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Abstract

The existing eye trackers typically require an explicit personal cal-
ibration procedure to estimate subject-dependent eye parameters.
Despite efforts in simplifying the calibration process, such a cali-
bration process remains unnatural and bothersome, in particular for
users of personal and mobile devices. To alleviate this problem, we
introduce a technique that can eliminate explicit personal calibra-
tion. Based on combining a new calibration procedure with the eye
fixation prediction, the proposed method performs implicit person-
al calibration without active participation or even knowledge of the
user. Specifically, different from traditional deterministic calibra-
tion procedure that minimizes the differences between the predicted
eye gazes and the actual eye gazes, we introduce a stochastic cali-
bration procedure that minimizes the differences between the prob-
ability distribution of the predicted eye gaze and the distribution of
the actual eye gaze. Furthermore, instead of using saliency map to
approximate eye fixation distribution, we propose to use a regres-
sion based deep convolutional neural network (RCNN) that specif-
ically learns image features to predict eye fixation. By combining
the distribution based calibration with the deep fixation prediction
procedure, personal eye parameters can be estimated without ex-
plicit user collaboration. We apply the proposed method to both 2D
regression-based and 3D model-based eye gaze tracking methods.
Experimental results show that the proposed method outperforms
other implicit calibration methods and achieve comparable results
to those that use traditional explicit calibration methods.
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1 Introduction

Humans explore outside world mainly through eye. Eye gaze there-
fore serves an important role in this process. Gaze estimation is
to predict eye gaze, mainly point-of-regard in the space or the vi-
sual axis. A typical application for eye gaze tracking is Human-
Computer-Interaction (HCI). For instance, eye gaze can replace tra-
ditional input (mouse pointer) to control the computer, or serve as
an additional input in games to improve user experience. Besides, s-
ince eye gaze reflects human attention, cognitive scientists use gaze
tracking systems to study human’s cognitive processes [Mason et al.
2004]. Other applications include marketing, advertising, medical
research, etc.
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Eye gaze tracking technologies can be divided into feature-based
and appearance-based approach. Feature-based methods typically
rely on specific eye features like pupil and cornea reflection (glint).
Feature-based approach can be further divided into 2D regression-
based approach and 3D model-based approach. The 2D regression-
based methods [Morimoto and Mimica 2005; Zhu and Ji 2004; Zhu
et al. 2006] implicitly estimate gaze point on the display surface
by mapping the vector that connects image position of the pupil
with that of the cornea reflection to a gaze position on the display
surface. The approach is simple but it typically does not allow much
head movement. The 3D model-based approaches [Beymer and
Flickner 2003; Chen et al. 2008; Guestrin and Eizenman 2008; Shih
and Liu 2004; Guestrin and Eizenman 2006], on the other hand,
directly estimate visual axis from the eye features in the image. It
firstly builds a 3D geometric eye model and then estimates 3D eye
features (pupil center, cornea center, etc.). Based on eye model and
eye features, it computes the 3D gaze direction (optical axis, visual
axis). Model-based method is known for its accuracy and ability to
handle free head movement. But it is complex in calibration and
requires a complex setup including multiple cameras or multiple IR
lights. The appearance-based methods [Lu et al. 2011; Tan et al.
2002; Williams et al. 2006] perform eye gaze estimation based on
the eye appearance without explicit detection of any eye features.
The key idea is that similar eye appearance results in similar gaze
position, based on which it constructs a regression function that
maps the eye appearance to gaze position on the display surface.
Compared to the feature-based method, appearance-based method
does not need IR illumination. But it cannot effectively handle head
pose movement and illumination variation. For a comprehensive
review of existing eye gaze tracking methods, readers should refer
to [Hansen and Ji 2010].

All these methods require to perform personal calibration to esti-
mate the personal eye parameters. Calibration process is usually
cumbersome, unnatural and degrades user experience. In this pa-
per, we propose a method that combines a new calibration method
with the eye fixation map learnt from deep learning model. Called
distribution based calibration, the proposed method performs cal-
ibration by minimizing the distribution differences between a tar-
get gaze distribution and the estimated gaze distribution. It avoids
constructing the explicit correspondences between the groundtruth
gazes and the estimated gazes. To obtain a good estimate of the fix-
ation distribution on a query image, we propose to use a regression
based deep convolutional neural network (RCNN) to learn image
features that are specifically used to predict eye fixations. To differ
from latter fixation map/distribution predicted from eye gaze esti-
mation method, the fixation map predicted by learned image fea-
tures is denoted as deep fixation map/distribution. By combining
the top-down eye fixation prediction with bottom up gaze estima-
tion through the proposed distribution based calibration procedure,
we introduce a new method that enables the existing eye tracking
methods to perform eye gaze tracking without explicit personal cal-
ibration.

Compared to the existing work, the proposed work makes the fol-
lowing novel contributions:

e introduce a unified framework for feature learning and regres-
sion in a deep convolutional style for patch based fixation de-
tection.



e introduce a distribution based calibration that does not re-
quire knowledge of the groundtruth gazes and their correspon-
dences with the estimated gazes.

e introduce a method to combine the distribution based calibra-
tion with the deep fixation map to perform implicit eye per-
sonal calibration and apply the method to two main approach-
es for eye gaze tracking.

2 Related Work

2.1 Eye gaze tracking

Eliminating or reducing personal calibration is an active area of re-
search. Much work has been done in this area. For model-based
eye gaze tracking, Chen er al. [2008] proposed a system with two
cameras and two IR lights. Their system starts with the reconstruc-
tion of the optical axis. Visual axis is then computed by adding the
constant angle to the optical axis. However, the system requires a
4-point calibration to estimate the constant angle. Guestrin et al.
[2008] introduced a two cameras and four IR lights system. By us-
ing two cameras instead of one camera, their method only requires
a 1-point personal calibration. Model and Eizenman [2010] pro-
posed to automatically estimate eye parameters using both eyes by
exploiting the binocular constraint. The underlying assumption is
the visual axis of both eyes ideally intersect at the same gaze posi-
tion on the display surface. However, the proposed method is sen-
sitive to noise and thus requires that the PoRs span a wide range of
gaze directions (e.g., looking at larger areas of the display surface).
Therefore the proposed system cannot produce accurate results with
ordinary displays. Maio er al. [2011] proposed to alleviate the noise
problem by introducing additional generic person-independent con-
straints to the binocular-based gaze estimation framework. Chen
[2011] proposed an implicit calibration method with saliency map.
They build a Bayesian network to represent the probabilistic rela-
tionship among optical axis, visual axis and eye parameters. Salien-
cy map served as gaze prior in the probabilistic model. Eye parame-
ters estimation is formulated as an inference problem by computing
the gaze posterior given the image and the optical axis. They fur-
ther proposed a dynamic bayesian network to on-line incrementally
update the eye parameters. However, their saliency map is from
shallow bottom-up estimation. It is difficult for such saliency maps
to capture semantic information that attracts more human attention.
Thus the saliency map may not well represent human fixation. Later
Chen [2014] extended their method which can work with Gaussian
distribution. However, the method requires large amount of frames
so that the gaze points distribution can be approximated as Gaussian
distribution.

For appearance based eye gaze tracking, Sugano et al. [2007] pro-
posed an implicit calibration method relying on mouse clicks. Their
method assumes that when subjects click the mouse, they would un-
consciously look at the cursor. Therefore they can implicitly collect
the gaze positions when mouse click happens. Later, Sugano et al.
[2013] introduced a visual saliency based gaze estimation method
without explicit personal calibration. Their system extracts eye im-
age and saliency map pair simultaneously while subjects watch a
video clip. Saliency maps with similar eye appearance are aggregat-
ed to produce a probability map with a vivid peak around the gaze
point. A Gaussian process regression is then built upon the proba-
bility maps and the eye images. Gaze estimation for a new eye im-
age can be performed using parameters learned from the regression
model. Like Chen’s [2011] method, their saliency maps are from
shallow bottom-up estimation which may not correlate well with
human fixation. Alnajar ef al. [2013] proposed a calibration-free
gaze estimation method with the help of human gaze pattern. They
assume that different subjects tend to have similar gaze patterns on
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the same stimuli. Therefore, model parameters for a new subject
can be effectively estimated by mapping his/her initial gaze pattern
to the off-line collected gaze patterns from other subjects. Howev-
er, the underlying assumption remains too strong and unrealistic.
Different types, content of the stimuli may results in different gaze
patterns for different subjects, therefore the proposed method may
be limited in real world applications. Besides, compared to model-
based methods, appearance-based methods cannot handle free head
movement well and thus cannot produce accurate gaze estimation.

2.2 Saliency and fixation estimation

Visual attention is a general procedure about the idea of a selection
mechanism and a notation of relevance, which can be data-driven
bottom-up or top-down depending on expectation or identification
of objects. The foundation of most attention models is the Feature
Integration Theory by [Treisman and Gelade 1980], which concen-
trates on the categories of visual features and the way they are com-
bined. Based on this concept, the saliency is well investigated in
the context of bottom-up computations [Itti et al. 1998; Harel et al.
2006b]. These works use low-level features such as intensity, color
contrast and orientation to generate models for saliency map predic-
tion. But saliency models based on low level features has shown its
limitation to capture semantic information. Recently, some works
start focusing on predicting the eye fixation. They borrow the ideas
in saliency detection and apply it to eye tracking data, resulting a
new research area: fixation detection. Kienzle et al. [2009] and
Judd et al.[2009] trained a linear SVM directly from the human eye
tracking data. The former one used the low-level features to gen-
erate the fixation map while the latter used a combination of low,
middle and high level features and achieved a good performance. In
addition, Judd et al.[2009] employed the face and human detectors
as the high level features, which can bridge the semantic gap.

Recently, much work has been done on designing good features
for fixation detection. Most of them are based on hand-crafted low
level image features which are not specifically developed to char-
acterize eye gazes. The ability of predicting eye fixations are hence
limited. To address this issue, recent works leverage on deep learn-
ing’s powerful learning and representation capability to learn im-
age features that correlate well with eye fixations, like objects, hu-
man/faces, contexts, etc. Among them, [Lin et al. 2014; Shen and
Zhao 2014; Vig et al. 2014] train a convolutional neural network (C-
NN) directly from eye tracking data to image features to predict eye
fixation. Different convolutional layers are treated independently in
their network. In [Kiimmerer et al. 2014], the authors also rely on
the eye tracking data, but use the pre-trained Alex Net [Krizhevsky
et al. 2012] as starting point and fine-tune the network by maxi-
mizing the log-likelihood of the point process. All of these CNN
based methods except for [Krizhevsky et al. 2012] formulate the
fixation detection as a supervised patch classification problem and
describe the fixation value with binary label. This kind of fixation
description ignores the probabilistic nature of the fixation and the
uncertainties associated with each fixation. Besides, all the above
methods employ center prior (a strong bias for human fixations to
be near the center of the image) through post-processing but can-
not integrate center prior during the feature learning process. In
this paper, we propose to extend traditional classification based C-
NN to regression based to treat the fixation value as a continuous
probability value. Furthermore, we directly integrate center prior as
regularization term during the feature learning process.

3 Eye Fixation Map Estimation using RCNN

In this section, we introduce the Regression Convolutional Neu-
ral Networks (RCNN) to learn center-biased fixation-discriminative
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Figure 1: The architecture of RCNN. The blue blocks represent the
convolutional layer. The orange blocks represent the polling layer.
The yellow blocks represent the non-linear gating layer. The green
blocks represent the local response normalization layer. The purple
block represents the dropout layer and the grey block represents the
loss function.

feature for eye fixation prediction. Fixation prediction is usual-
ly formulated as a classification problem with a specified feature
representation of the image region X and a function f(X; W) us-
ing learned parameters W to map X to a binary fixation value
y € {0,1}. As discussed in the last section, this kind of fixation
description is not informative for gaze prediction. It ignores the
uncertainty in gaze fixations. To overcome its limitation, we con-
sider the fixation value as a probability in a soft way and use linear
regression to estimate it.

To capture semantic representation, we integrate the CNN and lin-
ear regression into a unified framework. To mimick the structure
of ventral stream in visual cortex, we build the network in a deep
style. The architecture of the proposed RCNN is illustrated in Fig-
ure 1. It consists of two stages: convolutional stage and full con-
nection stage. Convolutional stage includes 3 convolutional blocks.
A basic convolutional block consists of a linear convolution layer,
a nonlinear gating layer, a spatial pooling layer and a local feature
normalization layer. The full connection stage contains fully con-
nected layer followed by dropout layer. The input of the network is
an image patch X € R'00%100%3 Considering the whole network
as a function and W as all network parameters, the output of the
network y = f(X; W),y € R) represents the probability of the
corresponding patch being a fixation patch. In addition, we propose
to incorporate center prior to the learning framework instead of ap-
plying center prior at post-processing stage. Besides minimizing
the distance between predicted fixation probability and groundtruth
fixation probability, we add a regularization term to incorporate the
center prior. Therefore the loss function is defined as:

1 vo ro
L=33g i§:1[<f(xi;W) =)+ A (X W) — ™))
rob __ 1 _l L Ts—1 P
py™” = W= exp(—g (xi — p) B (xi — p)) (1

where 7 represents the ith patch and N represents the total number

of patches. f(X;; W) and y” " represent respectively the predict-
ed and ground truth fixation probabilities. y”"*” is obtained by ap-
plying softmax function to the groundtruth fixation map built from
eye tracking data. Center prior is approximated by a Gaussian dis-
tribution AV (, ). w is set to the coordinates of image center and
3 is empirically determined. x; represents the center coordinates
of patch ¢ in the whole image. A is the parameter to balance the first

term and second term.

The training process of RCNN network consists of two stages, pre-
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diction and updating. During prediction stage, we feed forward the
network and obtain the predicted fixation probability of the input
patch. Given an image patch, the convolutional stage with three
convolutional blocks is first performed. In a convolutional block,
the input is first convolved with a filter bank and results in a fea-
ture map. The resulted feature map is then gated by a nonlinear
function, which introduces the non-linearity. In this step, sigmoid,
hyperbolic tangent, rectified linear unit or its variation are usually
used as the nonlinear gating functions. After that the gated feature
map is down-sampled into a more compact representation, which
introduces translation invariance, noise robustness and improved
generalization. Spatial pooling is used for down-sampling in the
process. It captures local information of each pixel location by
integrating the response from nearby locations. Common spatial
pooling includes max, average and min operations. After convolu-
tional stage, two full connection layers are applied to project feature
map to the probability space. The dropout is implemented to pre-
vent over-fitting between these two layers. During updating stage,
the network parameters (weight and bias) are updated across layers
by loss back-propagation. During the back-propagation, the net-
work parameters are updated layer by layer by stochastic gradient
decent.

To generate the fixation map of a new image, candidate image
patches are extracted sequentially, then their fixation probabilities
are computed through the proposed RCNN framework.

4 Distribution-based Calibration

Traditional calibration procedure typically includes a set of training
data {g;, 9:(0)}, i=1,2,..,N, where g; is a groundtruth gaze point
and ¢; is the corresponding estimated gaze point. Gaze calibration
involves estimating the calibration parameters 6 by minimizing the
total prediction errors, i.e.,

N
0" = arg mein ;(gz - 3:(0))* @

It is clear that traditional gaze calibration requires the knowledge of
groundtruth eye gaze points as well as the correspondences between
the groundtruth and estimated gaze points. This means tradition-
al calibration requires explicit collaboration from the user. To re-
move the explicit collaboration, we introduce a stochastic approach
that estimates the eye parameters by minimizing the distribution-
s of eye gazes. For an input image I, let py(x,y|I) represent the
deep fixation distribution estimated by RCNN and pg (z, y|1, 0) be
the estimated gaze distribution from gaze estimation on the same
image. The goal of distribution based calibration is to find the
parameters 6 to minimize the differences between py(x, y|I) and
pg(z,y|I,0). Mathematically, this can be formulated as minimiza-
tion of the Kullback-Leibler (KL) divergence [Kullback and Leibler
1951]:

0" = argmin Dic1.(py (=, y|1)||pg (=, |1, 0)) €

KL divergence between two distributions p(x, y) and g(x, y) is de-
fined as:

Dxr(p(z,y)llq(x,v))

=> plx,y) log(2L2:4

~

)

~—

q(x,y

= p(x,y)log(p(x,y)) — > _ p(z,y) log(g(x,y)) (4

z,y z,y



In practice, we use the symmetric divergence in order to make it a
real metric. Thus we solve the following optimization problem:

0" = argminDrcr.(py (x, y| 1)y (x, y|1, 0))
+Drr(pg(2,y|1,0)llps (2, y[1)) ®)

The optimization problem is solved through gradient-based
interior-point algorithm.

5 Eye Gaze Estimation

For this research, we propose to apply the proposed deep eye fixa-
tion map and distribution based calibration to both 2D regression-
based and 3D model-based eye gaze estimation methods. Below
we briefly summarize each method and identify the parameters to
estimate.

5.1 2D Regression-based eye gaze estimation

5.1.1 Regression-based eye gaze estimation
Regression-based methods learn a mapping between 2D feature
vectors and gaze positions on the display surface. Standard fea-
tures are the pupil glint vector (6, dy) in image coordinates. Dur-
ing training, we collect a set of training data {(dx;, dy,), (x:,v:)},
i=1,2,..,N, where (dz;,dy;) is a feature vector, and (z;,y;) is the
x and y coordinate of corresponding gaze positions on the display
surface. We then learn a linear regression between them:

T = az0w; + bp0y; + Cy
Yi = aydx; + bydy; + ¢y

(6)
(@)

where 0 = (az, bz, Ce, ay, by, cy) are the calibration parameters.
After obtaining the calibration parameters, we can map any testing
feature vector to its gaze position.

5.1.2 Implicit calibration for the regression method

For implicit calibration, we do not know the exact gaze position-
s. Instead we only have a set of pupil-glint vectors {dx;, 0y, },
i=1,2,..,N, plus the deep eye fixation map pys(x,y|l). Our goal
is to learn the calibration parameters 6 through the proposed dis-
tribution based calibration method. We start with the estima-
tion of py(x,y|l,0). Mixtures of Gaussian are used to model
pg(z,y|I,0), where each mixture is centered at each estimated
gaze position:

(z,y|I,0) ([zi, 9i], ) 3

SN

where gaze position x; and y; are obtained by Eqn. 6 and 7, X rep-
resents the variance of the Gaussian mixture and it is determined
empirically. w; represents the uncertainty/importance of each gaze
point. Thus we set w; of gaze point ¢ according to its distance to
image center to incorporate the center prior. Plugging deep eye fix-
ation map py(x, y|I) and estimated eye fixation map py(z, y|I, 0)
into Eqn. 5, we can then solve the optimization problem to obtain
the calibration parameters 6 implicitly without any user collabora-
tion.

5.2 3D model eye gaze estimation
5.2.1 Model-based eye gaze estimation

3D model-based method is based on the 3D geometric eye model as
shown in Figure 2. Optical axis is defined as the line that connects
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Figure 2: 3D eye model.

the cornea center and pupil center. However, the real gaze direction
is determined by the visual axis, which passes through cornea center
and fovea. PoR is defined as the intersection of visual axis and
the display surface. Optical axis and the corresponding visual axis
differ by fixed angle kappa. We use 6 = («, 3) to express the angle
difference between optical and visual axis. € is a constant vector
for each person. Personal calibration for the model-based methods
amounts to estimate ¢ for each person.

Typical 3D model-based systems involve multiple cameras and IR
lights as described in [Guestrin and Eizenman 2006]. The system
allows to obtain the 3D coordinates of cornea center ¢ and pupil
center p, from which we can estimate the 3D optical axis v,:

(C)]

V, is a unit length vector and thus can be expressed as two angles
¢ and ~:

Vo= (p—c)/llp—cl

cos(9) sin(y)
sin(g)
— cos(@) cos(7)

10)

Vo =

Visual axis v4 can be computed by adding 6 = («, 3) to optical
axis:

cos(¢ + a) sin(y + )
sin(¢ + «)
— cos(@ + ) cos(y + )

vy =g(vo; ) = (1)

where g(-) is the function to compute visual axis from optical axis
by adding the constant angle 6. To estimate calibration parame-
ters 6 = [a, ], subjects are asked to look at pre-defined points
(PoR) on the display surface. We can collect a set of training data
{ci, Pi, &}, i=1,2,..,N, where c¢; is the 3D coordinates of cornea,
p: is the 3D coordinates of pupil and g; is the 3D coordinates of
PoR. From which we can obtain /N optical and visual axis:

Voi = (pi — ¢i)/l[pi — cill (12)

voi = (8 —¢i)/|lgi —cil| (13)
Finally, € can be estimated by
N

Z (Voi, Vgi) (14)



5.2.2 Implicit calibration for model-based method

For the implicit calibration method, we can only collect a set of
samples {c;, ¢i,vi}t, i = 1,2,..., N (¢; and ; are the two angles
representing optical axis), and the eye fixation map py(z,y|I).
Similar to 2D implicit calibration, we first estimate pgy(x, y|I,0)
by building a mixture of Gaussian based on the estimated PoRs.

The 3D PoR [z,y,z]” on the display surface satisfy the sur-
face equation f(z,y, z) = 0, which can be estimated by a one time
offline display-camera calibration. Without loss of generality, we
assume the display surface is a plane and satisfy:

f(@,y,2)=2=0 1s)
3D PoR also lie on the visual axis:
x
Y| =c+ Avy (16)
z
Solving the line-plane intersection problem in Eqns. 15, 16 and

combining Eqns. 9, 10 and 11, we can obtain the 3D PoRs from
all the observations {c;, ¢s,7v:},7 = 1,2, ..., N, given the subject-

dependent eye parameters 6 = [, (]
z; cil] — i3 “%n(ll + 8)
wl=| ell-e [3) ntete) (17)

where c[¢] represents the ith element of cornea center c.

Gaze distribution pg(x,y|I,0) can therefore be computed
as:

pg(z,yll,0) =

>

Similarly, plugging py(z,y|I) and py(z,y|I,0) into Eqn. 5, we
can solve the optimization problem to estimate the parameters.

[zi, yi], ) 18)

6 Experimental Results

We briefly introduce the experimental settings. The dimension of
the display is 1280 x 1024. 10 images from MIT dataset [Judd
et al. 2009] are chosen as the displaying image during experiments.
Images are from outdoors, like houses, street with cars/humans,
sea with boats, etc. Subjects are asked to watch the 10 images
sequentially with natural head movement. Each image is displayed
for 4 seconds, and we display a black screen for 1 second between
consecutive images. The first few measurements are ignored
to eliminate the initial saccade eye movements. Five male and
one female subjects whose age range from 22 to 30 years old
participate into the experiments. To acquire eye measurements,
we implement the 1 camera and 2 IR lights system as described in
[Guestrin and Eizenman 2006].

We perform several experiments to evaluate the performance
of the proposed method. Firstly, we visualize fixation/saliency
maps from the proposed algorithm and other algorithms in section
6.1. In section 6.2, we compare the calibration parameters from
implicit and explicit personal calibration methods. Since this paper
proposes two novel techniques: the deep fixation map prediction
algorithm and distribution-based personal calibration algorithm.
Thus we evaluate these two components separately as in section
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(a) Stimuli

(b) RCNN (c) Judd (d) GBVS (e) GT

Figure 3: Examples of predicted saliency/fixation maps from RCN-
N, GBVS, Judd and groundtruth.

6.3 and section 6.4. Finally, we compare the proposed method with
state-of-the-art methods in reducing/eliminating explicit personal
calibration in section 6.5.

The gaze estimation error in section 6.3, 6.4 and 6.5 is computed
as follows. Subjects are asked to look at 15 uniform-distributed
points on the display surface. Data are collected and these points
served as the groundtruth gaze positions. We then compute the es-
timated gaze positions using calibration parameters estimated from
different calibration scenarios. Gaze estimation error is measured
by the distance error between the estimated gaze positions and the
groundtruth positions.

6.1 Fixation Map Visualization

MIT1003 dataset[Judd et al. 2009] is selected to learn the deep fixa-
tion map. The dataset includes 1003 landscape and portrait images,
which contain rich objects like people, cars, faces, etc. Softmax
function is applied to transform the groundtruth fixation map in the
dataset into probability map. In the experiments we use patches
extracted from first 500 images to train our RCNN network. We s-
elect the testing image during calibration from the rest 503 images.
We visualize the saliency/fixation maps predicted with the RCNN
framework and other algorithms in Figure 3. The GBVS is totally
bottom up method with only low level features. The Judd’s method
combined the top-down and bottom-up procedure by feature inte-
gration. Qualitatively, the fixation map from RCNN is focused and
centered at most salient objects. In comparison, Judd’s and GBVS’s
saliency maps spread to the whole image and thus may degrade the
personal calibration framework. To better quantitatively prove the
effectiveness of the proposed RCNN framework, we compare them
in terms of gaze estimation accuracy as in section 6.3.

6.2 Comparison of Calibration Parameters

In this section, we compare calibration parameters from implicit
and explicit calibration methods. For 2D regression-based method,
we implement the traditional explicit method with linear regression.
The average error of this system is about 0.6 degree. For 3D model-
based method, we implement the explicit 9-points calibration based
gaze estimation system. The error of this system is averagely 1 de-
gree for different subjects. As we can observe from Table 1, for
2D regression-based method, most of the estimated parameters are



Table 1: Comparison of estimated calibration parameters from traditional and proposed methods for 2D regression-based and 3D model-

based methods.
Subjects | Method 2D: 0 = (ag, bg, Cay Ay, by, Cy) 3D: 0 = (o, B)
1 explicit |—11.50 —0.09 —17.40 —2.40 16.70  188.00 0.29 1.81
proposed | —10.10 —1.50 —23.00 —2.40 11.60  169.00 1.12 0.41
2 explicit 0.04 —0.02 110.00 0.90 5.70  155.00 0.99 0.31
proposed 0.06 —0.02 102.00 1.20 8.60 171.00 1.93 —0.25
3 explicit —-2.10 —7.00 43.00 —6.70 6.70 85.00 | —1.31 1.35
proposed | —1.30 —8.50 30.00 —8.30 8.90 72.00 | —2.04 0.23
4 explicit 4.30 —2.10 79.00 —0.70 1.20  185.00 | —0.74 3.76
proposed 3.20 —4.50 53.00  —0.30 2.70 174.00 | —1.24 3.03
5 explicit —2.70 0.30 91.00 6.50 —8.70 114.00 2.70 —0.80
proposed | —4.80 0.10 62.00 9.30 —11.90 111.00 1.94 1.08
6 explicit —-2.10 —1.40 80.50 1.80 —7.00 72.00 | —3.56 —0.81
proposed | —3.70  —2.50 49.20 2.30  —8.90 71.00 | —2.32 —2.85

close to that from explicit methods for different subjects. There are
a few parameters differing away from explicit method. However,
the overall parameter configuration can still achieve good gaze es-
timation performance as illustrated in following sections. For 3D
model-based method, the estimated parameters are both close to
that from traditional explicit method, thus we can achieve good per-
formance in terms of gaze estimation accuracy.

6.3 Evaluation of Deep Fixation Maps

In this section, we compare the deep fixation map with other
saliency maps in terms of gaze estimation accuracy. We consider
4 different saliency/fixation maps, namely: pure center prior,
saliency map generated by GBVS algorithm [Harel et al. 2006a],
fixation map from Judd’s model [Judd et al. 2009] and the proposed
deep fixation map.

For 2D regression-based method, we firstly implement the
explicit 9-points calibration method as baseline. Then we im-
plement the distribution-based calibration method with different
saliency/fixation maps. In the experiments, subjects are required to
fix their head position. The average error for six subjects with the
five calibration scenarios are showed in Figure 4 (a). We can see
that the 9-points method achieve the best results, the average error
is about 0.67 degree. For the implicit-calibration method, GBVS,
Judd and the proposed fixation map give much better results than
pure center prior. The average error for the proposed method is
0.99 degree, which is slighter better than GBVS (1.03 degree) and
Judd (1.04 degree). Overall, the implicit calibration framework
is suitable for 2D regression-based gaze estimation methods, and
we can achieve averagely 1.0 degree error. Even it is larger than
traditional 9-points method, the proposed method can be totally
implicit without user’s explicit collaboration.

Similar to 2D regression-base method, for 3D model-based
method, we also implement the explicit 9-points calibration
method and the proposed method with different saliency/fixation
maps. Results are showed in Figure 4 (b). In this experiments,
subjects can move their head naturally within the system’s working
range. The 9-points calibration gives the smallest average error
of 1.08 degree. The average error for center prior, GBVS, Judd
and the proposed fixation map are 1.66 degree, 1.54 degree, 1.56
degree and 1.40 degree respectively. Implicit calibration frame-
work can still give us comparable results. Because of free head
movement in the experiments, the variance of 3D model-based
method is larger than 2D regression-based method. In practice,
the large variance issue can be alleviated by proper temporal
smoothing operations. With the distribution-based calibration and
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Table 2: Comparison of distribution based calibration with Chen’s
[2011] full probabilistic approach.

Method Frames/Error ~ Frames/Error  Frames/Error
Full probabilistic 100/1.71° 200/ 1.49° 300/1.43°
Distribution-based 100/ 1.52° 200/1.41° 300/ 1.42°

the learned deep fixation map, we can achieve 1.4 degree error in
gaze estimation.

The results in Figure 4 proves that with the same distribution-based
personal calibration method, the proposed deep fixation predic-
tion algorithms outperforms other saliency/fixation prediction
algorithms.

6.4 Evaluation of Distribution-based Calibration

To evaluate the proposed distribution-based personal calibration,
we implement Chen et al’s full-probabilistic method [2011] with
the same deep fixation maps from RCNN framework. Since Chen
et al proposed an incremental calibration framework to keep up-
dating the eye parameters. Thus we evaluate the two calibration
methods with different number of input frames. The gaze estima-
tion error is shown in Table 2. Our method hence achieves better
results than Chen’s method. Besides, the proposed method works
with fewer data since the proposed method can align partial saliency
map built from gaze data to the predicted saliency map from RCNN.
Therefore the proposed method is more suitable in scenarios where
fast calibration is required. Furthermore, Chen’s full probabilistic
approach treat gaze points one by one from a local point of view,
while the proposed distribution-based method integrates all the gaze
points into a global gaze distribution map. Since saliency/fixation
map reflects the global attention/interest to the image stimuli, global
gaze distribution map is more likely to match the deep eye fixation
map and therefore help implicitly estimating the eye parameters.
Experiments also demonstrate the proposed distribution-based cal-
ibration method is more accurate and data efficient than Chen’s full
probabilistic approach.

6.5 Comparison with State of the Art

We also compare the proposed implicit calibration framework with
other state-of-the-art methods in reducing/eliminating explicit per-
sonal calibration. The results are shown in Table 3, the numbers
are either directly taken from the corresponding papers or the av-
erage of their reported errors. Compared with Model et al [2010],
their system can achieve 1.3 degree, but their system requires much
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Figure 4: Gaze estimation error with different saliency/fixation maps. 9-points represent the results from explicit calibration method.

Table 3: Comparison with state-of-the-art methods.

Method Error /degree
Proposed 2D 1.0
Proposed 3D 1.4
Model et al [2010] 1.3
Chen et al [2011] 1.7
Sugano et al [2007] 4.8
Sugano et al [2013] 3.5
Alnajar et al [2013] 4.3

complex setup and more IR lights. The proposed method also out-
performs the method proposed by Chen e al [2011]. With deep
eye fixation map and the distribution-based calibration method, we
can improve the gaze estimation accuracy by 0.3 degree. Even
with the same deep eye fixation map, our method appears to be
more accurate and data efficient (Sec. 6.4). The last three rows
show the gaze estimation error for three appearance-based method-
s in reducing/eliminating explicit personal calibration. The results
are for reference only, we do not intend to compare the proposed
model-based method with appearance-based methods. Overall, the
proposed method can achieve comparable and better results to the
existing state-of-the-art work.

7 Conclusion

In this paper, we propose a novel framework to eliminate explicit
personal calibration and improve gaze estimation accuracy for two
major gaze estimation methods. The eye fixation learning algorithm
takes advantage of top-down eye tracking data and powerful repre-
sentation and feature learning ability of deep model, so that it is able
to capture semantic information that attracts more human attention
and represent real human eye fixation. We introduced a regression-
based CNN (RCNN) that learns deep features to predict eye fix-
ations. Compared to the traditional hand-crafted image features,
the learned image features from deep model can better capture and
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predict eye fixations. The proposed distribution based calibration
method considers the calibration problem from a global perspective
in a probabilistic manner without the need of establishing gaze cor-
respondences. Instead of treating training samples separately, we
treat all the training samples together as a probabilistic distribution.
By combining deep eye fixation map and the distribution based cal-
ibration method, our method gives good gaze estimation accuracy,
and enables implicit calibration which gives rise to broader eye gaze
tracking applications.
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