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Abstract

Existing appearance-based gaze estimation approach-
es with CNN have poor generalization performance. By
systematically studying this issue, we identify three major
factors: 1) appearance variations; 2) head pose variations
and 3) over-fitting issue with point estimation. To improve
the generalization performance, we propose to incorporate
adversarial learning and Bayesian inference into a unified
framework. In particular, we first add an adversarial compo-
nent into traditional CNN-based gaze estimator so that we
can learn features that are gaze-responsive but can general-
ize to appearance and pose variations. Next, we extend the
point-estimation based deterministic model to a Bayesian
framework so that gaze estimation can be performed using
all parameters instead of only one set of parameters. Besides
improved performance on several benchmark datasets, the
proposed method also enables online adaptation of the mod-
el to new subjects/environments, demonstrating the potential
usage for practical real-time eye tracking applications.

1. Introduction
Eye gaze represents human’s focus of attention or interest-

s. The eye gaze for ourselves can help us better understand
the visual world, and help us better interact with computers
or large systems [1, 2, 3]. Furthermore, eye gaze also plays
a crucial rule in understanding human’s cognitive and emo-
tional status, which have been used for marketing and adver-
tising [4], social network [5, 7, 8, 6], web search [9, 11, 10],
psychology study and medical research [12], etc.

Various techniques have been proposed to estimate eye
gaze. Model-based methods [13, 14, 15, 16, 17, 18, 19, 20]
rely on a geometric eye model to estimate eye gaze. The
idea is to represent 3D eye gaze to two 3D points and their
goal is to recover the 3D points. Despite their simplicity
and good accuracy, the system is sensitive to key point de-
tections and may not work in outdoor environments. Early
appearance-based methods [21, 22, 23] try to extract hand-
crafted features from eye images and map the features to eye
gaze. However, they cannot handle large head poses and are
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Figure 1. Three factors that affect the generalization performance
of appearance-based gaze estimation methods.

restricted to controlled environments.
More recently, appearance-based methods [24, 25, 26,

27, 28] with deep learning [29, 30, 31, 32] are the dominan-
t approaches because of their improved performance over
traditional model-based/appearance-based methods. How-
ever, researchers also begin challenging the generalization
performance of deep learning-based approaches, since the
trained model may totally fail for an unseen subject or in
a new environment. This significantly limits the usage of
appearance-based methods in practical eye tracking systems.

In this work, we study the following problem. Suppose
we have a gaze estimator trained with data from a source
domain, how can we generalize this gaze estimator to a
target domain with few labeled data or no labeled data? we
systematically study the factors that affect the generalization
performance, and identify three major factors as in Fig. 1.

The first factor is the appearance variation, which is re-
sulted from different combinations of illumination, skin col-
or, eye texture, eye shape, imaging condition, glasses, etc.
The example images in Fig. 1 come from different subject-
s/datasets with close to frontal eye gaze directions. It is
difficult to model these individual factors separate, we there-
fore only model the coupled appearance variations.

The second factor is the head pose variation. Fig. 1 shows
the images from the same subject looking at the same target
but with different head poses. The head pose variations may
not be obvious in the example images because we cut the eye
images, however we can get a sense of head pose variations
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from the image brightness, shadows as well as the pupil
positions. Although we can treat head pose variations as
part of appearance variations, we would like to model them
separately. The underlying reason is that head pose is re-
sulted from geometric rotation and motion which have good
analytical formulations. Compared to modeling appearance
and pose variation together in a coupled way, we can benefit
from a separate modeling.

The last factor is the over-fitting issue with point estima-
tion. Traditional CNNs only estimate one optimal set of
parameters, which work well for data with less variations.
However, for practical environments with large variations
as in Fig. 1, they may not work well since the parameter
posterior is much more complex.

To deal with the three factors, we introduce a Bayesian
adversarial learning approach. Our overall network is built
on top of a traditional CNN that map eye image to eye
gaze. Inspired by recent work on domain adaptation [33, 34],
we first introduce an adversarial learning block, which is
responsible for learning good features for eye tracking but
can also generalize to appearance and head pose variations.
The idea is to learn features that cannot discriminate the
variations through a minmax objective. To handle the over-
fitting issue resulted from point estimation, we extend the
CNN to Bayesian Convolutional Neural Network (BCNN),
where we can perform gaze estimation with multiple sets of
parameters from the parameter posterior and hence improve
the generalization. To summarize, we make the following
novel contributions:

• We identify three major factors that affect the gener-
alization performance of appearance-based gaze esti-
mators and propose a Bayesian adversarial learning
approach to deal with the three factors in a unified
framework.

• We propose an adversarial learning approach which
learns features that can handle appearance and head
pose variations by combining appearance and model-
based adversarial loss functions.

• We introduce a Bayesian framework that alleviates the
over-fitting issues from point estimation and hence fur-
ther improves the generalization.

2. Related work
2.1. gaze estimation

We focus on recent appearance-based methods with deep
learning. In [24], the authors propose to map eye image to
eye gaze with a LeNet architecture. To better handle head
pose variations, they append the predicted head pose to the
extracted feature vector to jointly estimate eye gaze. The
authors in [25] propose a 4-pathway network to incorporate

left, right eye images, face images and face location infor-
mation to jointly estimate the eye gaze. In [26], the authors
first decouple the eye gaze to eye pose and head pose. Then
they use two CNN networks to estimate eye pose and head
pose, which are then directly mapped to eye gaze with an an-
alytical formulation. In [35], the authors propose to map the
eye appearance to an intermediate gaze map and then map
the gaze map to the final gaze. They argue that the two-step
strategy is easier to learn than end-to-end models and there-
fore gives better accuracy. There are also hybrid-models
[36, 37] that use CNN to map image to eye landmarks and
then map eye landmarks to eye gaze. All these approaches
implicitly or explicitly embed the head pose information
to improve the generalization performance. However, their
methods can only work in certain extent as the underlying
CNN cannot capture all the variations in the image space,
and their models only rely on one single set of parameters
which are prone to over-fitting issues.

2.2. Domain adaptation

Because of dataset bias or domain shift, models trained
on one dataset may fail on new datasets. Different domain
adaptation techniques are proposed to reduce the effects of
domain shift. Some of them learn the feature representa-
tions that can reduce domain shift in terms of maximum
mean discrepancy [38], or correlation distance [39]. Re-
cently, the adversarial learning [40] idea is employed to
minimize the domain discrepancy through an adversarial
objective [33, 34, 41]. By maximumly confusing the domain
classifier, the learned feature representations can better gen-
eralize to both domains. Existing work on domain adaptation
is designed to work for general tasks, and ignores domain
knowledge for specific tasks. In this work, we incorporate
the head pose knowledge for eye gaze and formulate them in
a unified adversarial learning framework, and demonstrate
better generalization.

2.3. Bayesian neural network

Bayesian neural network (BNN) [42] is a probabilistic
interpretation of deep models by modeling the posterior
distribution of the model parameters. BNNs avoid point
estimation and provide robustness against over-fitting, which
is crucial to generalize the learned model from the source
domain to the target domain. However, inference in BN-
N is difficult because of the integration over the parameter
space. Early attempts include the Laplace’s method [43]
and variational approaches [44], but the approximation er-
ror is large and the computational complexity remains large.
Modern inference techniques include improved variational
approaches [45, 46], Hamiltonian Monte Carlo based ap-
proaches and their variants [42, 47]. With these techniques,
we can achieve better efficiency and scale up to large-scale
datasets.
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Figure 2. Illustration of a standard appearance-based gaze estimator.

3. Problem statement
Before discussing the proposed approach, we first intro-

duce the baseline gaze estimator and our problem scenario.
Baseline gaze estimator.

We use a standard appearance-based gaze estimator
(Fig. 2) as our baseline:

f = Gf (x; θf ) and y = Gy(f ; θy),

whereGf (·) is the feature extractor with parameter θf ,Gy(·)
is the gaze estimator with parameter θy , and f is the learned
feature representations.
Problem scenario.

Suppose we have learned a baseline gaze estimator θs =
{θsf , θsy} with data Ds = {xi,yi}ns

i=1 from the source do-
main. This model can perform well on test data from a
similar domain/distribution as Ds, but may not generalize to
a new domain/distribution. Formally, assume we have data
Dt = {{xi,yi}

n′
t
i=1, {xi}

nt
i=1} (n′t � nt) from the target

domain (Eg. new subjects, head poses or environments), we
want to explore how we can adapt θs so that we can achieve
good performance on data from Dt. In this work, we are
interested in both semi-supervised case and unsupervised
case (n′t = 0).

Next, we first discuss the proposed adversarial learning
method in Sec. 4.1, then we introduce the Bayesian extension
in Sec. 4.2.

4. Proposed approach
4.1. Adversarial learning

Our goal is to adapt the source model θs to a target model
θt = {θtf , θty} so that we can estimate gaze accurately onDt.
To this end, we design a specific network as shown in Fig. 3.
We introduce two additional classifiers compared to Fig. 2.
The extracted features f are fed to three models:

• gaze estimator Gy(f , θy): the output is the continuous
eye gaze y ∈ R2, y can represent the x and y coordi-
nates on the screen or the pitch and yaw angles in 3D
space.

• appearance classifier Ga(f , θa): the output is a scalar
probability a ∈ [0, 1] indicating the probability of the
input coming from the source domain Ds.

• head pose classifier Gh(f , θh): the output is a probabil-
ity vector h = {p1, ..., pk} indicating the probability
of each of the k head pose classes.
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Figure 3. Illustration of the proposed adversarial learning method.

The loss function for the gaze estimator is defined as:

Ly(θf , θy) =
1

n′t

n′
t∑

i=1

||Gy(Gf (xi; θf ); θy)− yi||2 (1)

For the appearance classifier, its goal is to differentiate im-
ages from source domain Ds or target domain Dt, the loss
function is defined as the binary cross-entropy:

La(θf , θa) =−
1

nt

nt∑
i=1

log(1−Ga(Gf (xi; θf ); θa))

− 1

ns

ns∑
i=1

log(Ga(Gf (xi; θf ); θa)) (2)

For the head pose classifier, its goal is to differentiate
images with different head poses, the loss is defined as the
multi-class cross-entropy:

Lh(θf , θh) =−
1

nt + ns

nt+ns∑
i=1

hi,j

k∑
j=1

log(Gh(Gf (xi; θf ); θh)

(3)

where hi,j is the groundtruth probability for i-th image and
j-th pose class.

There are 4 different sets of parameters, the learning of
{θy, θa, θh} is easy because they only depend on θf . To this
end, we can solve them given θf :

θ̂y = argmin
θy
Ly(θ̂f , θy) (4)

θ̂a = argmin
θa
La(θ̂f , θa) (5)

θ̂h = argmin
θh
Lh(θ̂f , θh) (6)

The learning of θf is relatively difficult (depend on
{θy, θa, θh}) but is the key of our adversarial learning. No-
tice we want the learned features to produce small gaze
estimation error but confuse appearance and pose classifiers.
To this end, we have the following objective:

θ̂f = argmin
θf
Ly(θf , θ̂y)− λaLa(θf , θ̂a)− λhLh(θf , θ̂h) (7)



where λa and λh are two positive balancing factors. The
negative sign before the appearance and pose terms allows
us to minimize them together with the gaze regression loss
term.

Note the objective in Eq. (7) corresponds to the true mini-
max objective. Compared to Eq. (5) and (6), the only differ-
ence is the sign before the appearance and pose classifiers.
We are actually optimize the same objective (different pa-
rameters) to opposite directions. However as [40, 34] point
out, the log(1−Ga(Gf (xi; θf ); θa) term in Eq. (2) may be
problematic and causes vanishing gradient when we mini-
mize Eq. (7). We instead use the following new objective
Lf (θf , θ̂y, θ̂a, θ̂h) to solve θf :

θ̂f = argmin
θf
Lf (θf , θ̂y, θ̂a, θ̂h) (8)

= argmin
θf
Ly(θf , θ̂y)− λhLh(θf , θ̂h)

+ λa
1

nt

nt∑
i=1

logGa(Gf (xi; θf ); θ̂a)

Eq. (8) and Eq. (7) has the same fixed-point properties but
Eq. (8) can produce stronger gradients and improve the opti-
mization.

Finally, we summarize the adversarial parameter learning
algorithm in Alg. 1. After convergence, we discard the
appearance and pose classifier parameters and only use θtf
and θty for our gaze estimation task.

4.1.1 Discussions

Motivation of head pose classifier and how to obtain
head pose label. Existing domain adaptation approaches
only consider the appearance adaptation. For our specific
gaze estimation task, the target gaze label is a geometric en-
tity and are strongly correlated with geometric features (Eg.
facial/eye landmarks). In fact, there exists plenty of work
on model-based / feature-based gaze estimation techniques.
Inspired by this, we propose to explicitly embed the geomet-
ric dependence in the feature-learning process. However, it
is difficult to analytically relate the eye gaze to geometric
features (facial landmarks), we instead use head pose as an
intermediate representation. For all training images, we per-
form offline detection of the landmarks c [48], then we can
relate head {M, t} pose with observed landmarks using a
3D shape model S [49, 50]:

c =MS + t (9)

By minimizing the projection error, we are able to recover
the head pose, which is further quantized to k discrete pose
classes. By using the head pose estimated from model-based
methods, we implicitly encourage learning features that are
not sensitive to geometric variations.

Algorithm 1: Adversarial parameter learning
1. Input: Source domain data Ds = {xi,yi}ns

i=1, target
domain data Dt = {{xi,yi}

n′
t
i=1, {xi}

nt
i=1}, source

model θs = {θsf , θsy}.
2. Output: Target model θt = {θtf , θty}.
3. Initialization: θtf = θsf , θty = θsy , θta = N (0, σI),
θth = N (0, σI), total iterations T .
4. for iter ∈ {1, ..., T} do

- Sample a batch of data from source and target:
xs ∼ Ds, {xt, {xt′,yt′}} ∼ Dt.
- Update θty with {xt′,yt′} (Eq. (4)):

θty ← θty − α∂Ly(θ̂tf , θty)/∂θty
- Update θta with xs and xt (Eq. (5)):
θta ← θta − α∂La(θ̂tf , θta)/∂θta
- Update θth with xs and xt and their corresponding
pose labels (Eq. (6)):
θth ← θth − α∂Lh(θ̂tf , θth)/∂θth
- Update θtf with all data and other updated
parameters (Eq. (8)):
θtf ← θtf − α∂Lf (θf , θ̂y, θ̂a, θ̂h)/∂θtf
(Note for unsupervised learning, we discard the
first Ly(θf , θ̂y) term in Eq. (8) and optimize the
rest two terms.)

4.2. Bayesian formulation

To alleviate the potential over-fitting issues with point
estimation, we extend the deterministic model to a proba-
bilistic Bayesian model. With Bayesian framework, gaze
estimation for a new image xt can be formulated as follows:

yt = argmax
yt

p(yt|xt,D,α) (10)

= argmax
yt

∫
θt
p(yt|θt)p(θt|D,α)dθt

≈ argmax
yt

m∑
i=1

p(yt|θt[i]) where θt[i] ∼ p(θt|D,α)

(11)

≈ 1

m

m∑
i=1

Gy(Gf (xt; θ
t
f [i]); θ

t
y[i])

where D = {Ds,Dt}, and α is the prior for θt. Instead
of performing a point estimation to estimate one optimal
set of parameters, we perform Bayesian inference to obtain
multiple sets of parameters drawn from its posterior. Gaze
estimation is based on the average of multiple predictions
and hence can improve the generalization. The extended
Bayesian framework uses the same architecture as in Fig. 3,
but now the network parameters {θtf , θty, θta, θth} are assumed
to follow a probabilistic distribution. As in Eq. (11), the key



to performing Bayesian inference is to effectively draw sam-
ples from the posterior distributions. It is difficult to draw
{θtf , θty, θta, θth} all at once, we follow the idea in [51] to
draw the 4 set of parameters alternately until final conver-
gence. To draw samples alternately, we need to define the
conditional posterior of the parameter given all other param-
eters, this will be discussed in Sec. 4.2.1. After that, we
briefly introduce the algorithm to effectively draw samples
from the posterior distributions (Sec. 4.2.2).

4.2.1 Construction of posterior distribution

We first assume the parameters follow a Gaussian prior dis-
tribution:

p(θti |α) = N (0, σI), ∀i ∈ {f, y, a, t} (12)

where σ is the standard deviation. Next, we can construct
the posterior by combining the likelihood models with the
prior models. From the discussion in Sec. 4.1, we learn the
4 type of parameters alternatively, here we follow the same
idea by constructing the conditional posterior given other
parameters.

First, for the gaze branch, we assume the output eye gaze
follows a Gaussian distribution:

p(y|x, θtf , θty) = N (y;µ(x, θtf , θ
t
y),Σ(x, θtf , θ

t
y)) (13)

where µ(x, θtf , θ
t
y) represents the mean and Σ(x, θtf , θ

t
y)

represents the covariance. In this work, covariance is as-
sumed to be a diagonal matrix. To predict mean and co-
variance, we modify the gaze branch in Fig. 3 to output a
4-dimensional vector where the first 2 dimensions represent
the mean and the last 2 dimensions represent the diagonal
entries. The conditional posterior therefore follows:

p(θty|θtf , θta, θth) = p(θty|θtf ) ∝ (14)

n′
t∏

i=1

N (yi;G
1
y(Gf (xi; θ

t
f ); θ

t
y), G

2
y(Gf (xi; θ

t
f ); θ

t
y))p(θ

t
y)

where G1
y(·) represents the first 2-dimension of the output

(mean) and G2
y(·) represents the last 2-dimension of the out-

put (covariance). Intuitively, θty that yields good predictions
(close to the groundtruth) should have larger probabilities.

Second, for the appearance branch, the conditional poste-
rior follows:

p(θta|θtf , θty, θth) = p(θta|θtf ) ∝ (15)
nt∏
i=1

(1−Ga(Gf (xi; θtf ); θta))
ns∏
i=1

Ga(Gf (xi; θ
t
f ); θ

t
a)p(θ

t
a)

If θta produces large probabilities (close to 1) for source
data, while low probabilities (close to 0) for target data,
then θta and its neighborhood should have large posterior
probabilities.

Algorithm 2: Bayesian adversarial learning
1. Input: Source domain data Ds = {xi,yi}ns

i=1, target
domain data Dt = {{xi,yi}

n′
t
i=1, {xi}

nt
i=1}, source

model θs = {θsf , θsy}.
2. Output: m target model samples {θti}mi=1.
3. Initialization: θtf = θsf , θty = θsy , θta = N (0, σI),
θth = N (0, σI), burn in time T , collection interval b.
4. for iter ∈ {1, ..., T +m ∗ b} do

- Sample a batch of data from source and target:
xs ∼ Ds, {xt, {xt′,yt′}} ∼ Dt.
- Sample θty: θty ← θty + vy

vy ← (1− α)vy + η
∂ log p(θty|θ

t
f )

∂θty
+N (0, 2αηI)

- Sample θta: θta ← θta + va

va ← (1− α)va + η
∂ log p(θta|θ

t
f )

∂θta
+N (0, 2αηI)

- Sample θth: θth ← θth + vh

vh ← (1− α)vh + η
∂ log p(θth|θ

t
f )

∂θth
+N (0, 2αηI)

- Sample θtf : θtf ← θtf + vf
vf ←
(1− α)vf + η

∂ log p(θtf |θ
t
y,θ

t
a,θ

t
h)

∂θtf
+N (0, 2αηI)

- Collect sample {θtf , θty} every b iterations after
burn in time.

Third, the conditional posterior for the head pose branch
follows:

p(θth|θtf , θty, θth) = p(θth|θtf ) ∝ (16)
nt+ns∏
i=1

k∏
j=1

Gjh(Gf (xi; θ
t
f ); θ

t
a)
hi,jp(θth)

where Gjh(·) represents the j-th element of the output of
head pose branch. Similarly, θth should have large posterior
probabilities if it produces correct pose classifications.

Finally, analogous to Eq. (8), we modify the appearance
term to avoid vanishing gradient and the conditional posterior
for θtf follows:

p(θtf |θty, θta, θth) ∝ (17)

p(θty|θtf )︸ ︷︷ ︸
gaze

nt∏
i=1

Ga(Gf (xi; θ
t
f ); θ

t
a)︸ ︷︷ ︸

appearance

(−p(θth|θtf ))︸ ︷︷ ︸
head pose

p(θtf )︸ ︷︷ ︸
prior

The conditional posterior in Eq. (17) tells when θtf should
have large probabilities: 1) the gaze term indicates θtf should
produce small gaze prediction error; 2) the appearance term
regulates θtf to produce large probability for data from tar-
get domain (confuse data from source and target domain);
3) head pose term, similarly maximumly confuse the pose
classifier; 4) the prior term incorporates our prior knowl-
edge about the parameter space. These four terms jointly



contribute to the posterior distribution of θtf , allowing us to
obtain good samples that give good gaze estimation error
while also improves the generalization performance.

4.2.2 Bayesian inference

Computing the posterior analytically is challenging, we in-
stead employ the Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC) [47, 51] to approximate the posterior. S-
GHMC is an extension of HMC which supports mini-batch
update. As a result, it can scale-up to large datasets and
allow us to draw samples effectively. We leave the details of
SGHMC for readers’ own interest and only summarize the
overall approximation algorithm in Alg. 2.

5. Experiments and Analysis

We evaluate the proposed method on four benchmark
datasets: 1) MPIIGaze [24], which consists of data from 15
subjects in different environments; 2) UT [22], consists of
50 subjects, each with 8 head poses and 160 gaze directions;
3) Columbia [52], with 56 subjects and 5 head poses; and
4) EyeDiap [53], consists of data from HD/VGA camera,
discrete and continuous targets and different head poses.
Different approaches use different subsets of the data, we
follow the same setting as [35] for the evaluation.

MPIIGaze and EyeDiap have continuous head pose an-
gles, we follow the settings in MPIIGaze dataset to normalize
head pose into 2 angles (2D region), then we manually set
threshold of the two angles to divide the 2D region into 8
sub-regions (with approximately similar amount of data for
each sub-region). UT and Columbia have different number
of cameras with fixed head position, the number of head
pose classes is equal to the number of cameras.

Our model input is eye image of size 36 × 60. Here
is the summary of the architecture in Fig. 3: 1) Gf (x, θf )
(Conv(5, 5, 64), LeakyRelu(0.2), MaxPooling(2), Conv(5, 5,
32), LeakyRelu(0.2), MaxPooling(2), FC(128); 2) Gy(f , θy)
(FC(128), LeakyRelu(0.2), FC(2)); 3) Ga(f , θa) (FC(500),
LeakyRelu(0.2), FC(256), LeakyRelu(0.2), FC(1), Sigmoid);
4) Gh(f , θh) (FC(500), LeakyRelu(0.2), FC(256), LeakyRe-
lu(0.2), FC(k), Softmax). Notice we use a relative simple
model compared to existing work with complex architec-
tures.

For Bayesian inference, we need to modify the last layer
of Gy(f , θy) to output a 4-dimensional vector while other
layers remain the same. The prior in Eq. (12) is set with
σ = 0.01. For the inference in Alg. 2, we collect one sample
every 64 iterations and use a total 100 samples to perform
gaze estimation. With a Tesla M40 GPU, inference using
one sample takes around 5ms.

5.1. Ablation study

We first perform a systematic study to evaluate different
model components in Sec. 5.1.1 (unsupervised setting with
no labeled data), then we study how number of annotated
samples affect the model performance in Sec. 5.1.2.

5.1.1 Evaluation of different model components

We consider following 4 models:

• baseline: a standard CNN-based gaze estimator.

• baseline + appearance classifier: adding appearance
classifier.

• baseline + appearance + pose classifiers: further incor-
porate head pose classifier.

• baseline + appearance + pose classifiers + Bayesian
inference: perform Bayesian inference.

For each model, we consider 3 types of evaluations: 1)
cross-subject; 2) cross-pose and 3) cross-dataset. For cross-
subject evaluations, we perform 4-fold cross-validation by
dividing all subjects into 4 clusters randomly. For cross-
pose experiments, we perform 4-fold cross-validation for
MPIIGaze, UT and EyeDiap. Their 8 head poses are divided
into 4 clusters by grouping neighboring poses into the same
cluster. For Columbia, we perform 5-fold cross-validation.

MPIIGaze UT Columbia EyeDiap

Datasets

2
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5
6
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8
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E
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baseline+a

baseline+a+p

baseline+a+p+Bayesian

Figure 4. Cross-subject evaluations.

The cross-subject evaluations are shown in Fig. 4. We can
see for the 4 datasets, adding appearance classifier shows
a significant improvement over the baseline gaze estima-
tor. First, the appearance variations are the most dominant
variations, by learning features that cannot distinguish the
variations, we can therefore achieve a large improvement.
When we add the pose classifier, we can observe further
improvement. The improvement is not as significant as ap-
pearance classifier, because head pose variations are also
reflected by the underlying appearance change (handled by
appearance classifier). And this is a cross-subject experimen-
t, the head pose distributions for source and target domain
appear similar. Explicitly using pose classifier is therefore
less useful. Finally, when we perform Bayesian inference,



we observe consistent improvement for the 4 datasets. Note
the improvements for the 4 datasets are different. Bayesian
inference gives a large improvement for EyeDiap (large vari-
ations and low-qualities), and a smaller improvement on
Columbia because of its high-quality image conditions. The
experiments demonstrate the contributions for each of the
components in the proposed method.
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Figure 5. Cross-pose evaluations.

Next, we perform cross-pose evaluation as in Fig. 5. First,
we observe consistent improvements for each model compo-
nents on the 4 datasets. Second, compared to cross-subject
experiments, the head pose classifier shows a more important
role in cross-pose experiments, as the pose distributions for
source and target are different. By explicitly force the model
to learn features that are not pose-sensitive, we can obtain a
larger improvement.
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Figure 6. Cross-dataset evaluations with UT as source domain data.

The cross-dataset experiments are shown in Fig. 6. We
observe similar patterns and all components contribute to the
improved performance.

Table 1. Average improvement over baseline models.

Cross-subject Cross-pose Cross-dataset
(a) 12.2% 9.3% 10.1%
(a, p) 15.6% 14.4% 12.4%
(a,p,B) 21.9% 21.1% 17.9%

Finally, we show the quantitative improvement over the
baseline model in Tab. 1. The improvements are averaged

over all datasets. From the results, we conclude that ap-
pearance classifier contributes most to the improvement,
Bayesian inference demonstrates a mid-level role while pose
classifier shows a relatively smaller improvement. But if
source domain and target domain has different pose distribu-
tions, the pose classifier can play an important role since the
basic appearance classifier cannot fully capture variations
caused by geometric motions. In addition, different from
appearance and pose classifiers, which address the general-
ization issue from data-variation perspective, the proposed
Bayesian framework address the generalization issue from
the model perspective. By introducing Bayesian inference in-
stead of point-estimation, the underlying model yields better
generalization capabilities.

5.1.2 Evaluation of number of labeled data

The previous study is conducted based on an unsupervised
setting, we are also interested in a semi-supervised setting.
We use UT dataset for our evaluation. We use 32, 000
images for source domain data and the rest 32, 000 im-
ages for target domain data. Next we random draw k%
(k ∈ {0, 1, 2, 5, 10}) of the target domain data as labeled
data, and the rest as the unlabeled (testing) data. We repeat
the process 5 times and report the average performance. For
a fair comparison, we also perform fine-tuning on the base-
line models using the labeled data and compare with the
proposed method.
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Figure 7. Cross-subject evaluation on UT.

The cross-subject evaluation is shown in Fig. 7, and the
cross-pose evaluation is shown in Fig. 8. We can observe
that with more labeled data, both the fine-tuned model and
the proposed model can keep reducing the gaze estimation
error, but the proposed method can always give better ac-
curacy than the fine-tuned model. This demonstrate that
the proposed approach can handle both unsupervised and
semi-supervised scenarios.

5.1.3 Online eye tracking

The proposed method can serve as an online model adapta-
tion technique for a real-time eye tracking system. Suppose
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Figure 8. Cross-pose evaluation on UT.
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Figure 9. Online eye tracking performance with the proposed model
adaptation approach.

we have a real-time eye tracking system trained with source
domain data. A new subject tries to use the system but is not
satisfied with the performance. In this case, we can use the
proposed method to gradually adapt the model parameters
so that it can produce good results for the new subject. In
particular, we ask the new subject to use the system for some
time and collect raw eye images. These raw eye images serve
as unlabeled target domain data and can be used to adapt the
model parameters with the proposed Bayesian adversarial
learning. We conduct a simple experiment in the lab. The
baseline gaze estimator is trained with data from 10 people,
and we ask the new subject to use the system for some time.
We also collect some labeled data for the new subject for
testing. Fig. 9 shows the gaze estimation error as a func-
tion of time (we use the first T frames to adapt the baseline
model). The results suggest that as we use the system and
collect more data, we can gradually adapt to a new subject
and improve the gaze estimation performance.

5.2. Comparison with State-of-the-art

Next we compare with state-of-the-art approaches on
cross-subject and cross-dataset experiments.

Table 2. Cross-subject evaluation.
[54] [36] [35] Proposed

EyeDiap - 11.9 10.3 9.9
UT - - - 5.4
MPII 6.3 - 4.5 4.3

We first perform cross-subject experiments. In [54], the
authors combined head pose feature and appearance fea-

ture to perform gaze estimation. They did not model the
appearance variations and use a simple feature concatena-
tion technique to incorporate head pose information. On
the contrary, we use a similar baseline model, but explicitly
consider appearance variations and incorporate pose informa-
tion in a adversarial way. And combined with the Bayesian
framework, we achieve an improvement around 2.0 degrees.

In [36], the authors first use a hourglass model to map
eye appearance to eye landmarks and then use either feature-
based or model-based method to map landmarks to eye gaze.
In [35], the authors propose to map appearance to a gaze
map then estimate gaze from gaze map. Both methods use
a much more complex architectures than ours, but we still
outperform them, demonstrating the effectiveness of the
proposed Bayesian adversarial learning framework.

Table 3. Cross-dataset evaluation.
[54] [55] [37] [36] Proposed

EyeDiap - - - 26.6 18.3
MPII 13.9 8.9 7.7 8.7 7.4

We further perform cross-dataset experiments by using
UT dataset as source domain data. Fig. 3 shows the results
with unsupervised setting. We outperform all competing
approaches on MPII dataset. Even with a relative small scale
model, the proposed approach can still achieve better results.
When evaluated on EyeDiap, we outperform [36] with a big
margin. The reason is that the distribution of UT and EyeDi-
ap differs significantly, minimizing the domain shift between
them leads to a large improvement in the gaze estimation
accuracy. In addition, EyeDiap has large variations which
leads to complex parameter posterior distributions, using
Bayesian inference is more effective in these cases which
explains the large improvement.

6. Conclusion

In this paper, we systematically study the generalization
issue of appearance-based gaze estimation methods. We i-
dentify three major factors: 1) appearance variations; 2) pose
variations and 3) over-fitting issue with point estimation. By
introducing an adversarial learning approach, we are able
to learn better feature representations that can generalize to
appearance and pose variations. With the extended Bayesian
framework, we alleviate the over-fitting issue by using mul-
tiple sets of parameters to perform gaze estimation. System-
atical experiments demonstrate the contributions from each
model component, and the overall model also outperforms
state-of-the-art on benchmark datasets.
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