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Abstract

Most eye trackers basedon active IR illumination require distinctiv e bright pupil

e ect to work well. However, due to a variety of factors such aseye closure,eye occlu-
sion, and external illumination interference, pupils are not bright enoughfor these
methods to work well. This tends to signi cantly limit their scope of application.
In this paper, we present an integrated eye tracker to overcomethese limitations.

By combining the latest technologiesin appearance-basecbbject recognition and
tracking with active IR illumination, our eye tracker can robustly track eyes un-
der variable and realistic lighting conditions and under various face orientations.

In addition, our integrated eye tracker is able to handle occlusion, glasses,and to
simultaneously track multiple peoplewith di erent distancesand posesto the cam-
era. Results from an extensive experiment shows a signi cant improvemert of our
technique over existing eye tracking techniques.
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1 Intro duction

As one of the saliert features of the human face, human eyes play an im-
portant role in facedetection, facerecognition and facial expressionanalysis.
Robust non-intrusive eye detection and tracking is a crucial step for vision
basedman-madine interaction technology to be widely acceptedin common
ernvironments sud ashomesand o ces. Eye tracking hasalsofound applica-
tions in other areasincluding monitoring human vigilance[1], gaze-cotingent
smart graphics[2], and assistingpeoplewith disability. The existing work in
eye detectionand tracking canbe classi edinto two categoriestraditional im-
agebasedpassiw approadiesand the active IR basedapproadies.The former
approatesdetect eyesbasedon the unique intensity distribution or shape of
the eyes. The underlying assumptionis that the eyes appear di erent from
the rest of the face both in shape and intensity. Eyes can be detected and
tracked basedon exploiting thesedi erences. The active IR basedapproad,
on the other hand, exploits the spectral (re ectiv e) properties of pupils under
near IR illumination to produce the bright/dark pupil e ect. Eye detection
and tracking is accomplishedby detecting and tracking pupils.

The traditional methods can be broadly classi ed into three categories:tem-
plate based methods [3{9,8,10,11], appearancebased methods [12{14] and
feature basedmethods [15{23]. In the template basedmethods, a genericeye
model, basedon the eye shape, is designed rst. Template matching is then
usedto seart the image for the eyes. Nixon [10] proposedan approad for
accuratemeasuremen of eye spacingusing Hough transform. The eye is mod-
eled by a circle for the iris and a \tailored" ellipse for the scleraboundary.
Their method, howewer, is time-consuming,needsa high cortrast eye image,
and only works with frontal faces.Deformabletemplates are commonly used
[3{5]. First, an eye model, which is allowed to translate, rotate and deformto
t the bestrepresemation of the eye shape in the image, is designed.Then,
the eye position can be obtained through a recursive processin an energy
minimization senseWhile this method can detect eyesaccurately it requires
the eye model be properly initialized near the eyes. Furthermore, it is com-
putationally expensiwe, and requiresgood image cortrast for the method to
convergecorrectly.

The appearancebasedmethods [12],[13],[14] detect eyesbasedon their pho-
tometric appearance.Thesemethods usually needto collecta large amourt of
training data, represeting the eyesof di erent subjects, under di erent face
orientations, and under di erent illumination conditions. Thesedata are used
to train a classi er sud as a neural network or the Support Vector Machine
and detectionis achievedvia classi cation. In [12],Pertland et al. extendedthe
eigenfacetechnique to the description and coding of facial features, yielding
eigenegs, eigennosesnd eigenmouths.For eye detection, they extracted an



appropriate eye templatesfor training and constructeda principal componert
projective spacecalled\Eigeneyes". Eye detectionis accomplishedoy compar-
ing a query imagewith an eye imagein the eigenegsspace.Huang et al. [13]
alsoemployed the eigenewsto perform initial eye positions detection. Huang
et al. [14] preserted a method to represem eye image using wavelets and to
perform eye detection using RBF NN classi er. Reinderset al. [21] proposed
seeral improvemeris on the neural network basedeye detector. The trained
neural network eye detector can detect rotated or scaledeyesunder di erent
lighting conditions. But it is trained for the frontal view faceimageonly.

Feature basedmethods explorethe characteristics(such asedgeand intensity
of iris, the color distributions of the scleraand the esh) of the eyesto identify

somedistinctiv e featuresaround the eyes.Kawato et al [16] proposeda feature
basedmethod for eyesdetection and tracking. Instead of detecting eyes, they
proposeto detectthe point betweentwo eyes.The authors believe the point is
more stable and easierto detectthan the eyes.Eyesare subsequetly detected
as two dark parts, symmetrically located on eat side of the between-eg-
point. Fenget al. [8,9] designeda new eye model consistingof six landmarks
(eye corner points). Their technique rst locatesthe eye landmarks basedon
the variance projection function (VPF) and the located landmarks are then
employedto guide the eye detection. Experimert shaws their method will fail

if the eyeis closedor partially occludedby hair or faceorientation. In addition,

their technique may mistake eyebrowsfor eyes.Tian et al. [19] proposeda new
method to track the eye and recover the eye parameters.The method requires
to manually initialize the eye model in the rst frame. The eye'sinner corner
and eyelids are tracked usinga modi ed versionof the Lucas-Kanadetracking
algorithm [24]. The edgeand intensity of iris are usedto extract the shape
information of the eye. Their method, howewer, requiresa high corntrast image
to detect and track eye cornersand to obtain a good edgeimage.

In summary, the traditional image basedeye tracking approathesdetect and
track the eyesby exploiting eyes'di erencesin appearanceand shape from the
rest of the face.The special characteristicsof the eye sud asdark pupil, white
sclera,circular iris, eye corners,eye shape, etc. are utilized to distinguish the
human eye from other objects. But dueto eye closure,eye occlusion,variabil-
ity in scaleand location, di erent lighting conditions, and face orientations,
thesedi erenceswill often diminish or evendisappear. Wavelet Itering [25,26]
has beencommonly usedin computer vision to reduceillumination e ect by
removing subbandssensitive to illumination change.But it only works under
slight illumination variation. Illumination variation for eye tracking applica-
tions could be signi cant. Hence,the eye image will not look much di erent
in appearanceor shape from the rest of the face, and the traditional image
basedapproatescan not work very well, especially for faceswith non-frontal
orientations, under di erent illuminations, and for di erent subjects.



Eye detection and tracking basedon the active remote IR illumination is a
simple yet e ective approad. It exploits the spectral (re ectiv e) properties
of the pupil under near IR illumination. Numeroustechniques[27{31,1] have
beendewelopedbasedon this principle, including somecommercialeye trackers
[32,33].They all rely onan active IR light sourceto producethe dark or bright
pupil e ects. Ebisawva et al. [27] generatethe bright/dark pupil imagesbased
on adi erential lighting schemeusingtwo IR light sourceson ando camera
axis). The eye can be tracked e ectively by tracking the bright pupils in the
di erence image resulting from subtracting the dark pupil image from the
bright pupil image.Later in [28], they further improved their method by using
pupil brightnessstabilization to eliminate the glassre ection. Morimoto et al.
[29] also utilize the dierential lighting schemeto generatethe bright/dark

pupil images,and pupil detection is done after thresholding the di erence
image.A largertemporal support is usedto reduceartifacts causedmostly by
head motion, and geometricconstrains are usedto group the pupils.

Most of these methods require distinctive bright/dark pupil e ect to work
well. The succesof sud a system strongly depends on the brightness and
size of the pupils, which are often a ected by seweral factors including eye
closure,eye occlusiondueto facerotation, external illumination interferences,
and the distancesof the subjects to the camera.Figures 1 and 2 summarize
di erent conditionsunderwhich the pupils may not appearvery bright or even
disappear. Theseconditionsinclude eye closure(Figure 1 (a)) and obliqueface
orientations (Figure 1 (b) (c) and (d)), presenceof other bright objects (due
to either eye glassegylaresor motion) as shawn in Figure 2 (a) and (b), and
external illumination interferenceas shown in Figure 2 (c).

(A

Fig. 1. The disappearanceof the bright pupils due to eye closure (a) and oblique
face orientations (b), (c), and (d).

The absenceof the bright pupils or even weak pupil intensity posesserious
problemsto the existing eye tracking methods using IR for they all require
relatively stable lighting conditions, userscloseto the camera,small out-of-
planefacerotations, and open and un-occludedeyes. Theseconditionsimpose
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Fig. 2. (a)original image, (b)the corresponding thresholded di erence image, which
contains other bright regionsaround the real pupil blobs due to either eye glasses
glares and rapid head motion, (c) Weak pupils intensity due to strong external
illumination interference.

seriousrestrictions on the part of their systemsas well as on the user, and
thereforelimit their application scope. Realistically, howeer, lighting can be
variable in many application domains, the natural movemen of head often
involves out-of-plane rotation, eye closuresdue to blinking and winking are
physiological necessitiesor humans. Furthermore, thick eye glassestend to
disturb the infrared light so much that the pupils appear very weak. It is
therefore very important for the eye tracking systemto be able to robustly
and accurately track eyesunder theseconditions aswell.

To alleviate someof these problems, Ebisava [28] proposedan image di er-
ence method basedon two light sourcesto perform pupil detection under
various lighting conditions. The badkground can be eliminated using the im-
age di erence method and the pupils can be easily detected by setting the
threshold aslow aspossiblein the di erence image. They also proposedan ad
hoc algorithm for eliminating the glareson the glassesbasedon thresholding
and morphological operations. Howewer, the automatic determination of the
threshold and the structure elemen sizefor morphologicaloperationsis di -
cult; and the threshold value cannot be set aslow as possibleconsideringthe
e ciency of the algorithm. Also, eliminating the noiseblobsjust accordingto
their sizesis not enough.Haro[31] proposedto perform pupil tracking based
on combining eye appearance,the bright pupil e ect, and motion character-
istics sothat pupils can be separatedfrom other equally bright objects in the
scene.To do so,they proposedto verify the pupil blobsusingconvertional ap-
pearancebasedmatching method and the motion characteristics of the eyes.
But their method can not track the closedor occludedeyesor eyeswith weak
pupil intensity dueto externalilluminations interference.Ji et al. [1] proposed
areal time subtraction and a special Iter to eliminate the external light inter-
ferencesBut their techniquefails to track the closed/occludedeyes.To handle
the presenceof other bright objects, their method performs pupil veri cation
basedon the shape and sizeof pupil blobsto eliminate spuriouspupils blobs.
But usually, spuriousblobs have similar shape and sizeto those of the pupil
blobs as shown in Figure 2 and make it di cult to distinguish the real pupil
blobs from the noiseblobs basedon only shape and size.



In this paper, we proposea real-time robust method for eye tracking under
variable lighting conditions and face orientations, basedon conbining the
appearance-basednethods and the active IR illumination approad. Combin-
ing the respective strengths of di erent complememary techniquesand over-
coming their shortcomings,the proposedmethod usesan active infrared illu-
mination to brighten subject's facesto produce the bright pupil e ect. The
bright pupil e ect and the appearanceof eyesare utilized simultaneously for
eyes detection and tracking. The latest technologiesin pattern classi cation
recognition (the Support Vector Machine) and in object tracking (the mean-
shift) are employed for pupil detectionand tracking basedon eyesappearance.
Someof the ideaspreserted in this paper have beenbrie y reportedin [34],[35].
In this paper, we report our algorithm in details.

Our method consistsof two parts: eye detection and eye tracking. Eye detec-
tion is accomplishedby simultaneously utilizing the bright/dark pupil e ect
under active IR illumination and the eye appearancepattern under ambient
illumination via the Support Vector Machine. Eye tracking is composedof two
major modules. The rst module is a convertional Kalman lItering tracker
basedon the bright pupil. The Kalman Itering tracker is augmerned with
the Support Vector Machine classi er [36,37]to perform veri cation of the
detected eyes. In caseKalman eye tracker fails due to either weak pupil in-
tensity or the absenceof the bright pupils, eye tracking basedthe on mean
shift is activated [38] to cortinue tracking the eyes. Eye tracking returns to
the Kalman Itering tracker as soon asthe bright pupils reappear since eye
tracking using bright pupils is much more robust than the meanshift tracker,
which, we nd, tendsto drift away. The two trackers alternate, complemert-
ing ead other and overcomingtheir limitations. Figure 3 summarizesour eye
tracking algorithm.

2 Eye Detection

To facilitate subsequenimage processingthe person'sfaceis illuminated us-
ing a near-infrared illuminator. The use of infrared illuminator senesthree
purposes: rst it minimizesthe impact of di erent ambient light conditions,
thereforeensuringimagequality under varying real-world conditionsincluding
poor illumination, day, and night; second,t allowsto producethe bright/dark
pupil e ect, which constitutes the foundation for the proposedeye detection
and tracking algorithm. Third, sincenearinfrared is barely visible to the user,
this will minimize any interferencewith the user's work. According to the
original patent from Hutchinson [39], a bright pupil can be obtained if the
eyesare illuminated with a nearinfrared illuminator beaminglight alongthe
cameraoptical axis at certain wavelength. At the near infrared wavelength,
pupils re ect almost all infrared light they receiwe along the path bad to the
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camera, producing the bright pupil e ect, very much similar to the red eye
e ect in photograply. If illuminated o the cameraoptical axis, the pupils
appear dark sincethe re ected light will not ernter the cameralens. This pro-
ducesthe so called dark pupil e ects. An exampleof the bright/dark pupils
is givenin Figure 4. Details about the construction of the IR illuminator and
its con guration may be found in [40].

(b)
Fig. 4. The bright (a) and dark (b) pupils images.

Giventhe IR illuminated eye images,eye detection is accomplishedvia pupil
detection. Pupil detection is accomplishedbasedon both the intensity of the
pupils (the bright and dark pupils) and on the appearanceof the eyesusingthe
Support Vector Machine. Speci cally, pupil detectionstarts with preprocessing
to remove external illumination interference,followed by searding the whole
image for pupils in terms of pupil intensity and eye appearance.Therefore,
multiple pupils can be detectedif there exist more than one person.The use



of Support Vector Machine (SVM) avoids falsely identifying a bright region
asa pupil. Figure 5 givesan overview of the eye detection module.
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Fig. 5. Eye Detection Block Diagram

2.1 Initial Eye Position Detection

The detection algorithm starts with a preprocessingto minimize interference
from illumination sourcesther than the IR illuminator. This includessunlight
and ambient light interference.A di erential method is usedto remove the
badkground interferenceby subtracting the dark eye image (odd eld) from
the bright eye image (even eld), producing a di erence image, with most of
the badkground and external illumination e ects removed, asshown in Figure
6. For real time eye tracking, the image subtraction must be implemerted
e cien tly in real time. To achieve this, we deweloped circuitry to syndironize
the outer ring of LEDs and inner ring of LEDs with the even and odd elds
of the interlaced image respectively so that they can be turned on and o
alternately. When the even eld is being scannedthe inner ring of LEDs is on
and the outer ring of LEDs is 0 and vice versawhenthe even led is scanned.
The interlacedinput imageis subsequetly de-interlacedvia a video decdler,
producing the even and odd eld imagesas showvn in Figure 6 (a) and (b).
More on our image subtraction circuitry may be found in [40].

(@) (b) (c)

Fig. 6. Background illumination interferenceremoval (a) the even image eld ob-
tained with both ambient and IR light; (b) the odd image eld obtained with only
ambient light; (c) the image resulted from subtraction (b) from (a).

The di erence imageis subsequetly thresholdedautomatically basedon its
histogram, producing a binary image. Connectedcomponert analysisis then
applied to the binary imageto identify the binary blobs. Our task is then to



nd out which of the blobs actually is the real pupil blob. Initially , we mark
all the blobs as potential candidatesfor pupils asshown in Figure 7.

Fig. 7. The thresholded di erence image marked with pupil candidates

2.2 Eye Veri c ation Using Supprt Vector Machine

As shown in Figure 7, there are usually many potential candidatesof pupils.
Typically, pupils are found amongthe binary blobs. Howeer, it is usually not
possibleto isolate the pupil blob only by picking the right threshold value,
sincepupils are often small and not bright enoughcomparedwith other noise
blobs. Thus, we will have to make use of information other than intensity to
correctly identify them. One initial way to distinguish the pupil blobs from
other noiseblobs is basedon their geometricshapes. Usually, the pupil is an
ellipse-like blob and we can usean ellipse tting method [41] to extract the
shape of ead blob and usethe shape and sizeto remove some blobs from
further consideration.It must be noted, howewer, that due to scalechange
(distanceto the camera)and to variability in individual pupil size,sizeis not
areliable criterion. It is only usedto to remove very large or very small blobs.
Shagpe criterion, onthe other hand, is scale-irvariant. Neverthelessshape alone
is not su cien t sincethere are often presen other non-pupil blobswith similar
shape and size as shown in Figure 8, where we can seethat there are still
seeral non pupil blobsleft becausehey are sosimilar in shape and sizethat
we can't distinguish the real pupil blobs from them. Sowe have to useother
features. We obsened that the eye region surrounding pupils has a unique
intensity distribution. They appear di erent from other parts of the facein
the dark pupil imageasshaown in Figure 4 (b). The appearanceof an eye can
thereforebe utilized to separateit from non-eyes.We map the locations of the
remaining binary blobsto the dark pupil imagesand then apply the Support
Vector Machine (SVM) classi er [36,37]to automatically identify the binary
blobs that correspnd to eyesas discussedoelow.



Fig. 8. The thresholded di erence image after removing someblobs basedon their
geometric properties (shape and size). The blobs marked with circles are selected
for further consideration.

2.2.1 The Supprt Vector Machine

SVM is atwo-classclassi cation method that nds the optimal decisionhyper-
plane basedon the conceptof structural risk minimization. Ever sinceits in-
troduction, SVM [36] has becomeincreasingly popular. The theory of SVM
can be briey summarizedasfollows. For the caseof two-classpattern recog-
nition, the task of predictive learning from examplescan be formulated as
follows. Given a setof functionsf and aninput domain RN of N dimensions:

ff : 2 gf RN I f 1+1q;

( isanindex set) and a set of | examples:

(X3 ya); (X v (xny)ixi 2 RNy 2 f 1 +1g;

wherex; is an input feature vector andy; represets the class,which hasonly
two values-1 and +1. Ead (X;;Y;) is generatedfrom an unknown probability
distribution p(x;y), the goalisto nd a particular function f which provides
the smallestpossiblevalue for the risk:

z
R( )= if (x) yide(xy) (1)

Supposethat thereis a separatinghyper-planethat separateghe positive class
from the negative class.The data characterizing the boundary between the
two classesare called the support vectorssincethey alone de ne the optimal
hyper-plane. First, a set (Xx;;y;) of labeledtraining data are collected as the
input to the SVM. Then, a trained SVM will be characterizedby a set of N
support vectorss;, coe cient weights ; for the support vectors, classlabels
y; of the support vectors,and a constarnt term wy.

10



For the linearly separablecase,the linear decisionsurface(the hyperplane)is
de ned as

W X+ W= 0; (2)

wherex is a point the hyperplane,\ " denotesdot product, w is the normal
of the hyperplane,and wy is the distanceto the hyperplanefrom the origin.
Through the useof training data, w can be estimated by

s
w = iYiSi; (3)

i=1

Givenw andwy, an input vector x; canbe classi ed into oneof the two classes,
dependingonif w x + wy is larger or smallerthan 0.

Classesare often not linearly separableln this case,SVM canbe extendedby

usingakernelK (:;:), which performsa nonlinear mapping of the feature space
to a higher dimension,whereclassesre linearly separable.The most common
SVM Kkernelsinclude Gaussiankernel, Radial-basedkernel, and polynomial

kernel. The decisionrule with a kernel can be expresseds

Ws
iYiK(si;X)+wo=0 (4)

i=1

2.2.2 SVM Training

To useSVM, training data are neededto obtain the optimal hyper-plane.An
eye imageis represeted as a vector | consistingof the original pixel values.
For this project, after obtaining the positions of pupil candidatesusing the
methods mertioned above, we obtain the sub-imagesfrom the dark image
accordingto those positions as shavn in Figure 9.

Usually, the eyesare included in those cropped imagesof 20 20 pixels. The
cropped image data are processedusing histogram equalization and normal-
ized to a [0; 1] range before training. The eye training imageswere divided
into two sets: positive set and negative set. In the positive image set, we in-
clude eye imagesof di erent gazesdi erent degreesof opening, di erent face
poses,di erent subjects, and with/without glassesThe non-eye imageswere
placedin the negative image set. Figures 10 and 11 cortain examplesof eye
and non-e\e imagesin the training sets, respectively.

After nishing the above step, we get a training set, which has 558 positive
imagesand 560 negative images.In order to obtain the best accuracy we
needto idertify the bestparametersfor the SVM. In Table 2.2.2,we list three

11



(b)

Fig. 9. (a) The thresholded di erence image superimposedwith possiblepupil can-
didates (b) The dark image marked with possible eye candidates according to the
positions of pupil candidatesin (a).
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Fig. 10. The eye imagesin the positive training set.

di erent SVM kernels with various parameter settings and each SVM was
tested on 1757 eye candidate imagesobtained from di erent persons.

From the above table, we can seethat the best accuracywe can achieve is
955037%,using a Gaussiankernelwith a  of 3.

2.2.3 Retraining Using Mis-labeled Data

Usually, supervisedlearning madinesrely only on the limited labeledtraining
examplesand can not read very high learning accuracy Sowe have to test on
thousandsof unlabeleddata and pick up the mis-labeleddata, then put them
into the correcttraining setsand retrain the classi er again. After performing

12
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Table 1
Experiment results using 3 kernelswith di erent parameters
Kernel Type || Deg | Sigma | # Support | Accuracy
Vectors
Linear 376 0.914058
Polynomial 2 334 0.912351
Polynomial 3 358 0.936255
Polynomial 4 336 0.895845
Gaussian 1 1087 0.500285
Gaussian 2 712 0.936255
Gaussian 3 511 0.955037
Gaussian 4 432 0.9465
Gaussian 5 403 0.941377

this procedureon the unlabeleddata obtainedfrom di erent conditionsse\eral
times, we can boost the accuracyof the learning machine at the cost of extra
time neededfor re-training.

Speci cally, we have eye data set from ten people,which are obtained using
the samemethod. We choosethe rst person'sdata set and label the eye
imagesand non-eye imagesmanually, then we train the GaussianSVM on
this training setand test GaussianSVM on the secondperson’sdata set. We
che the secondperson'sdata one by one, pick up all the mis-labeled data,
label them correctly and add them into the training set. After nishing the
above step, we retrain the SVM on this increasedtraining setand repeat the
above step on the next person'sdata set. The whole processthen repeats
until the classi cation errors stabilize. Through the retraining processwe can
signi cantly boost the accuracyof the GaussianSVM.

13



2.2.4 Eye Detection with SVM

During eye detection, we crop the regionsin the dark pupil image according
to the locations of pupil candidatesin the di erence imageasshown in Figure
9 (b). After somepreprocessingon these eye candidate images,they will be
provided to the trained SVM for classi cation. The trained SVM will classify
the input vector | into eye classor non-ee class.Figure 12 shaws that the
SVM eye classi er correctly identi es the real eye regionsas marked.

(b)

Fig. 12. (a) (b) The imagesmarked with identied eyes.Comparedwith imagesin
Figure 9 (b), many false alarms have beenremoved.

Pupil veri cation with SVM works reasonablywell and can generalizeto peo-
ple of the samerace. Howewer, for people from a race that is signi cantly
di erent from those in training images,the SVM may fail and needto be
retrained. SVM can work under di erent illumination conditions due to the
intensity normalization for the training imagesvia histogram equalization.

3 Eye Tracking Algorithm

Given the detected eyesin the initial frames,the eyesin subsequen frames
can be tracked from frame to frame. Eye tracking can be done by performing
pupil detectionin ead frame. This brute force method, howewer, will signi -
cartly slov down the speedof pupil tracking, making real time pupil tracking
impossiblesinceit needsto seart the ertire imagefor ead frame. This can
be done more e ciently by using the stheme of prediction and detection.
Kalman Itering [42] provides a medanismto accomplishthis. The Kalman
pupil tracker, howewer, may fail if pupils are not bright enoughunder the
conditions mertioned previously. In addition, rapid head movemer may also
causethe tracker to losethe eyes. This problem is addressedby augmering
the Kalman tracker with the mean shift tracker. Figure 13 summarizesour
eye tracking stheme. Speci cally, after locating the eyesin the initial frames,

14



Kalman Itering is activated to track bright pupils. If it fails in a frame dueto

disappearanceof bright pupils, eye tracking basedon the meanshift will take
over. Our eye tracker will return to bright pupil tracking as soon as bright

pupil appearsagain sinceit is much more robust and reliable tracking. Pupil

detection will be activated if the mean shift tracking fails. Thesetwo stage
eye trackers work together and they complemen ead other. The robustness
of the eye tracker is improved signi cantly. The Kalman tracking, the mean
shift tracking, and their integration are brie y discussedbelow.
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Fig. 13. The Combined Eye Tracking Flowchart
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3.1 Eye (pupil) Trackingwith Kalman Filtering

A Kalman lter is a setof recursiwe algorithms that estimatethe position and
uncertainty of moving targetsin the next time frame, that is, whereto look for
the targets,and how largearegionshouldbe seartiedin the next framearound
the predicted position in orderto nd the targets with certain con dence. It
recursiwvely conditions current estimate on all of the past measuremets and
the processis repeatedwith the previous posterior estimatesusedto project
the new a priori estimates.This recursive nature is one of the very appealing
features of the Kalman Iter sinceit makes practical implemertation much
more feasible.

Our pupil tracking method basedon Kalman Itering can be formalized as
follows. The state of a pupil at ead time instance(frame) t can be character-
ized by its position and velocity. Let (c;r) represem the pupil pixel position
(its certroid) at time t and (u;Vv;) be its velocity at time t in c and r direc-
tions respectively. The state vector at time t can therefore be represeted as

Xi= (G re ue vi)

According to the theory of Kalman Itering [43], X+1, the state vector at the
next time framet+1, linearly relatesto current state X, by the systemmodel
asfollows

X1 = X+ W, (5)

where s the state transition matrix and W; represeis systemperturbation.
W, is normally distributed asp(W;) N (0;Q), and Q represeis the process
noisecovariance.

We further assumethat a fast feature extractor estimatesZ, = (&;ry), the
detected pupil position at time t. Therefore, the measuremen model in the
form neededby the Kalman lter is

Zt: th+ Mt (6)

where matrix H relates current state to current measuremen and M; rep-
reserts measuremeh uncertainty. M, is normally distributed as p(M;)

N (0; R), and R is the measuremen noisecovariance. For simplicity and since
Z, only involvesposition, H can be represeted as

2 3
1000
H=§ £
0100

16



The feature detector (e.g., thresholding or correlation) seartiesthe region as
determined by the projected pupil position and its uncertainty to nd the
feature point at time t + 1. The detected point is then combined with the
prediction estimation to producethe nal estimate.

Speci cally, given the state model in equation 5 and measuremeh model in
equation6 aswell assomeinitial conditions, the state vector X.; , alongwith
its covariancematrix .1, can be updated as follows. For subsequehdiscus-
sion, let us de ne a few more variables. Let X,,; be the estimated state at
time t+1, resulting from usingthe systemmodel only. It is often referredto as
the prior state estimate. X1 diers from X,,; in that it is estimated using
both the system model (equation 5) and the measuremet model (equation
6). Xi+1 is usually referredasthe posterior state estimate.Let ., and 4
be the covariancematricesfor the state estimatesX,,; and X.; respectively.
They characterize the uncertainties assaiated with the prior and posterior
state estimates.The goal of Kalman Itering is thereforeto estimate X +; and

t+1 given Xy, ¢, Z¢, and the systemand measuremenhmodels. The Kalman
ltering algorithm for state prediction and updating may be summarizedbe-
low.

(1) State prediction
Given currert state X; and its covariance matrix , state prediction
involvestwo steps:state projection (X, ) and error covarianceestimation
( (+1) assummarizedin Eqg. 7 and Eq. 8.

Xt+1 = Xt (7)

w1 =t Q (8)
Given the prior estimate X,,,, its covariance matrix ,;, pupil de-
tection is performedto detect the pupil around X,,,, with the seart
areadeterminedby ;. In practice, to speedup the computation, the
valuesof ,;[0][0]and ,;[1][1] are usedto compute the seart area
size.Speci cally, the seard areasizeis chosenas 20+2* ., [0][0] pixels
and 20+2* ., [1][1] pixels, where 20 by 20 pixels is the basic window
size. This meansthe larger the ,;[0][0] and ,;[1][1] are, the more
uncertainty of the estimation is, and the larger the sear® areais. The
seart areais therefore adaptively adjusted. Therefore, the pupil can be
located quickly.
(2) State updating
The detectedpupil position is represerted by Z,.; . Then, state updat-
ing can be performedto derive the nal state and its covariance matrix.
The rst task during state updating is to computethe Kalman gainK.; .
It is doneas follows
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(9)

The gain matrix K can be physically interpreted asa weighting factor to

determine the cortribution of measuremen Z,,; and prediction H X,

to the posterior state estimate X.1. The next step is to to generate
a posteriori state estimate X.; by incorporating the measuremen into

equation 5. X, is computedas follows

Xisr = Xpyg + Kp1 (Zesn HX 1) (10)

The nal stepis to obtain the posteriori error covariance estimate. It is
computed as follows

1 = (I KuaH) 4 (11)

After ead time and measuremeh update pair, the Kalman Iter recursiwely
conditions currert estimateon all of the past measuremets and the processs
repeatedwith the previous posterior estimatesusedto project a new a priori
estimate.

The Kalman Iter pupil tracker works reasonablywell under frontal face ro-
tation with the eye open. Howewer, it will fail if the pupils are not bright due
to either face orientation or external illumination interferences.The Kalman
Iter also fails when a suddenhead movemert occurs due to incorrect pre-
diction becausethe assumptionof smooth head motion has beenviolated. In
ead case,Kalman ltering fails becausethe Kalman lIter detector can not
detect pupils. We proposeto usethe meanshift tracking to augmen Kalman
ltering tracking to overcomethis limitation.

3.2 Mean Shift Eye Tracking

Dueto the IR illumination, the eyeregionin the dark and bright pupil images
exhibits strong and unique visual patterns sud asthe dark iris in the white
part. This unique pattern should be utilized to track eyesin casethe bright
pupils fail to appearon the di erence images.This is accomplishedvia the use
of the meanshift tracking. Mean shift tracking is an appearancebasedobject
tracking method. It employs meanshift analysisto identify atarget candidate
region, which hasthe most similar appearanceto the target model in terms
of intensity distribution.
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3.2.1 Similarity Measure

The similarity of two distributions can be expressedy a metric basedon the
Bhattacharyya coe cient as described in [38]. The derivation of the Bhat-
tacharyya coe cient from sample data involves the estimation of the tar-
get density q and the candidate density p, for which we employ the his-
Eogram formulation. Therefore, the discrete density ¢ = f6,0u=1::m (With

L, § = 1) is estimated from Ig,he m-bin histogram of the target model,
while p(y) = fpu(Y)Qu=1:-m (with ~ L, py = 1) is estimatedat a given loca-
tion y from the m-bin histogram of the target candidate. Then at location y,
the sampleestimate of the Bhattacharyya coe cien t for target density g and
candidate density p(y) is given by

X q
(y)  [By):d= Pub, (12)

u=1

The distancebetweentwo distributions can be de ned as

q__
dy)= 1 [B(y);dl (13)

3.2.2 Eye Appearance Model

To reliably characterizethe intensity distribution of eyes and non-eyes, the
intensity distribution is characterizedby two images:even and odd eld im-
ages,resulting from de-interlacing the original input images.They are under
di erent illuminations, with one producing bright pupils and the other pro-
ducing dark pupils as shavn in Figure 14. The useof two channelimagesto
characterize eye appearancerepreseis a new cortribution and can therefore
improve the accuracyof eye detection.

(@) (b) () (d)

Fig. 14. The eyeimages:(a)(b) left and right bright pupil eyes;(c)(d) corresponding
left and right dark pupil eyes

Thus, there aretwo di erent feature probability distributions of the eyetarget
correspnding to dark pupil and bright pupil imagesrespectively. We use a
2D joint histogram, which is derived from the grey level dark pupil and bright
pupil image spaceswith m = | | bins, to represem the feature probability
distribution of the eyes.Beforecalculating the histogram, we employ a corvex
and monotonic decreasingkernel pro le k to assigna smaller weight to the
locations that are farther from the certer of the target. Let us denote by
fXigi-1.n, the pixel locationsof a target candidatethat hasny, pixels, certered
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at y in the current frame. The probability distribution of the intensity vector
I = (Ip;14), wherelq and I, represen the intensities in the dark and bright
imagesrespectively, in the target candidate is given by

7 i k(KR [ox) ]

whereu=1,2,...m 14
OEDS -

Pu(y) =

in which the b(x;) is the index to a bin in the joint histogram of the intensity
vector | at location X;, h is the radius of the kernelprole and is the Kro-
neder delta function. The eye model distribution g can be built in a similar
fashion.

3.2.3 Algorithm

After locating the eyesin the previous frame, we construct an eye model ¢
using Equation 14 basedon the detectedeyesin the previousframe. We then
predict the locationsy, of eyesat current frame usingthe Kalman Iter. Then
we treat y, asthe initial position and usethe meanshift iterations to nd the
most similar eye candidateto the eye target model in the current frame using
the following algorithm.

(1) Initialize the location of the target in the current frame with yg, then
computethe distribution fpy(yo)gu=1:-m Using Equation 14 and evaluate
similarity measure(Bhattacharyya coe cien t) betweenthe model density
¢ and target candidate density p

X q
[A(Yo); 6] = Bu(Yo)a, (15)
u=1
(2) Derive the weights fw;gi-1 ..n, accordingto
S

" . 4
L D

(16)

(3) Basedon the meanshift vector, derive the new location of the eye target

PHPzr]l Xiw; g(k¥e=t k%)

= 17
TP Wk i) ¢
whereg(x) = k9x) and then update f Py (y1)Qu=1-m, and evaluate
xn q
[B(y1); 8] = Bu(y1) 8 (18)

u=1

20



(4) While [p(y1); 0l < [B(yo); dl
Doy  0:5(Yo + Y1)
This is necessaryto avoid the meanshift tracker moving to an incorrect
location.

(5) If ky; yok< ", stop, where" is the termination threshold
Otherwise,sety, Yy; and goto step 1.

The neweye locationsin the current frame canbe achievedin a fewiterations
comparedto the correlation basedapproades, which must perform an ex-
haustive seart around the previouseye location. Due to the simplicity of the
calculations, it's much faster than correlation. Figure 15(b) plots the surface
for the Bhattacharyya coe cien t of the largerectanglemarkedin Figure 15(a).
The mean shift algorithm exploits the gradiert of the surfaceto climb, from
its initial position, to the closestpeak that represems the maximum value of
the similarity measure.

ool 0 Gonwergence location o ofeL
i Y| Initial location : : ERR
g™ 2| [ Bhattacharyys cosfficient |:

Y-

]
m
!

i
i
]

Bhattacharyya Coeficient

g, e

(b)

Fig. 15.(a) The imageframe 13;(b) Valuesof Bhattacharyya coe cien t correspond-
ing to the marked region(40 40 pixels) around the left eye in frame 13. Mean shift
algorithm corvergesfrom the initial location( ) to the convergencepoint( ), which
is a mode of the Bhattacharyya surface.

3.2.4 Mean Shift Tracking Parameters

The mean shift algorithm is sensitive to the window size and the histogram
guartization value. In order to obtain the best performanceof the meanshift
tracker for a speci c task, we have to nd the appropriate histogram quarti-
zation value and the proper window size.We choosese\eral image sequences
and manually locate the left eye positions in theseframes. Then we run the
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mean shift eye tracker under di erent window sizesand di erent histogram
guartization values, we evaluate the performanceof mean shift eye tracker
under those conditions using the following criterion:

X q
error = (vi(tracked)  y;(manual))*=N (19)

i=1

whereN is the number of imageframesand y; (tr acked) is the left eye location
tracked by meanshift tracker in the imageframei; yf’(manual) is the left eye
location manually located by the personin the image frame i. We treat the
manually selectedeye locations asthe correct left eye locations.

=720

T2 47T T Window Size 0 1 2 3 ] 5 [5

Quantization Yalue Quantization Walue

(@) (b)

Fig. 16. The error distribution of tracking results: (a) error distribution vs. intensity
guantization valuesand di erent window sizes;(b) error distribution vs. quantiza-
tion levels only.

The intensity histogram is scaledin the rangeof 0 to 2555(29), q is the quan-
tization value. The results are plotted in Fig. 16. From gure 16 (a) and (b),
we can determine the optimal quartization level to be 2° while the optimal
window sizeis 20*20 pixels. Figure 17 shons sometracking results with these
parameters.

The mean-shift tracker, howewer, is sensitive to its initial placemer. It may
not corvergeor corvergeto a local minimum if placedinitially far from the
optimal location. It usually corvergesto the mode, closestto its initial posi-
tion. If the initial location is in the valley betweentwo modes,the meanshift
may not convergeto any (local maxima) peaksas shavn in Figure 18. This
demonstratesthe sensitivity of mean-shift tracker to initial placemen of the
detector.
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(frame 100) (frame 130)

Fig. 17. Mean shift tracking both eyeswith initial seard area of 40*40 pixels, as
represerned by the large black rectangle. The eyesmarked with white rectanglesin
frame 1 are usedasthe eye model and the tracked eyesin the following framesare
marked by the smaller black rectangles.

3.2.5 Experiments On the Mean Shift Eye Tracking

In order to study the performanceof the mean-shift tracker, we apply it to
sequenceshat cortain imageswith weak or partially occludedor no bright
pupils. We noticed when bright pupils disappear due to either eye closureor
facerotations asshown in Figure 19, the Kalman lter fails becausehere are
no bright pupil blobsin the di erence images.Howewer the meanshift tracker
compensatesfor the failure of bright pupil tracker becauseit is an appear-
ance basedtracker that tracks the eyesaccordingto the intensity statistical
distributions of the eye regionsand does not need bright pupils. The black
rectanglesin Figure 19 represen the eye locations tracked by the mean shift
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Fig. 18.(a) Imageof frame 135, with the initial eye position markedand initial searh
areaoutlined by the large black rectangle. (b) Values of Bhattacharyya coe cien t
corresponding to the marked region(40 40 pixels) around the left eyein (a). Mean
shift algorithm can not corverge from the initial location( )(which is in the valley
of two modes)to the correct mode of the surface.Instead, it is trappedin the valley.

tracker.

Fig. 19.Bright pupil basedKalman tracker fails to track eyesdueto absenceof bright
pupils causedby either eye closure or oblique face orientations. The mean shift eye
tracker, howewer, tracks eyes successfullyasindicated by the black rectangles.
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4 Combining Kalman Filtering Tracking with Mean Shift Tracking

The meanshift tracking is fast and handlesnoisewell. But it is easilydistracted
by nearly similar targets sudh as the nearby region that appears similar to
the eyes.This is partially becauseof the histogram represetation of the eyes
appearance,which doesnot cortain any information about the relative spa-
tial relationshipsamong pixels. The distraction manifestsprimarily aserrors
in the calculated certer of the eyes. The mean shift tracker does not have
the capability of self-correctionand the errors therefore tend to accumnulate
and propagateto subsequenframesastracking progressesnd evertually the
tracker drifts away. Another factor that could leadto errorswith eye tracking
basedon meanshift is that the meanshift tracker cannot contin uously update
its eye model despitethe fact that the eyeslook signi cantly dierent under
di erent faceorientations and lighting conditions as demonstratedin the left
column of Figure 20. We can seethat the meanshift eye tracker can not iden-
tify the correct eye location when the eyesappear signi cantly di erent from
the model eyesimagesdue to faceorientation change.

To overcometheselimitations with meanshift tracker, we proposeto conbine
the Kalman lter tracking with the meanshift tracking to overcometheir re-
spective limitations and to take advantage their strengths. The two trackers
are activated alternately. The Kalman tracker is rst initiated, assumingthe
presenceof the bright pupils. When the bright pupils appear weak or dis-
appear, the mean shift tracker is activated to take over the tracking. Mean
shift tracking continuesuntil the reappearanceof the bright pupils, when the
Kalman tracker takes over. To avoid the mean shift tracker drift away, the
target eye model is continuously updated by the eyes successfullydetected
by the Kalman tracker. The right column of Figure 20 shaws the results of
tracking the samesequencewith the integrated eye tracker asthe one shown
on left column. It is apparert that the integrated tracker can correct the drift
problem of the meanshift tracker.

5 Exp erimen tal Results

In this section,we will presen results from an extensive experimert we con-
ductedto validate the performanceof our integrated eyetracker underdi erent
conditions.
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5.1 Eye tracking Under Signi cant Head Pose Changes

Here, we shav somequalitative and quartitativ e results to demonstratethe
performanceour tracker under di erent face orientations. Figure 21 visually
showsthe typical tracking resultsfor a personundergoingsigni cant facepose
changeswherethe black rectanglesrepresemn the mean-shifttracker while the
white rectanglesrepresen the Kalman Iter tracker.

Additional results for di erent subjects under signi cant head rotations are
showvn in Figure 22. We can seethat under signi cant head pose changes,
the eyeswill be either partially occluded or the appearanceof eyeswill be
signi cantly di erent from the eyeswith frontal faces.But the two eye trackers
alternate reliably, detecting the eyesunder di erent head orientations, with

eyeseither open, closedor partially occluded.

Tofurther con rm this quartitativ ely, we manually locatedthe positionsof the
eyesfor two typical sequenceand they sere asthe ground-truth eye positions.
The tracked eye positionsare then comparedwith the ground-truth data. The
results are summarizedin Tables2 and 3. From the tracking statistics in
Tables2 and 3, we can concludethat the integrated eye tracker is much more
accuratethan the Kalman Iter pupil tracker, especially for the closedeyesand
partially occludedeyesdue to facerotations. Theseresults demonstratethat
this combination of two tracking techniques producesmuch better tracking
results than using either of them individually.

5.2 Eye Tracking Under Di er ent Il luminations

In this experimert, we demonstratethe performanceof our integrated tracker
under di erent illumination conditions. We vary the light conditions during
the tracking. The experimert included rst turning o the ambient lights,
followed by usinga mobile light sourceand positioning it closeto the peopleto
producestrong external light interference.The external mobile light produces
signi cant shadavsaswell asintensity saturation on the subject's faces Figure
23 visually shows the sample tracking results for two individuals. Despite
thesesomewhatextremeconditions, our eye tracker managedto track the eyes
correctly. Becauseof the useof IR, the facesarestill visible and eyesaretracked
evenunderdarknesslt isapparert that illumination changedoesnot adversely
a ect the performanceof our technique as much. This may be attributed to
the simultaneoususe of active IR sensing,image intensity normalization for
eye detection using SVM, and the dynamic eye model updating for the mean
shift tracker.

26



Table 2
Tracking statistics comparison for both trackers under dierent eyes conditions

(open, closed,occluded) on the rst person

Image Bright pupil | Combined

600 frames tracker tracker

Left eye (open)
452 frames 400/452 452/452

Left eye (closed)
66 frames 0/66 66/66

Left eye (occluded)
82 frames 0/82 82/82

Right eye (open)
425 frames 389/425 425/425

Right eye (closed)
66 frames 0/66 66/66

Right eye (occluded)
109 frames 0/109 109/109

5.3 Eye trackingwith glasses

The signi cant eye appearancechangeswith glassesFurthermore, the glares
on the glassescausedby light re ections presen signi cant challengesto eye
tracking with glasseslin Figure 24, we show the results of applying our eye
tracker to personswearing glassesWe can seethat our eye tracker can still

detect and track eyesrobustly and accurately for peoplewith glassesHow-
ewver, our study shows that when the head orientation is sud that the glares
completelyoccludesthe pupils, our tracker will fail. This is a problemthat we
will tackle in the future.

5.4 Eye tracking with multiple people

Our eye tracker not only cantrack the eyesof one personbut also can track
multiple people'seyes simultaneously Here, we show the results of applying
our eye tracker to simultaneously track multiple people'seyeswith dierent
distancesand face posesto the camera.The result is preserted in Figure 25.
This experimert demonstratesthe versatility of our eye tracker.
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Table 3
Tracking statistics comparison for both trackers under dierent eyes conditions
(open, closed,occluded) on the secondperson

Image Sequencel | Bright pupil | Combined

600 frames tracker tracker

Left eye (open)
421 frames 300/421 410/421

Left eye (closed)
78 frames 0/78 60/78

Left eye (occluded)
101 frames 0/101 60/101

Right eye (open)
463 frames 336/463 453/463

Right eye (closed)
78 frames 0/78 78/78

Right eye (occluded)
59 frames 0/59 59/59

5.5 Occlusion Handling

Eyesare often partially or completely occludedeither by face due to oblique
face orientations or by handsor by other objects. A good eye tracker should
be able to track eyesunder partial occlusionand be able to detect complete
occlusion and re-detect the eyes after the complete occlusionis removed. In
Figure 26, two personsare moving in front of the camera,and one person's
eyes are occluded by another's head when they are crossing.As shown in
Figure 26, when the rear person moves from right to left, the head of the
front personstarts to occlude his eyes,beginningwith one and then two eyes
getting completely occluded. As shavn, our tracker can still correctly track
an eye ewven though it is partially occluded. When both eyes are completely
occluded, our tracker detectsthis situation. As soon as the eyesreappear in
the image, our eye tracker will capture the eyesone by one immediately as
shown in Figure 26. This experimert shavs the robustnessof our method to
occlusions.
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6 Summary

In this paper, we presen an integrated eye tracker to track eyesrobustly under
variousilluminations and faceorientations. Our method performswell regard-
lessof whether the pupils are directly visible or not. This has beenacdhieved

by combining an appearancebasedpattern recognition method (SVM) and

object tracking (Mean Shift) with a bright-pupil eye tracker basedon Kalman

Itering. Speci cally, we take the following measuresFirst, the useof SVM for

pupil detection complemens with eyesdetection basedon bright pupils from

IR illumination, allowing to detect eyesin the presenceof other bright ob-

jects; second,two channels(dark-pupil and bright-pupil eyeimages)are used
to characterizethe statistical distributions of the eye, basedon which a Mean
Shift eyetracker is deweloped. Third, the eye modelis cortinuously updated by

the eye successfullydetectedfrom the last Kalman tracker to avoid error prop-

agationwith the meanshift tracker. Finally, the experimertal determination of

the optimal window sizeand quartization level for meanshift tracking further

enhanceghe performanceof our technique. Experimerts shov theseenhance-
merts have led to a signi cant improvemer in eye tracking robustnessand

accuracyover existing eye trackers, especially under various conditions iden-
tied in sectionl. Furthermore, our integrated eye tracker is demonstratedto

be able to handle occlusion, peoplewith glassesand to simultaneously track

multiple peopleof di erent posesand scales.

The lessonswe learn from this researt are: 1) perform active vision (e.g.
active IR illumination) to produce quality input imagesand to simplify the
subsequenimage processing;2) conbine di erent complemenary techniques
to utilize their respective strengthsand to overcometheir limitations, leading
to a much more robust technique than using ead technique individually.
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(a) (A)

Fig. 20. An image sequencdo demonstratethe drift-a way problem of the meanshift
tracker aswell asthe correction of the problem by the integrated eye tracker. Frames
(@)(b)(d)(e)(f ) shaw the drift away caseof the mean Shift eye tracker; for the same
image sequences(A)(B)(D)(E)(F) shows the improved results of the combined eye
tracker. White rectanglesshow the eyestracked by the Kalman tracker while the
black rectanglesshaw the tracked eyesby the mean shift tracker.
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Fig. 21. Tracking results of the combined eye tracker for a person undergoing sig-
ni cant face posechange. White rectanglesshaw the eyestracked by the Kalman
tracker while the black rectanglesshaw the eyestracked by the mean shift tracker.
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(d)

Fig. 22. Tracking results of the combined eye tracker for four image sequences
(a),(b),(c) and (d) under signi cant head posechanges.White rectanglesshow the
eyestracked by the Kalman tracker while the black rectanglesshow the eyestracked

by the mean shift tracker.
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(b)

Fig. 23. Tracking results of the combined eye tracker for two image sequencega) and
(b) under signi cant illumination changes.White rectanglesshow the eyestracked
by the Kalman tracker while the black rectanglesshow the eyestracked by the mean
shift tracker.

(b)

Fig. 24. Tracking results of the combined eye tracker for two image sequencega),
(b) with personswearing glasses.White rectanglesshow the eyestracked by the
Kalman tracker while the black rectanglesshawv the eyestracked by the mean shift
tracker.
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Fig. 25. Tracking results of the combined mean eye tracker for multiple persons.
White rectangles showv the eyes tracked by the Kalman tracker while the black
rectanglesshow the eyestracked by the mean shift tracker.

Fig. 26. Tracking results of combined eye tracker for an image sequenceinvolving
multiple personsoccluding ead other's eyes.White rectanglesshow the eyestracked
by the Kalman tracker while the black rectanglesshow the eyestracked by the mean

shift tracker.
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