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Abstract Facial point detection is an active area in

computer vision due to its relevance to many applica-

tions. It is a nontrivial task, since facial shapes vary sig-

nificantly with facial expression, pose or occlusion. In

this paper, we address this problem by proposing a dis-

criminative deep face shape model that is constructed

based on an augmented factorized three-way Restricted

Boltzmann Machines model (RBM). Specifically, the

discriminative deep model combines the top-down in-

formation from the embedded face shape patterns and

the bottom up measurements from local point detec-

tors in a unified framework. In addition, along with

the model, effective algorithms are proposed to per-

form model learning and to infer the true facial point

locations from their measurements. Based on the dis-

criminative deep face shape model, 68 facial points are
detected on facial images in both controlled and “in-

the-wild” conditions. Experiments on benchmark data

sets show the effectiveness of the proposed facial point

detection algorithm against state-of-the-art methods.
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Fig. 1 Facial point detection. (a) Facial points that define
the face shapes. (b) Facial images with detected facial poinits.

1 Introduction

The facial points refer to a few salient landmark points

around facial components, such as eyes, mouth, and the

face contour (Figure 1). They serve as the anchors on

face and provide important information for face analy-

sis. The detection of the facial point is crucial, due to its

relevance to many vision applications like human head

pose estimation, facial expression recognition, and face

recognition.

Facial point detection algorithms usually rely on the

distinct human face shape (Figure 1(a)). The face shape

refers to the unique patters of the spatial relationships

among facial points, which are usually used to either

constrain the searching areas or correct the estimations

from the image appearance. However, modeling the face

shapes is challenging, since they can vary significantly

with subjects, poses and facial expressions.

The existing works (Cristinacce and Cootes, 2008;

Zhu and Ramanan, 2012; Saragih et al, 2011; Martinez



2 Yue Wu, Qiang Ji

et al, 2013; Valstar et al, 2010) usually construct gen-

erative model to capture the face shape variations as

prior and combine it with the measurements for facial

point detection. However, there are some shortcomings

about the existing works. First, combining the gener-

ative face shape prior model with the measurements

requires extra efforts and it may rely on some strong as-

sumptions (e.g. iid assumptions about the parameters

of active shape model). Second, the existing models are

only powerful in capturing the local spatial relationship

among sets of facial points (Martinez et al, 2013; Valstar

et al, 2010; Zhu and Ramanan, 2012), but the spatial

relationship among all facial points is high order and

global. Third, even though there are some works (Cristi-

nacce and Cootes, 2008; Saragih et al, 2011) that cap-

ture the global spatial relationship among all points,

their models are linear which may not be effective when

the face shape variation is large due to different facial

expressions and poses. To overcome the limitations of

the existing methods, in this paper, we propose the

novel discriminative deep face shape model which is

non-linear, higher order, and directly combines the prior

and measurement in a unified model.

The discriminative deep face shape model proposed

in this paper captures the significant face shape vari-

ations under varying facial expressions and poses for

different subjects, and it is constructed based on the

factorized three-way Restricted Boltzmann Machines

(RBM) model (Memisevic and Hinton, 2010). It com-

bines top-down information from the face shape pat-

terns, and the bottom-up measurements from the lo-

cal facial point detectors in a unified framework. Along

with the model, we propose the effective algorithms to

perform model learning and to infer the true facial point

locations given their measurements. Finally, we demon-

strate that the facial point detection algorithm based

on the deep face shape model performs well on images

in both controlled and “in-the-wild” conditions against

the state-of-the-art approaches.

The remainder of this work is organized as follows.

In section 2, we review the related work. In section 3,

we will introduce the proposed discriminative deep face

shape model. We will discuss how to use the face shape

model for facial point detection in section 4. A compre-

hensive evaluation of the proposed method, including

the comparison with state-of-the-art works is provided

in section 5. We then conclude the paper in section 6.

2 Related work

2.1 Facial point detection

The facial point detection methods can be classified

into two major categories: the holistic methods, and

the constrained local methods. The holistic methods

predict the facial point locations from the whole facial

images. The constrained local methods usually have two

separate parts, including the local point detectors that

generate the initial measurements of the facial point lo-

cations from the images, and a face shape model that

constrains the results based on the embedded face shape

patterns. This research follows the framework of the

Constrained Local methods.

Holistic methods: the classic holistic method is

the Active Appearance Model (AAM) (Cootes et al,

2001). It is a statistical model that fits the facial im-

ages with a small number of parameters, controlling

the appearance and shape variations. Over the past

decades, researches focused on estimating the model

parameters, either with a regression method or in a

least-square sense. Typical methods include the project-

out inverse compositional algorithm (POIC) (Matthews

and Baker, 2004), the simultaneous inverse composi-

tional algorithm (SIC) (Baker et al, 2002), and the fast

SIC algorithm (Tzimiropoulos and Pantic, 2013).

Besides the AAM methods, recently, more sophisti-

cated models are proposed. For example, in (Sun et al,

2013) and (Zhou et al, 2013), a set of deep convolu-

tional networks are constructed in a cascade manner

to detect the facial points. In (Xiong and De la Torre

Frade, 2013), face alignment is formulated as a nonlin-

ear least-square problem and robust supervised descent

method is proposed to fit the facial images.

Constrained local methods: the constrained lo-

cal methods decouple the information from the facial

appearance and shape by explicitly building the re-

sponse maps from the independent local patch-based

point detectors, and the shape model, which are then

combined together to predict the locations of the facial

points.

There are some works that focus on improving the

face shape model. The early work is the Active Shape

Model (ASM) (Cootes et al, 1995; Cristinacce and Cootes,

2008; Saragih et al, 2011), which represents the shape

variations in a linear subspace based on the Principle

Component Analysis. More recently, in (Valstar et al,

2010; Martinez et al, 2013), a generative shape model

embedded in the Markov Random Field is proposed,

which captures the spatial relationships among sets of

points and then combines them together. In (Zhu and

Ramanan, 2012), Zhu and Ramanan proposed a method
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that simultaneously performs face detection, pose esti-

mation, and landmark localization (FPLL). It builds a

shape prior model based on the tree structure graphical

model for each face pose. In (Le et al, 2012), two levels

of ASM are constructed, one for the shape variations of

each components and the other for the joint spatial rela-

tionship among facial components. In (Belhumeur et al,

2011, 2013), instead of using the parametric model, the

works of Belhumeur et al. represent the face shape in a

non-parametric manner with optimization strategy to

fit facial images.

In this paper, our facial point detection algorithm is

within the framework of the Constrained Local methods

and we focus on face shape model. Our face shape model

differs from the existing face shape models. First,the

existing methods (Valstar et al, 2010; Martinez et al,

2013; Zhu and Ramanan, 2012) model the relationship

among sets of points and then combine them together

(e.g. in a tree-structure), while the proposed method

jointly captures the global spatial relationship among

all the facial points in a unified non-linear deep face

model. Second, the tree structure face shape models

in (Zhu and Ramanan, 2012) are constructed for each

head pose/facial expression, and therefor rely on the

good estimation of the poses/expresions. In contrast,

our model directly captures the face shapes under vary-

ing facial expressions and poses. Third, while the exist-

ing face shape models are usually generative prior mod-

els (Valstar et al, 2010; Martinez et al, 2013; Cristinacce

and Cootes, 2008), our model direct combines the prior

and the measurements in a discriminative manner.

2.2 Restricted Boltzmann Machines based shape

model

Recent works have shown the effectiveness of Restricted

Boltzmann Machines and their variants in terms of rep-

resenting objects’ shapes. Due to the nonlinear and

global nature embedded in these models, they are more

suitable for capturing the variations of objects’ shape,

compared with the linear models like the Active Shape

Model (ASM) (Cootes et al, 1995). In (Eslami et al,

2012), Eslami et al. proposed a strong method based

on Boltzmann Machines to model the binary masks of

objects, instead of the vertices of the key points. Specif-

ically, they build a Deep Belief Networks(DBNs)-like

model but with only locally shared weights in the first

hidden layer to represent the shape of horse and motor-

bikes. The sampling results from the model look realis-

tic and have a good generalization. RBM also has been

applied to model human body pose. In (Taylor et al,

2010), Taylor et al. proposed to use a new prior model

called implicit mixture of conditional Restricted Boltz-

mann Machines to capture the human poses and mo-

tions (imRBM). The mixture nature of imRBM makes

it possible to learn a single model to represent the hu-

man poses and motions under different activities such

as walking, running, etc. In (Kae et al, 2013), Kae et al.

proposed an augmented CRF with Boltzmann machine

to capture shape priors for image labeling. In (Wu et al,

2013), we proposed a generative model to capture the

face shape variations as prior. It is then combined with

the measurements for facial point tracking, even when

subject is with significant facial expressions and poses.

There are some major difference between our deep

face model and the previous shape model that are based

on the Restricted Boltzmann Machine. First, the pro-

posed shape model has a different deep structure from

the previous methods and it is specifically constructed

to model the face shapes under varying facial expres-

sions and poses. Second, in contrast to our previous

work (Wu et al, 2013), in which Restricted Boltzmann

Machine is used to build a generative model to capture

the face shape as prior, the proposed model in this pa-

per is discriminative and it directly combines the prior

with the measurements. The generative model needs

more data to train and is problematic in combining with

image measurements for discriminative facial landmark

detection task. Third, we introduce learning algorithm

to ensure the model learning with both complete and

incomplete data. The whole model is learned jointly,

which is in contrast to our previous work (Wu et al,

2013) where parts of the model are learned indepen-

dently.

3 Deep face shape model

3.1 Problem formulation

Given the initial locations of the 68 facial points m =

[m1,x,m1,y, ...m68,x,m68,y]T generated using the indi-

vidual facial point detectors, our goal is to infer their

true locations x = [x1,x, x1,y, ..., x68,x, x68,y]T . This can

be formed in a probabilistic formulation:

x∗ = argmax
x

P (x|m) (1)

The probability in Equation 1 captures the conditional

joint probability of x given their measurements m. It

also embeds the face shape patterns as constraints. If we

can construct a face shape model to effectively represent

the probability, we can find the true facial point loca-

tions by maximizing the conditional probability. How-

ever, due to cross-subject variations, different poses and

expressions, the probability is multimodal and difficult
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to model. To alleviate the problem, we propose the fol-

lowing deep face shape model.

3.2 Model

As shown in Figure 2, the deep face shape model con-

sists of three layers of nodes, where x denotes the ground

truth facial point locations that we want to infer, and m

is their measurements from the local point detectors. In

the middle layer, node y represents the corresponding

frontal face shapes of x with the same facial expression.

Figure 4 shows a pair of corresponding images as an

example. y can be regarded as additional data that is

available for some facial images during training. In the

top layer, there are two sets of binary hidden nodes,

including h1 and h2.

The model captures two levels of information. The

first level of information refers to the face shape pat-

terns captured with the nodes in two top layers, includ-

ing x,y,h1 and h2. The second level of information is

the input from the measurements m. In the model, it

jointly combines the top-down information from face

shape patterns and the bottom-up information from

the measurements. In the following, we explain each

part separately.

Top two layers: The nodes in the top two layers

capture the joint spatial relationship among all facial

points, as represented by x, under varying facial ex-

pressions, poses, and for different subjects. It consists

of two parts. In the right part, h2 represents the hid-

den nodes that are connected to x, following a standard

Restricted Boltzmann Machine (RBM) connection as

shown in Figure 3 (c). In the left part, to better model

the shape variations, we explicitly add the nodes y in

the middle layer, which represents the corresponding

frontal face shape of x with the same facial expression.

The idea is that similar frontal face shape relates to

similar non-frontal face shape through the hidden nodes

h1, which captures the pose information. To model the

joint compatibility among face shape x with varying

poses, its corresponding frontal shape y, and their re-

lationships embedded in h1, we use the factored three-

way Restricted Boltzmann Machine model (Memisevic

and Hinton, 2010; Ranzato et al, 2010). Figure 3 (a)(b)

show their connections in details. Each node xi, yj ,

and h1k are connected to a factor f with parameters

{W x
i,f ,W

y
j,f ,W

h1

k,f}. With multiple factors, the model

captures the high order global relationship among x,

y and h1. The left (h1 and y) and right (h2) parts are

complementary with each other. h1 would focus on the

variations due to poses and h2 may focus on the other

variations that are not related to poses (e.g. facial ex-

pressions in frontal pose).

Bottom layer: The nodes in the bottom layer model

the joint compatibility among the facial feature point

locations x and their measurements m. The connection

of x and m is shown in Figure 3 (d). We model their

compatibility with the standard RBM model.

1hW

yW

xW 2W

1W

Fig. 2 The proposed discriminative deep face shape model.
It consists of a factorized three-way RBM connecting nodes
x, y, and h1. It also includes two RBMs that model the
connections among x, h2 and m, x, respectively.

1

,
h

k fW

,
y
j fW ,

x
i fW

(a) (b)

(c) (d)

Fig. 3 Graphical depiction about different parts of the
model. (a)(b) Factored three way RBM model that captures
the joint compatibility among nodes x,y,h1. (c) Model con-
necting x and h2 (d) Model connecting m and x.

Given the model structure, the joint energy func-

tion is defined in Equation 2 with model parameter

θ = {W x, W y,Wh1

,W 1,W 2, cx, cy, bh
1

, bh
2}. Specifi-

cally, W x ∈ <dx×df , W y ∈ <dy×df , Wh1 ∈ <dh1×df

are parameters that model the compatibility of nodes

x,y,h1 in the 3-way connection. Here, d∗ represents

the dimension of the corresponding variable. Similarly,

W 1 ∈ <dm×dx and W 2 ∈ <dx×dh2 are parameters for

the connections of m,x and x,h2, respectively. cx ∈
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(a) (b)

Fig. 4 Corresponding images. (a)Images with poses and ex-
pressions, indicated as x. (b) Corresponding frontal face, rep-
resented as y.

<dx , cy ∈ <dy , bh
1 ∈ <dh1 , and bh

2 ∈ <dh2 represent

the bias terms for corresponding variables.

− E(x,y,m,h1,h2; θ)

=
∑
f

(
∑
i

xiW
x
i,f )(

∑
j

yjW
y
j,f )(

∑
k

h1
kW

h1

k,f )

+
∑
m,i

mmW
1
m,ixi +

∑
i,l

xiW
2
i,lh

2
l

+
∑
i

xic
x
i +

∑
j

yjc
y
j +

∑
k

h1
kb
h1

k +
∑
l

h2
l b
h2

l

(2)

As illustrated in Equation 1, our goal is to cap-

ture the conditional joint probability of the true facial

point locations given their measurements. Therefore, in-

stead of building a generative model, we directly model

the conditional probability with a discriminative model.

Specifically, the discriminative model defines the con-

ditional joint probability P (x,y|m; θ) and conditional

probability P (x|m; θ) in Equation 3 and 4. Zm(θ) is the

partition function defines in Equation 5.

P (x,y|m; θ) =

∑
h1,h2 exp(−E(x,y,m,h1,h2; θ))

Zm(θ)
,

(3)

P (x|m; θ) =

∑
y,h1,h2 exp(−E(x,y,m,h1,h2; θ))

Zm(θ)
,

(4)

Zm(θ) =
∑

x,y,h1,h2

exp(−E(x,y,m,h1,h2; θ)) (5)

The conditional probabilities of one variable given

the other variables and m are shown in Equation 6, 7,

8, and 9.

P (xi = 1|y,h1,h2,m; θ) =

σ(
∑
f

Wx
i,f (

∑
j

yjW
y
j,f )(

∑
k

h1
kW

h1

k,f )

+
∑
m

mmW
1
m,i +

∑
l

W 2
i,lh

2
l + cxi )

(6)

P (yj = 1|x,h1; θ) =

σ(
∑
f

Wy
j,f (

∑
i

xiW
x
i,f )(

∑
k

h1
kW

h1

k,f ) + cyj ) (7)

P (h1
k = 1|x,y; θ) =

σ(
∑
f

Wh1

k,f (
∑
i

xiW
x
i,f )(

∑
j

yjW
y
j,f ) + bh

1

k ) (8)

P (h2
l = 1|x; θ) = σ(

∑
i,l

xiW
2
i,l + bh

2

l ) (9)

3.3 Learning the face shape model

We refer model learning as to jointly learn the model

parameters θ given the training data. We have two sets

of training data. The first set contains complete data

DataC = {xc,yc,mc}N
C

c=1, including the face shape x

in varying facial expressions and poses, its correspond-

ing frontal face shape y, and the measurements m.

The second set contains the incomplete data DataI =

{xi,mi}N
I

i=1, in which frontal face shape y is not avail-

able. For the incomplete data, y is also hidden variable,

therefore makes the proposed model (3-way connection

part) a deep model. One observation from (Welling and

Hinton, 2002; Hinton, 2002) is that in order for Con-

trastive Divergence (CD) algorithm (Hinton, 2002) to

work well, it requires the exact samples from the prob-

ability of the hidden nodes given the visible data. Un-

fortunately this probability is intractable in deep model

including the proposed model. To perform model learn-

ing, we use the following algorithm.

Given the data, the model parameters are estimated

by maximizing the log conditional likelihood defined in

Equation 11 and 12 with gradient ascent method.

θ∗ = argmax
θ

L(θ)

= argmax
θ

L(θ;DataC) + L(θ;DataI)
(10)

L(θ;DataC) =
1

NC

NC∑
c=1

log(P (xc,yc|mc; θ)) (11)

L(θ;DataI) =
1

NI

NI∑
i=1

log(P (xi|mi; θ)) (12)

The gradient of model parameters are calculated as:

∂L(θ)

∂θ
= −〈∂E

∂θ
〉PCdata − 〈

∂E

∂θ
〉P Idata + 〈∂E

∂θ
〉Pmodel . (13)

It contains three terms. The first and second terms in-

dicate the expectations over the complete data PC
data =

p(h1,h2|xc,yc,mc; θ), and the incomplete data P I
data =

p(h1,h2, ŷ|xi,mi; θ), respectively. The third term rep-

resents the expectation over the model for all the data

Pmodel = p(h1,h2, ỹ, x̃|mq; θ), q ∈ DataC
⋃
DataI . In

the following, we explain how to estimate each term.



6 Yue Wu, Qiang Ji

The estimation of the data dependent probability

for the complete data in the first term of Equation 13

could be done through Equation 8 and 9, since hid-

den nodes are independent given x and y. For the sec-

ond term, directly estimation of the data dependent

probability for the incomplete data is intractable, since

only x is given and y,h1,h2 are all hidden nodes. To

tackle this problem, we follow (Salakhutdinov and Hin-

ton, 2009) and pursue the variational learning method,

which results in the mean-field fixed point equations as

shown in Equation 14, 15, 16. In this method, we iter-

atively estimate and update the values of y, h1 and h2

with their mean-field estimation results. To estimate

the model expectation in the third term, we use the

Persistent Markov Chains for each data based on Equa-

tion 6, 7, 8, 9. The overall model learning algorithm is

shown in Algorithm 1.

yj ← σ(
∑
f

W y
j,f (

∑
i

xiW
x
i,f )(

∑
k

h1kW
h1

k,f ) + cyj ) (14)

h1k ← σ(
∑
f

Wh
k,f (

∑
i

xiW
x
i,f )(

∑
j

yjW
y
j,f ) + bh1

k ) (15)

h2l ← σ(
∑
i,l

xiW
2
i,l + bh

2

l ) (16)

3.4 Inference of the facial point locations given their

measurements in the face shape model

During testing, we infer the true facial feature loca-

tions x given their measurements m using Equation 1

and 4. In Equation 4, calculating the conditional prob-
ability involves the estimation of the partition function

that sums over all the variables. The estimation is in-

tractable if the dimensions of the variables are high. To

alleviate the problem, we pursue the Gibbs Sampling

method which relies on the conditional probabilities

of one variable given all the other variables which are

tractable in the deep model. Those conditional proba-

bilities are defined in Equation 6, 7, 8, 9.

The overall algorithm is shown in Algorithm 2. The

input is the measurements of facial point locations in-

dicated as m, and the model parameters θ that defines

the conditional probability P (x|m; θ). The output is

the estimated true facial point locations x∗. The al-

gorithm starts by randomly initializing all the hidden

variables in the multiple chains c = 1, ...C, including x,

y, h1, and h2. Within each iteration, the Gibbs Sampler

samples each variable from their conditional probabil-

ity, assuming other variables are given. This involves

the sampling of x, y, h1, and h2 in a sequential man-

ner using Equation 6, 7, 8, 9. After that, we collect the

Algorithm 1 Learning the deep face shape model.

Input: Complete data {xc,yc,mc}N
C

c=1, including the face
shape in arbitrary pose and expression, its measurement,
and its corresponding frontal shape with same expres-
sion. Incomplete data {xi,mi}N

I

i=1 without the frontal face
shape.
Output: Model parameters θ = {Wx,Wy,Wh1

,W 1,

W 2, cx, cy, bh
1

, bh
2}.

Randomly initialize the parameters θ0, and the chains for
each data.
for iteration t=0, to T do

(a) For each complete training data {xc,yc,mc} ∈
DataC

Calculate the data dependent probability through
Equation 8 and 9.

Sample h1
c and h2

c from these probabilities.
(b) For each incomplete training data {xi,mi} ∈

DataI

Randomly initialize ŷi,h1
i,h2

i and run mean-field up-
dates using Equation 14, 15, 16 for a few updates until
convergence.

Set ŷi,h1
i,h2

i as their mean-filed results
(c) For each training data q ∈ DataC

⋃
DataI , and its

chains k=1...K.
Run the Gibbs sampler for a few steps, and get

the updated states {x̃t,kq , x̃t,kq , h̃1,t,k
q , h̃2,t,k

q } through the
Chains.

(d) Update.

θt+1 = θt + αt(∂L(θ)

∂θ
). For example,

W 2,t+1 = W 2,t + αt[(
∑NC

c xTc h
2
c) + (

∑NI

i xTi h
2
i) −

1
K

(
∑NC+NI

q

∑
k(x̃t,kq )T h̃2,t,k

q )]/(NC +NI).

decrease αt

end for

samples to estimate P (x|m). Then, the facial point lo-

cations x∗ are set as the values that can maximize the

conditional probability.

Algorithm 2 Infer the facial point locations x given

their measurements in the deep face shape model using

Gibbs Sampling.
Input: The measurements m from independent point de-
tectors, and model parameters θ that defines P (x|m; θ)
Output: The inferred facial point locations x∗

for chain c=0, to C do
Randomly initialize the values of all hidden variables

x,y,h1, and h2.
for iteration t=0, to T do

sample x given m,y,h1 and h2 using Equation 6.
sample y given x and h1 using Equation 7.
sample h1 and h2 given x and y using Equation 8

and 9.
end for

end for
For each chain, collect the last K samples of x and

estimate P (x|m) from the samples.
Estimate x∗ = argmaxx P (x|m).
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3.5 Major contributions of the proposed model

There are several important properties and benefits of

the proposed model:

1. The discriminative deep face shape model combines

top-down and bottom-up information in a unified

framework. The top-down information refers to the

face shape patterns embedded in the top two lay-

ers through multiple hidden nodes. The bottom-up

information refers to the input from the measure-

ments. More importantly, the proposed model com-

bines the top-down and bottom-up information in

a discriminative manner, and it directly model the

conditional distribution P (x|m). In contrast, our

previous work (Wu et al, 2013), the Active Shape

Model (Cootes et al, 1995; Cristinacce and Cootes,

2008; Le et al, 2012), and some state-of-the-art works (Mar-

tinez et al, 2013; Valstar et al, 2010; Zhu and Ra-

manan, 2012) usually model P (x) and learn the face

shape prior during training. This generative face

shape prior is then combined with the measurements

during testing, although some of them may train

these generative models discriminatively.

2. The non-linear deep model directly captures the high

order dependencies among all 68 facial feature points,

while the previous works (Martinez et al, 2013; Val-

star et al, 2010; Zhu and Ramanan, 2012) usually

capture the relationship among sets of points and

then combine them together. In addition, the pro-

posed unified model captures the face shape varia-

tions due to different kinds of facial expressions and

poses, while the tree-based shape model in (Zhu and

Ramanan, 2012) is constructed for each pose/facial

expression. The negative consequence is that they

need to search for the facial landmark locations un-

der each pose (or expression) and search over poses

(or expressions).

3. Besides the standard connection through RBM (con-

nection through nodes h2), the model explicitly lever-

ages the additional frontal face shapes to help the

learning (nodes h1 and y). The intuition is that

similar frontal face y with similar facial expressions

would lead to similar face shapes x with face poses,

where the transition is captured through different

hidden nodes in h1. In this case, the proposed model

is specifically designed to model the face shape pat-

terns under varying facial expressions and poses,

and it is different from the existing RBM based

shape model.

4. The model is learned with both complete and in-

complete data which is different from our previous

work (Wu et al, 2013). Due to the existent of the

incomplete data, the model is deep. Therefor, Con-

trastive Divergence (CD) (Hinton, 2002) is not ef-

fective, since it requires the exact estimate of the

probability of hidden nodes (Welling and Hinton,

2002; Hinton, 2002). To tackle this problem, we pro-

pose an effective learning method. We jointly learn

the whole model in this work, while our previous

work (Wu et al, 2013) learns sperate parts of the

model and combines them together.

4 Facial point detection using the face shape

model

4.1 Facial point detection algorithm

Our facial point detection algorithm is illustrated in

Figure 5. The algorithm starts with face detection. Within

the bounding box, the algorithm generates the measure-

ments from the independent local point detectors, and

constrains the results through the discriminative deep

face shape model iteratively. In each iteration, the lo-

cal point detectors (will be discussed in Section 4.2)

search each facial point independently (e.g. eye corner

as in (b)). As shown in (c), the results from indepen-

dent point detectors are treated as measurements which

are then constrained and refined through the face shape

model (discussed in Section 3.4). Finally, the algorithm

outputs the locations of the facial points as shown in

(d).

(b) Generate the 
measurements with 
the independent local 
point detectors

(c) Refine the 
measurements 
through inference in 
the face shape model

(a) Facial images (d) Facial feature point 
detection results

iterative

Fig. 5 Diagram illustration of the facial point detection al-
gorithm. (a)The algorithm starts with face detection. The lo-
cal point detection and face shape constrains are performed
iteratively in (b)(c). (d) The detected facial points.
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4.2 Local point detector

An integral part of our facial point detection algorithm

is the facial point detectors. It detects each facial point

independently based on the local image patches. The

detector results are served as the input to the face shape

model, and used to infer the true facial point locations.

In section 5.3, we evaluate different local point detectors

and the combinations of those local point detectors with

the proposed discriminative deep face shape model.

5 Experimental results

5.1 Data sets

In this experiments, we used four benchmark databases

and some sample images can be found in Figure 13.

CMU Multi-PIE face (MultiPIE) database:

The MultiPIE database (Gross et al, 2010) is collected

in controlled conditions with lab environment. It con-

tains 337 subjects, imaged under 15 view points and 19

illumination conditions with six expressions, including

neutral, smile, surprise, squint, disgust, and scream.

Helen dataset: The Helen dataset (Le et al, 2012)

contains high quality “in-the-wild” facial images searched

from the website with a variety of keywords which leads

to facial images with arbitrary expressions, poses, illu-

minations, etc. There are 2000 images in the training

set and 330 in the testing set.

Labeled Face Parts in the Wild (LFPW): The

LFPW dataset (Belhumeur et al, 2011) contains “in-

the-wild” facial images collected from the website with

significant variations. Due to broken URLs, we are only

able to download 800 images as training set, and 224

images as testing set.

Annotated Face in the Wild (AFW) database:

The AFW database (Zhu and Ramanan, 2012) contains

205 “in-the-wild” images with 468 faces collected from

Flickr. Images contain cluttered backgrounds with ar-

bitrary viewpoints, expressions and appearances.

5.2 Implementation details

Training and testing data: For training, we used the

training sets from Helen and LFPW datasets and the

images from the first 200 subjects in MultiPIE database

(2500 images). There are four testing sets, including

the provided testing sets from Helen and LFPW, the

AFW database, and our collected testing set from Mul-

tiPIE. The testing set from MultiPIE includes images

of the remaining subjects (id 201-337) not used during

training (1054 images). To ensure fair comparison with

state-of-the-art approach (Martinez et al, 2013), we also

choose images with no larger than 30 degree pose angles

and arbitrary illuminations and expressions. The facial

point annotations are provided either by the database

or by the iBug group (Sagonas et al, 2013b,a). Since the

facial images are with great scale change, we normalize

the images based on the size of the face bounding box.

Deep face shape model: In the deep face shape

model, the number of hidden nodes h1, factors and hid-

den nodes h2 are 100, 64 and 300 respectively, deter-

mined from the training data. Following (Salakhutdinov

and Hinton, 2009), we preprocess the continuous data

with the Gaussian-binary RBM (GRBM) model (Hin-

ton and Salakhutdinov, 2006; Mohamed et al, 2011) and

then treat the values of the hidden layers as the prepro-

cessed data to speed up the learning process. Before the

input to the GRBM, the training data is first normal-

ized so that the standard deviation equals to 1. In this

case, the sigma of GRBM is fixed and we only need to

learn the mean.

Evaluation criteria: We measure the error using

the displacement w.r.t the ground truth normalized by

the inter-ocular distance in Equation 17.

error =
||D − L||2

||Lleye − Lreye||2
, (17)

where D and L represent the detected and labeled facial

point locations. Lleye and Lreye indicate the locations

of left and right eyes, respectively. Through out the

experiments, we detect 68 facial landmarks, but there

are two sets of points for evaluations. The first set only

includes 17 interior points defined in (Cristinacce and

Cootes, 2008). The second set includes all 68 points.

We indicate the error measurements for these two sets

as me17 and me68, respectively.

5.3 Results

The proposed algorithm consists of the local point de-

tectors and the discriminative deep face shape model.

In this section, we evaluate the varying local point de-

tectors, the proposed face shape model, their differ-

ent combinations, and the comparison of the proposed

method with the state-of-the-art works in terms of ac-

curacy and computational efficiency.

5.3.1 Local point detectors

For each facial landmark, the local point detector scans

a region and classifies the patch at each pixel location.

It consists of a feature descriptor to encode the infor-

mation of each image patch and a classifier. In our ex-

periments, we evaluate a few feature descriptors and
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classifiers. They are (1) Scale Invariant Feature Trans-

form (SIFT) features (Lowe, 2004) + L2 regularized Lo-

gistic Regression (LR) (Fan et al, 2008) classifier, (2)

Histograms of Oriented Gradients (HOG) (Dalal and

Triggs, 2005) features + LR, (3) learned features us-

ing Deep Boltzmann Machine (DBM) (Salakhutdinov

and Hinton, 2009) + LR, (4) learned features using

DBM + Neutral Network as described in (Salakhut-

dinov and Hinton, 2009), and (5) the reported local

detectors and their results in (Belhumeur et al, 2011,

2013) which use two scale SIFT features with Support

Vector Regressor (SVR) (Smola and Schölkopf, 2004).

We cut the local image patch centered at the ground

truth point locations as positive data and the negative

patches are at least 1/4 the inter-ocular distance away

from the ground truth. The patch height and width are

about 1/4 the inter-ocular distance and all the patches

are then normalized to 25*25. To learn the features, we

use two layers DBM with 1000 and 800 hidden nodes

in the first and second layers. Following (Salakhutdi-

nov and Hinton, 2009), we preprocess the continuous

data using the Gaussian-binary RBM model (Hinton

and Salakhutdinov, 2006; Mohamed et al, 2011) with

1000 hidden nodes and then treat the values of the hid-

den layers as the preprocessed data to speed up the

learning process. We test all the local point detectors

on the LFPW database and measure the errors on the

17 points.

The experimental results are shown in Figure 6.

Comparing (1)(2)(3), we see that SIFT, HOG, and the

learned features perform similarly, where HOG is slightly

better. Comparing (3)(4), we see that Logistic Regres-

sion and Neutral Network perform similarly with the

same learned features using DBM. Our implementa-

tions including (1)-(4) achieve similar performance as

the reported results (5) on the same testing database

with same evaluation criteria.

5.3.2 Face shape model

In this section, we evaluate the face shape model. First,

we compare the proposed discriminative deep face shape

model as described in section 3 and Figure 2, with its

variations shown in Figure 7 using the same local point

detectors (HOG+LR) on the LFPW database. Specif-

ically, by excluding the 3-way connection in the pro-

posed model, we get the model shown in Figure 7 (a),

which can be regarded as a conditional RBM model. By

excluding the hidden nodes h2 in the original proposed

model, we get the model shown in Figure 7 (b), which

can be considered as a conditional 3-way RBM model.

The connections and parameterizations are the same as

the proposed model. There are 500 hidden nodes in the
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(5)SIFT(2 scales)+ SVR (*)

Fig. 6 Comparing local point detectors with different fea-
ture descriptors and classifiers. They are (1) SIFT + Logistic
Regression (LR), (2) HOG + LR, (3) Learned features using
Deep Boltzmann Machine (DBM) + LR, (4) Learned features
using DBM + Neutral Network (NN), and (5) the reported
local detectors (Belhumeur et al, 2011, 2013) which use two-
scales SIFT features with Support Vector Regressor (SVR).
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Fig. 7 Different variations of the proposed model.(a) Model
only with h2 (CRBM). (b) Model only with y and h1 (Con-
ditional 3-way RBM).
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(1) Model with Y, H1 and H2 (proposed model)
(2) Model wit H2 (CRBM)
(3) Model with Y and H1 (conditional 3−way RBM)

Fig. 8 Comparing different variations of the proposed model.

CRBM model, 300 hidden nodes and 128 factors in the

conditional 3-way RBM model. Both models learn the

conditional probability as the proposed model. To train

the conditional 3-way RBM model, we use both com-

plete and incomplete data with the proposed learning

method. For the CRBM training, the proposed learn-

ing algorithm becomes similar as the persistent CD al-

gorithm (Tieleman, 2008). As shown in Figure 8, the

proposed model with both parts performs better than

CRBM and conditional 3-way RBM models.
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Fig. 9 Comparing the proposed discriminative deep face
shape model with the tree-based model of FPLL method (Zhu
and Ramanan, 2012) on the LFPW database.

Second, we compare the proposed method to the

FPLL method in (Zhu and Ramanan, 2012) with tree-

based face shape model. In this experiment, to ensure

fair comparison and focus on the face shape model, both

methods are utilizing the same HOG feature descriptor,

retrained on the same MultiPIE database and tested on

the LFPW database. We use the public available code

from the authors. It is important to notice that this

setting is biased in favor of the FPLL method. Specif-

ically, we restrict the training database to MultiPIE,

since FPLL requires the fully supervised data with fa-

cial landmark, facial expression and head pose annota-

tions, while our model does not have this requirement.

In addition, in the original work, tree-based face shape

models are constructed for each head pose and facial ex-

pression while our model encodes the face shape varia-

tions of varying head poses and facial expressions. Even

with this advantage, the tree-based method performs

worse than the proposed method as shown in Figure 9.

5.3.3 Facial point detection algorithm

In this section, we evaluate the overall facial point de-

tection algorithm with the proposed discriminative deep

face shape model.

First, we visualize the performance of the facial point

detection algorithm in different iterations on one sam-

ple image. As shown in Figure 10 (a), the initial esti-

mations of the points from the local point detectors are

poor, especially for the contour points. Given the poor

initial measurements, the algorithm constrains their lo-

cations through the deep face shape model, leading to

the results shown in Figure 10 (b). As shown in Figure

6 (c)(d)(e), the algorithm iteratively achieves reason-

able results even at iteration 3, and the error converges

quickly after 8 iterations. In practice, we stop the algo-

rithm if the facial landmark locations in two consecutive

iterations do not change.

(a) std=10% (b) std=20% (c) std=30%
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Fig. 11 Evaluate the robustness of the algorithm with differ-
ent initial detection accuracies on the LFPW database (Bet-
ter see in color). (a)(b)(c) show the synthesized initial de-
tections results (green dots) by perturbing the ground truth
(white stars) with different Gaussian noises (std=10%, 20%,
30% of the inter-ocular distance). (d)The facial point detec-
tion results on LFPW with different noise levels. (e) Number
of iterations required for convergence with different noise lev-
els.

Second, we evaluate the robustness of the algorithm

on different initial detection accuracies on the LFPW

database using the proposed method (HOG+LR as lo-

cal point detectors). Specifically, we generate synthetic

initial detection results by adding different levels of

Gaussian noise to the ground truth locations. The stan-

dard derivations of the Gaussian noise equal to 10%,

20%, and 30% of the inter-ocular distance, respectively.

Figure 11(a)-(c) show different initializations on one

sample image. As shown in Figure 11(d)(e), the algo-

rithm achieves almost identical results with a slightly

increase of the number of iterations for large noise level.

Third, we evaluate different local point detectors de-

scribed in section 5.3.1 with the proposed discrimina-

tive deep face shape model on LFPW database. As can

be seen from Figure 12 (a), the combination of learned

features (DBM), Neural Network as local point detec-

tors, and the proposed shape model achieves the best

results. As in Figure 12 (b), comparing to the measure-

ments from local point detectors, the detection rates

of the algorithm with the proposed discriminative deep

face shape model increase dramatically for all different

combinations.

Forth, we evaluate the algorithm on all four bench-

mark databases, including the MultPIE, Helen, LFPW

and AFW databases. In this experiment and the exper-

iments below we use the learned features and the Neu-

ral Network as local point detectors since they perform

the best on the LFPW database as shown in the last

experiment. Figure 13 shows our detection results on



Discriminative Deep Face Shape Model for Facial Point Detection 11

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Interation Round

m
−6

8 
er

ro
r n

or
m

al
iz

ed
 b

y 
in

te
r−

oc
lu

ar
 d

is
ta

nc
e

(a) Measurements (b) Iteration 1 (c) Iteration 3 (d) Iteration 20 (e) results

Fig. 10 Facial point detection errors for different iterations on one sample image. (a) measurements from local point detectors.
(b)(c)(d) show results for different iterations. (e)average errors across iterations.
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Fig. 12 (a) Facial point detection results on LFPW using
different combinations of local point detectors and the pro-
posed discriminative deep face shape model. (b) Comparing
the detection rates (percentage of images on which error <
10% of inter-ocular distance) of the local point detectors and
the algorithms with the shape model.

some representative images. We can see from the figure

that the facial point detection algorithm is robust on

images with varying illuminations, poses, facial expres-

sions, occlusions (by eyeglasses, sunglasses, hair, and

objects), resolutions, etc. The results demonstrate that

our method can accurately detection facial points on

image in both controlled and “in-the-wild” conditions.

Figure 14 (a) shows the average results for each facial

point across four testing databases, including MultiPIE,

Helen, LFPW, and AFW, and the point index can be

found in Figure 14 (b). As can be seen, points around

eyes can be detected robustly, while contour points are

difficult to detect. The is due to the fact that contour

points are less distinctive and tend to be occluded by

hair, and other objects.

5.3.4 Comparison with the state-of-the-art works

In this section, we compare our work with 7 state-

of-the-art works, including the FPLL (Zhu and Ra-

manan, 2012), the LEAR (Martinez et al, 2013), the

RLMS (Saragih et al, 2011), the Consensus of exem-

plars (Belhumeur et al, 2011, 2013), the interactive method

(Le et al, 2012), the AAM fitting in the wild (Tzimiropou-

los and Pantic, 2013), and the Supervised descent method

(Xiong and De la Torre Frade, 2013). The first five

works follow the framework of the Constrained Local

Methods and their algorithms are based on sophisti-

cated face shape models. The later two approaches are

the holistic methods. Here, we use learned features and

NN as local point detector. For the state-of-the-art works

besides FPLL method, we show the reported results

in the original papers for fair comparison. Those re-

sults are indicated using “*”. For FPLL method, since

the evaluation criteria in the original paper is different

from ours and the other state-of-the-art works, we use

the public available code provided by the authors to

generate the results for comparison.

The comparison on four testing databases is shown

in Figure 15 and Table 1. In Figure 15, we produce

the cumulative curve corresponding to the percentage

of testing images for which the error are less than spe-

cific values. On the left column, we show the popular

me17 error that averages over 17 interior points (Cristi-

nacce and Cootes, 2008). On the right column, we show

me68 that averages over all 68 points. In Table 1, we

show the percentage of images that are correctly de-

tected (average error less than 0.1) using m17, and m68

measurements, respectively.

MultiPIE testing set: The testing results on Mul-

tiPIE dataset shows that our algorithm performs ro-

bustly even if images are with varying poses, expres-

sions and illuminations. As shown in Figure 15 (a1)

and Table 1, our algorithm performs better than LEAR

(Martinez et al, 2013), especially in large poses angles.

As shown in Figure 15 (a2) and Table 1, our algorithm

outperforms RLMS (Saragih et al, 2011).

Helen testing sets: The effectiveness of the pro-

posed facial point detection algorithm on “in-the-wild”

images is supported by its performance on the Helen

databases. Figure 15 (b1)(b2), and Table 1 show that

our method outperforms the iterative method (Le et al,

2012) and FPLL method (Zhu and Ramanan, 2012) on

this testing set.
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(a)Multipie database

(b) Helen database

(c) LFPW database

(d) AFW database

Fig. 13 Detection results on sample images from four databases. (Better view in color)
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Fig. 14 Detection error (mean and std) for each point across four testing databases. (a) Detection results. (b) Point index.

LFPW testing sets: From Figure 15 (c1) and Ta-

ble 1, we see that out method outperforms the AAM

fitting in the wild (Tzimiropoulos and Pantic, 2013), the

Consensus of exemplars (Belhumeur et al, 2011, 2013),

and the FPLL method (Zhu and Ramanan, 2012). It

is slightly worse than the Supervised descent method

(Xiong and De la Torre Frade, 2013). But, Supervised

descent method detect 29 points, while our method de-

tect all 68 points. From Figure 15 (c2) and Table 1,

we see that our method outperforms FPLL (Zhu and

Ramanan, 2012) counting all the 68 points.

AFW testing sets: We perform cross-database

testing on the AFW database. Our method performs

better than FPLL (Zhu and Ramanan, 2012), as shown

in Figure 15 and Table 1. Both methods show decreased

accuracies on AFW. This indicates that AFW is a even

more challenging database than Helen and LFPW database.

We also observed in the experiments that the image

quality from AFW is poorer (e.g. low resolution, larger

pose angles, etc.). But, our facial point detection algo-

rithm manages to generate good detection results on

this challenging database.

The experimental comparison above shows that our

facial point detection algorithm based on the novel deep

face shape model outperforms the state-of-the-art ap-

proaches. It also shows that our method performs well

on images in both controlled and “in-the-wild” condi-

tions even with cross-database setting.

Efficiency: During facial landmark detection, the

inference (section 3.4) through the proposed discrimina-

tive deep face shape model is efficient and it only takes

about 0.12 second for one iteration (about 3 iterations

to process one image). The major computational cost of

the proposed method comes from the dense feature ex-

tractions of the image patches within the face region for

local point detection. Specifically, in our current imple-

mentation, it takes about 2.83, 8.85, and 77.52 seconds

to calculate the feature descriptors using SIFT, HOG

Table 1 The comparison of detection rates (error<0.1)
against state-of-the-art approaches on four benchmark
databases using the me17 and me68 error measurements.
Those algorithms include LEAR (Martinez et al, 2013),
RLMS (Saragih et al, 2011), FPLL (Zhu and Ramanan, 2012),
the interactive method (Le et al, 2012), AAM wild (Tz-
imiropoulos and Pantic, 2013), Consensus of exemplars (Bel-
humeur et al, 2011, 2013), and Supervised descent method
(Xiong and De la Torre Frade, 2013). The reported results in
the original paper are indicated as (*)

Database method accuracy(me17) accuracy(me68)

MultiPIE

0o
LEAR (20pts*) 98.0% -

RLMS (*) - 75%
Our method 98.60% 96.08%

15o
LEAR (20pts*) 96% -

Our method 97.56% 95.93%

30o
LEAR (20pts*) 65% -

Our method 75.36% 79.71%

Helen
FPLL 84.15% 61.33%

Interactive method(194pts*) - 76%
Our method 95.52% 89.91%

LFPW

FPLL 79.90% 56.70%
AAM wild(*) 93% -

Consensus exemplars (29pts*) 95% -
Supervised descent (29pts*) 100% -

Our method 99.04% 96.39%

AFW
FPLL 67.18% 51.15%

Our method 90.48% 75.82%

and learned features (DBM) for one image. In total, it

needs about 3.18, 9.2 and 78.0 seconds to detect the 68

facial landmarks on one image. The algorithm is imple-

mented mainly in Matlab and tested on Intel Core 2

Duo processor E8400.

Among all the 7 state-of-the-art works for compar-

ison, only two algorithms report their computational

complexity to detect 68 facial landmark points. Specif-

ically, the FPLL (Zhu and Ramanan, 2012) with the

tree-based face shape model requires 40 second to pro-

cess one image. Using their fast and less accurate ver-

sion, it requires about 4 second to process one image.

It is reported in (Saragih et al, 2011) that the RLMS

algorithm requires about 0.12 second to process one im-

age. Generally speaking, the computational efficiency of

the proposed algorithm is comparable with the state-of-
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the-art works. The efficiency can be further increased

if we speed up the feature extraction step or use other

strategy to generate the measurements (e.g. regression

based local point detection). This work is beyond the

scope of the paper and we will leave it as the future

work.

6 Conclusion

This paper presents a facial point detection method

that is based on a novel discriminative deep face shape

model. The discriminative deep face shape model cap-

tures the joint spatial relationship among all facial points

under varying facial expressions and poses for differ-

ent subjects. In addition, throughout the discriminative

modeling, it combines the top-down information from

the embedded face shape patterns and the bottom-up

measurements from the local point detectors in one uni-

fied model. Along with the model, we propose effec-

tive algorithms to perform model learning and to infer

the the facial point locations given their measurements.

Based on the discriminative deep face shape model, the

proposed facial point detection algorithm outperforms

the state-of-the-art approaches on both controlled and

“in-the-wild” challenging images.

As the future work, we plan to improve the accu-

racy and efficiency of the local point detector to fur-

ther boost the performance of our facial point detec-

tion algorithm. Specifically, the detection of the con-

tour points is still nontrivial and challenging for exist-

ing methods including ours. The dense feature extrac-

tion step is inefficient in our current implementation.

Another working direction is to learn the local point de-

tectors with the discriminative deep face shape model

jointly, which would further improve the performance

of the proposed facial landmark detection algorithm.
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Fig. 15 Experimental comparison with state-of-the-art works on four benchmark databases, including the MultiPIE (Gross
et al, 2010), the Helen (Le et al, 2012), the LFPW (Belhumeur et al, 2011), and the AFW (Zhu and Ramanan, 2012) databases.
Those state-of-the-art approaches include the LEAR (Martinez et al, 2013), the RLMS (Saragih et al, 2011), the FPLL (Zhu
and Ramanan, 2012), the interactive method (Le et al, 2012), AAM fitting in the wild (Tzimiropoulos and Pantic, 2013),
Consensus of exemplars (Belhumeur et al, 2011, 2013), and the Supervised descent method (Xiong and De la Torre Frade,
2013). For each row, we show the results for one database. On the left and right columns, we show the comparison based on
the average error over 17 (Cristinacce and Cootes, 2008) and 68 points, respectively. The reported results in each paper are
indicated as (*).


