a User Datagram Protocol (UDP) multicast port. The
IP address and port of the multicast is stored on each sensor
machine. With a known IP address, each sensor machine will
register itself with the context server, describing the sensor
it has attached as well as the type of processing the machine
can do on those sensor. We use RabbitMQ [2] for this in
our architecture. The context server stores these information
and provides a port and any other necessary information for
the sensor machine to stream data to the context server. In
our case, the technology to stream data is ZeroMQ [3]. We
chose ZeroMQ for it’s low latency and high throughput.

IV. EVALUATION

To demonstrate the merit of CIR, we first perform a
quantitative evaluation on the core techniques. Then we
describe several use cases that have been deployed in CIR.

A. Technology Evaluation

1) Gesture Recognition: We first show the evaluation
on pointing position estimation. We project 13 evenly dis-
tributed landmarks onto the screen and ask a subject to

point at each landmarks for 2 seconds. We use the collected
data during 2 seconds to estimate average pointing position
with and without using estimated pose of camera. Then
we compute the horizontal and vertical deviation between
estimated pointing position versus actual landmark position.
The results in Table I clearly showed the necessity of scene
calibration. With the results we have, we can achieve a
pointing resolution of 54×42 grids for central screen which
is of size 7.2m× 4m.

Table I
AVERAGE DEVIATION OF ESTIMATED POINTING POSITION TO

ACTUAL POSITION OVER 13 LANDMARKS IN RCS.

Condition Without calibration With calibration
Horizontal (meter) 0.690±0.138 0.133±0.139

Vertical (meter) 0.391±0.120 0.095±0.122

Next, we show the offline classification results of dynamic
motion pattern on both CIR dataset and UTD dataset, where
we compare with baseline linear SVM [17] and state-of-the-
art method SNV [36]. We decide the number of hidden states
for HMM by cross-validation on training data. As shown in
Table II, HMM shows better performance than SVM even
for more challenging UTD dataset. Although SNV achieves
better accuracy than HMM, it cannot be applied in real time
(≥ 15 fps) due to time-consuming feature extraction process.

Table II
CLASSIFICATION ACCURACY ON DIFFERENT DATASETS.

Dataset # of Action SVM HMM SNV[36]
CIR 6 90.6% 91.2% 99.0%
UTD 27 87.0% 89.5% 90.9%

Real-time Yes Yes No

2) Face Recognition: We test the face recognition al-
gorithm on 10 subjects. Each subject has 300 images for
training and 700 images for testing. The face recognition
results are shown in Table III. Notice if we use only
one classifier with one of the features, we cannot achieve
good performance. By combining multiple simple classifiers
with a decision-level fusion, we can significantly boost the
performance. Furthermore, the classifier is more suitable for
applications without large amount of training data.

Table III
FACE RECOGNITION ACCURACY WITH DIFFERENT FEATURES

Features Eigen Fisher LBP HoG SIFT All
Accuracy 81.7% 84.1% 89.3% 86.5% 91.2% 97.2%

Table IV
POSE ESTIMATION ERROR ON BENCHMARK DATASETS

Dataset / Angle Pitch Yaw Row Average
CAS-PEAL [21] 4.2 3.1 2.2 3.2
Multi-Pie [22] 5.4 3.3 1.9 3.5

3) Head Pose Estimation: We first evaluate the pose
angle estimation accuracy on two benchmark datasets: CAS-
PEAL [21] and Multi-Pie [22]. The results are shown in



Table IV. We can achieve good accuracy on both datasets,
with an average error around 3.5 degrees. The small error
is suffice to estimate the FoA accurately on large displays.

Next we evaluate the FoA estimation accuracy as shown in
Table V. The experimental settings are similar to the pointing
estimation (See Table I and related descriptions). Notice the
algorithm does not require any personal calibration. Given
the accuracy, we are able to divide the big screen (7.2m×
4m) to 15× 10 grids, and the algorithm can tell which grid
the subject is focusing on purely from a color image.

Table V
AVERAGE DEVIATION OF ESTIMATED FOA TO ACTUAL FOA
OVER 16 UNIFORM DISTRIBUTED POINTS ON THE SCREEN.

Direction Horizontal (meter) Vertical (meter)
Error 0.520±0.173 0.411±0.132

B. System Evaluation by Use Case

1) Language Learning: We performed a user study in-
volving 16 students (8 males and 8 females) learning
Mandarin in the CIR environment. The students have age
between 18-22 with different first languages including En-
glish, Spanish, Cantonese and Taishanese. We simulate a
Chinese restaurant environment to immerse the learning in
a real-life conversations scenario. The system will guide the
students through voice prompt to complete a food ordering
process using Mandarin, where the food are displayed on
the screen as pictorial menu items with Hanzi and Pinyin.
Students can interact with the system and get help with
language learning through speech, gesture and head pose. A
survey is conducted after the learning session with questions
about the immersiveness, interaction, helpfulness of the
system. Overall, the vast majority of students found the
system provide realistic experience for language learning.
For specific interactions we found that 1) all students liked
the function that using gesture to point to menu items; 2)
13 out of 16 students liked the function that combining
pointing gesture with speech to ask questions like “How do
I say this?” (in either English or Mandarin) to get specific
help about the item. We also asked students to evaluate the
helpfulness of the system and compare it with real-world
situation as shown in Table VI. We found that the scores
are close, which demonstrate the immersive multi-modal
interaction is helpful enough as we expect them to be in
real-world situation.

Table VI
AVERAGE HELPFULNESS SCORE. ON A SCALE OF 1-5, 5 BEING

VERY HELPFUL AND 1 BEING VERY UNHELPFUL.

Function CIR Real-world
Pointing to the items 4.4 4.5

Switching languages with speech 3.8 4.3
Combine gesturing and speech 3.8 4.1

2) Meeting Assistance: One application scenario of CIR
is to provide assistance in group meeting. In a particular
use case called Mergers and Acquisitions (M&A), CIR
supports a group of users to discuss and make decision on
mergers and acquisitions of companies through exploration
of financial data related to the companies. The system can
keep track of the location and head pose of each user,
recognize gesture and speech throughout the meeting. For
example, through speech, user can have the system open
the website of a company, visualize a relationship graph
of multiple companies in the dataset, pull up maps, etc.
Users can point to the graph to highlight company. Users
can also use two-hand open or close gesture to zoom-in or
zoom-out the maps. The system can identify attention of the
users through head pose consensus and remind individual
user through voice prompt, whose head pose does not
agree with the consensus. In addition, the system can list
selected companies in a decision-table that allows itemized
comparison, where users can use speech to alternate the table
contents.

Person 
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registers user
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Name

Figure 7. Flowchart of registration process.

3) User Registration: Another use case is to register user
who visits CIR. The overall registration process is illustrated
in Figure 7. When a user enters the operational space, the
person tracking module starts to track the user’s position in
the room and the registration process is triggered with voice
prompt saying “Welcome to the immersive room, can you
wave to the screen and introduce yourself?” Suppose the
user responds by waving hand and speaking out name, our
gesture recognition module and speech recognition module
will recognize the gesture and keywords regarding user’s
response and send to the context server. Once receiving
the name and gesture, the context server will associate the
microphone ID with the person ID during the visit of the
user. In addition, context worker will send a request of
identity verification to the face module together with the
user’s current position in RCS. After receiving the request,
the face recognition module triggers the PTZ camera to point
at the user and take a clear face picture. Face recognition
algorithm then identifies the user and send back the ID



to context worker. The context work will verify if the ID
matches the name provided by the user and complete the
registration.

V. CONCLUSION AND FUTURE WORK

We developed an immersive system called CIR which
supports natural human-computer interaction and primitive
cognitive task. To realize the immersive experience, besides
using a human-scale multimedia environment, we leverages
on gesture, face and speech recognition techniques to enable
a multi-modal interaction between users and system. By
fusing information obtained from different modalities, the
system can better understand the user’s need and discern
false information. We demonstrate in several use cases where
our system can facilitate the need of users participating the
events in CIR. We plan to do more user studies in the future
for an in-depth evaluation. The development of CIR also
provides a unique platform for several research directions in
the future. We are interested in analyzing group behavior and
emotion recognition through multi-user fine-grained gesture
and facial expression recognition. We are also interested in
developing higher level cognition capability such as moni-
toring the progress and detect agreement of group meeting.
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