
1

Autonomous Pre-Conditioning and Improved

Personalization in Shared Workspaces Through

Data-Driven Predictive Control

Syed Ahsan Raza Naqvi, Koushik Kar and Sandipan Mishra

Rensselaer Polytechnic Institute, USA

Email: {naqvis2,kark,mishrs2}@rpi.edu

Abstract

This paper studies the problem of indoor zone temperature control in shared workspaces equipped

with heterogeneous heating and cooling sources with the goal of increased energy savings and environ-

ment personalization. Shared workspaces typically witness distinct, pre-scheduled intervals when they

are occupied or are unoccupied. In this work, we develop indoor climate control strategies for each of

these intervals. For the interval when the workspace is unoccupied, we propose multiple time-bound

control strategies for pre-conditioning the workspace in preparation for a scheduled activity (Phase I).

For the interval when the workspace is occupied, we propose a separate control strategy which enhances

the thermal comfort of the occupants by harnessing the spatial differentiation of the thermal environment

to satisfy the different temperature preferences of the individuals (Phase II). Utilizing a physical test-bed

and data-driven model learning, we show that our proposed pre-conditioning strategies in Phase I are

less computationally expensive than conventional model predictive control (MPC). For Phase II, we use

a low complexity quadratic program to minimize the thermal discomfort experienced by individuals

based on their temperature preferences. The experimental results show that for Phase I, the proposed

control policies can save a significant amount of energy and achieve the desired mean temperature in the

space fairly accurately. We further note that for Phase II, the control scheme can achieve a significant

spatial differentiation in temperature towards satisfying the occupants’ thermal preferences.

NOMENCLATURE

List of Abbreviations

AHU Air handling unit

ASC Adaptive switching control
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c-MPC Vanilla model predictive control with constant weights

FOC Fixed end point optimal control

HVAC Heating, ventilation and air conditioning

NN Neural network

PCS Personal comfort system

RBB Rule-based baseline

RLSE Recursive least squares estimation

TEPP Two phase pre-conditioning and environment personalization

v-MPC Vanilla model predictive control with variable weights

List of Symbols

α Weighting parameter for v-MPC.

α0 Starting value of α for v-MPC.

∆i Desired temperature at sensor i.

Ŵ Column vector, with element Ŵi, which captures the effect of the ambient temperature

and unmodeled dynamics.

µ Duration of each time instance k in minutes.

Φ1 Metric for capturing the energy consumption for Phase I.

Φt Metric for capturing the total energy consumption for Phases I and II.

A Column vector, with element Ai, which maps the effect of the temperature readings in

the preceding time instance on to those in the next time instance.

B Matrix, with element Bi,j , which maps the effect of the HVAC input on to the changes

in temperature readings at each sensor.

d Vector of scalar multipliers, with element dj , which captures the efficacy of HVAC input

j for the same % valve opening.

T Nominal temperature for pre-conditioning.

I Total number of temperature sensors considered in this work.

i Index for an individual temperature sensor.

J Total number of heating/cooling inputs considered in this work.

j Index for an individual heating/cooling input.

K Total number of time instances for Phase I.

k Index for a single, discrete time instance.

r Rate of updating weights for v-MPC.
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U[k] Column vector, with element Uj[k], which denotes the input signal to the HVAC input j

at time k.

T[k] Column vector, with element Yi[k], which denotes the temperature readings at sensor i

at time k.

I. INTRODUCTION

It has been estimated that nearly 75% of all US electricity is consumed within buildings [1],

with heating, ventilation and air conditioning (HVAC) systems accounting for approximately

30% of the total energy consumed by the commercial building sector [2]. Therefore, optimizing

indoor thermal management operations in buildings could significantly reduce power demand,

thereby curtailing the operation of power stations running on fossil fuels.

Shared workspaces, such as conference rooms, are generally occupied for only a part of the

work day, according to a pre-determined schedule. The sporadic nature of occupancy means that

implementing a business-as-usual approach for heating or cooling such workspaces is inefficient.

Instead, HVAC operations can be scaled down when these spaces are unoccupied, only to be

ramped up to achieve a nominal temperature when a scheduled activity is imminent.

The increasing desire for personal comfort and wellness among building occupants means that

HVAC systems must strive to attain a greater degree of environment personalization in indoor

spaces. Recent studies [3] posit that obtaining the occupants’ thermal preferences is a suitable

means for achieving personalized comfort in the workplace. In the presence of the occupants’

temperature preferences, as stated in [4], mapping these demands to the operation of the HVAC

system is challenging because the different zones in the shared space may be thermally correlated,

and it may not be possible to satisfy the preferences of all occupants simultaneously.

Indoor climate control strategies in buildings can broadly be categorized into rule-based and

optimal control-based techniques. Rule-based strategies employ simple algorithms to achieve

temperature control and buildings making them popular among building operators, in spite of

them offering limited energy savings [5]. In contrast, optimal control-based strategies, such as

model predictive control (MPC), determine optimal control inputs that minimize a given objective

objective over a time horizon [6]. Given an adequate thermal dynamics model of the building and

a reasonably accurate forecast for the ambient conditions, MPC can cause a building’s HVAC to

act in an anticipatory fashion to help minimize the system cost over the optimization horizon.

However, the performance of MPC in temperature management in a building is contingent upon
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the fidelity of the thermal dynamics model. Moreover, for MPC to be adopted in buildings,

practitioners may have to acquire additional expertise and on-site computational resources for

this purpose. In this work, we address some of these hurdles to the modernization of building

energy management systems by developing alternate control strategies that have a significantly

lower computational complexity than conventional MPC.

The development of high fidelity thermal dynamic models for buildings is hindered primarily

by three factors [7]: the gap between the behavior of the model and the building being considered,

the seasonal dependence of the model, and the fact that such models are often building-specific.

In this work, we hope to demonstrate to the reader that simple, linear models for characterizing

thermal dynamics of indoor spaces can be sufficient to achieve the desired indoor climate control

objectives. Furthermore, we present an interplay of simple online estimation and predictive

control techniques to ensure that control signals to the HVAC system remain robust to seasonal

changes in ambient conditions.

Although, a significant body of past research work has studied the use of MPC in building

energy management systems, there is a need to design control frameworks to achieve efficient,

time-bound, pre-conditioning of a workspace, in addition to satisfying individual thermal pref-

erences. Therefore, this paper develops control strategies that combine data-driven learning with

predictive control to improve efficiency as well as to achieve personalization in indoor spaces.

In this paper, we consider an instrumented test-bed which can be taken to represent a typical

shared workspace. The workspace is equipped with heterogeneous heating/cooling inputs each

with distinct thermal output. On a typical day, shared workspaces are sporadically occupied

according to pre-determined schedules. A naı̈ve approach to indoor climate control in this

situation would involve the use of a single control approach which is agnostic to the occupancy

patterns in the space. In contrast, this work develops separate control strategies, which use a data-

driven, thermal dynamics model, for space heating and cooling operations to achieve multiple

indoor conditioning objectives applicable to varying occupancy patterns in a shared workspace.

Specifically, we consider two separate intervals where a shared workspace remains unoccupied

prior to hosting a scheduled event, such as a work meeting. Phase I (pre-conditioning phase)

considers the first interval when the workspace is unoccupied. Here, we propose efficient, time-

bound pre-conditioning control strategies for a shared workspace. We further show that our pro-

posed strategies are less computationally taxing than conventional MPC. Phase II (environment

personalization phase) of our approach considers the subsequent interval when the scheduled



5

event is underway and the workspace is occupied. The attendees are assumed to have their own

temperature preferences. Here, we propose a separate control strategy which enhances the thermal

comfort of the occupants by harnessing the spatial differentiation of the thermal environment to

satisfy the different individual temperature preferences (within known bounds). In the context

of indoor climate control, our contributions are:

• We identify the need for developing separate, occupancy-based control strategies for HVAC

operations in shared workspaces. To this end, we develop an autonomous, robust and low-

complexity indoor pre-conditioning mechanism for indoor spaces, called adaptive switching

control (ASC), which only ramps up HVAC operations when a scheduled activity is imminent

to achieve an adequate, nominal indoor temperature. Once the workspace is occupied,

we employ a low complexity, quadratic programming-based approach for satisfying the

temperature preferences of the occupants.

• The ASC strategy does not rely on optimization solvers, making it computationally less

expensive and easier to scale as compared to MPC-based approaches. Unlike [8], we have

also shown that, in addition to using ASC, the time-bound pre-conditioning operation can

be solved by casting it as a fixed end point optimal control (FOC) problem.

• We implement the ASC in both simulation and on a physical test-bed and compare its

performance to that of FOC and variants of the conventional MPC approach. We have

shown that in addition to it being quicker to solve in real-time, ASC and FOC consume

less energy as compared to the MPC-based approaches studied herein.

• We show how, for an indoor space without plug load measurement and with heterogeneous

heating/cooling inputs, the linear, grey-box model characterizing the thermal dynamics can

be manipulated to derive a metric for capturing the power consumption of each of the inputs,

which can also be used to formulate the objective functions for the MPC-based strategies

used for pre-conditioning the workspace.

• To the best of our knowledge, this work is the first interplay of recursive least squares

estimation (RLSE) and predictive control techniques for indoor spaces with heterogeneous

HVAC inputs. RLSE requires significantly less computational resources for building model

identification as compared to reinforcement learning.

• We show how a low complexity optimal control framework, which can be solved in

closed form, can be used to exploit spatial differences in the impact of the heterogeneous
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heating/cooling inputs in an indoor space to satisfy disparate thermal preferences (within

known bounds) when the workspace is occupied.

This paper is organized as follows: Section II provides a review of relevant literature and

an account of our contributions to the state-of-the-art. Section III provides an overview of the

data-driven thermal model of the workspace, and formulates the proposed control policies as

optimization problems. Section IV presents experimental and simulation results and their analysis.

Finally, Section V summarizes the findings of this paper. Further details on the methodology

and results presented herein may be found in a detailed technical report available online [9].

II. LITERATURE REVIEW

The building system models considered in the literature can broadly be categorized into three

classes: white-box [10], black-box [11] and grey-box. The grey-box model is a hybrid of the

white- and black-box model in that it is more physically intuitive than the black-box model

and yet is much simpler than the white-box model. Past work, such as [12], has used grey box

models to characterize building thermal dynamics. Our work uses a linear, grey-box model for

this purpose as well. However, unlike [12], we not only develop a data-driven model to capture

indoor thermal dynamics but also deploy predictive control strategies on a physical test-bed.

A significant body of past research work has studied the use of predictive control in tandem

with data-driven learning in building energy management systems. The authors in [13] used a

physics-based thermal model of an indoor space. Using a standard MPC formulation, the authors

then proceeded to minimize the total energy and peak power consumption while keeping the space

temperature within prescribed bounds. Subsequently, a stochastic MPC approach was presented

to minimize the expected energy costs for temperature regulation within certain bounds. The

work in [14] determined the optimal time to turn on the boiler in a building to achieve the

desired temperature by a certain given time. The paper used the historical data representing

two heating scenarios to develop a neural network (NN) for predictive control to achieve the

desired indoor temperatures. The paper relied on offline learning which used the time required to

achieve the temperature set-point as the output and the average indoor temperature, the ambient

temperature and the water heating system temperature as inputs. Owing to the static nature of

the training, the model was not robust to variations in outdoor winter temperatures.

In [15], the authors first developed a mathematical model for the thermal dynamics of a

multi-zone building. As this model was unable to capture the effect of the variable air volume
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(VAV) box air damper on the zonal temperature, a radial basis function (RBF) NN was used

to characterize this relationship. The authors implemented control in a VAV HVAC system by

first determining predictions for zonal temperatures at each time-step using RBF-NN. Using the

deviation of the predicted temperatures from the set-point, the authors determined the air damper

opening for minimizing this deviation. The paper implemented the proposed control approach in

simulations. Unlike our work, [15] did not implement its predictive control strategy on a physical

test-bed, nor did it consider heterogeneous heating/cooling inputs in individual zones. In [16],

the authors used an autoregressive with exogenous inputs (ARX) model for predicting indoor

temperature models. The model was trained offline on synthesized data-sets. The authors used

an MPC framework in conjunction with the ARX prediction model to implement temperature

control in simulations. In [17], the authors considered an indoor space equipped with an under-

floor air distribution (UFAD) system for temperature control. The paper used data collected

from a real test-bed to train a grey-box model for predicting indoor temperature. The authors

compared the performance of an MPC framework with a feedback control approach for indoor

temperature management. The authors in [18], as well as those in the references cited in [19],

employed deep reinforcement learning to implement HVAC control in buildings. It is noteworthy

that papers [13]–[18] primarily relied on simulation studies to evaluate the performance of their

proposed data-driven learning control strategies. In contrast, our work performs both simulation

and experimental studies. Furthermore, our work is aimed to serve buildings with limited com-

putational power, which would be inadequate in implementing the deep learning strategies that

have hitherto been discussed.

Some work in the domain of building climate control has involved the implementation of

data-driven learning control approaches in physical spaces. In this context, the authors in [8]

used data-driven learning and predictive control to efficiently pre-cool/pre-heat an indoor space

based on an occupancy schedule. The authors in [20] used semi-parametric regression to map

temperature changes in discrete time to HVAC inputs and employed a learning-based MPC to

estimate the occupancy heating load and to adjust the control action accordingly. It is noteworthy

that [20] considered only a single type of HVAC input, the air handling unit (AHU), while our

work simultaneously utilizes the operation of multiple heterogeneous HVAC elements, i.e., AHUs

and radiators to achieve the desired objectives. It must be noted that the authors in [8], [20]

implemented predictive control using static, time-independent models for characterizing building

thermal dynamics, which required retraining to account for seasonal changes in the ambient
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conditions. Furthermore, unlike [8], we achieve pre-conditioning of the test-bed using a simpler

control approach which has been shown to have significantly lower time complexity than MPC.

In order for indoor thermal management control policies to be robust to changes in ambient

conditions, the thermal model for the physical space should be estimated in both offline and online

settings. For instance, the authors in [21], [22] performed offline estimation of the parameters

of the thermal model of an indoor space using Kalman filtering. Several papers in the domain

of online estimation of thermal model parameters have also used reinforcement learning for this

purpose [23], [24]. In [23], for instance, the authors used the behavior of the on-site building

automation system to be an expert demonstration for reinforcement learning in the context of

indoor thermal management. Another technique, the RLSE has also been used in literature

for estimating the thermal model due to its low sensitivity to outliers [25]. In this work, we

use RLSE for online estimation of the thermal model. Using an online estimator alongside an

optimal control framework may require significant computational resources which are generally

unavailable in most buildings. Therefore, there is a need to not only perform time-complexity

studies of online predictive control strategies but also to reduce the computational complexity

of such approaches.

Researchers in the domain of indoor climate control in buildings have previously explored

the prospects of achieving temperature personalization in shared spaces by introducing personal

comfort systems (PCSs) to satisfy the occupants’ temperature preferences, under varying levels

of automation. In [26], the authors used leg warmers as PCSs and studied their impact on

the occupants’ vital signs. It was shown experimentally that these PCSs could help maintain

the occupants’ key physiological indicators within healthy limits in winters. Similarly, in [27]

occupants were provided with wearable face and neck cooling fans as PCSs to achieve their

temperature preferences during summers. The work done in both [26] and [27] ascertained the

impact on the occupants under fixed, pre-set operational settings of the PCSs. As such, these

papers did not automate the process of temperature personalization for the occupants. However,

in [28], the authors used machine learning techniques, alongside an experimental setup to

determine the occupants’ temperature preferences and implemented temperature personalization

under varying degrees of automation.

It is noteworthy that the work done in [26]–[28] only focused on operating the PCSs and

stopped short of developing strategies for coordinating central HVAC and PCS operations. In

contrast, the authors in [29] used physics-based thermal models and the occupancy patterns of
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indoor spaces to develop an optimization framework for a PCS-aware central HVAC system.

The performance of the proposed strategy was evaluated through simulations only. In [30],

the authors showed experimentally how an adjustable thermostat and a space heater may be

used to meet the temperature requirements of two occupants in shared workspace. Finally, the

authors in [31] used deep reinforcement learning to develop a model-free approach for optimizing

energy consumption and achieving temperature personalization in a simulated indoor space which

consisted of a central HVAC system along with PCSs at the occupants’ work desks.

In contrast to past work in the domain of temperature personalization, our work develops

a low-complexity approach for satisfying occupant temperature preferences without incurring

the overhead of installing PCSs at each of the occupants’ locations. Instead, we have evaluated

our personalization approach using the existing heating/cooling inputs available in the test-bed.

These inputs are located at fixed positions in the test-bed’s walls and ceiling. Therefore, unlike

[26]–[31], we have achieved temperature personalization without employing the highly localized

PCSs considered in related literature. Moreover, the work in [29]–[31] achieved temperature

personalization for workspaces where the occupants were effectively siloed from the impact of

the neighboring PCSs. In contrast, our test-bed is an ‘open’ indoor space where the temperatures

experienced by individual occupants are correlated with each other and are dependent on the

operation of all the heating/cooling inputs in the space. Furthermore, unlike [31] which uses deep

reinforcement learning, we use a linear grey-box model for characterizing temperature dynamics

to develop a low-complexity personalization strategy which is suitable for buildings with limited

computational resources at their disposal.

III. PROBLEM FORMULATION

We consider a typical shared workspace which is equipped with heterogeneous heating and

cooling sources. This indoor space is instrumented with temperature sensors at various locations.

The daily activities in such shared spaces typically follow a fixed schedule, such as the timings

for work meetings. Therefore, these workspaces may be occupied or unoccupied depending

on the time of the day. A simple control strategy for managing indoor temperature in such

spaces would involve the use of a single control approach which is agnostic to the occupancy

patterns in a shared workspace. Instead, in this section, we propose a two phase pre-conditioning

and environment personalization (TEPP) approach which develops separate control strategies

for space heating and cooling operations to achieve multiple indoor conditioning objectives
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Fig. 1: HVAC operations in Phases I and II.

depending on the status of the occupancy in a shared workspace. Specifically, we consider two

separate intervals where a shared workspace remains unoccupied prior to hosting a scheduled

event, such as a work meeting. During the first interval, the workspace is unoccupied and our

control strategies, as part of Phase I of our indoor climate control approach, aim to efficiently

achieve a nominal temperature value by the end of a given deadline, K (see Fig. 1). Phase II of

our approach considers the subsequent interval when the scheduled event is underway and the

workspace is occupied. The attendees are assumed to have their own, disparate preferences for

the temperature in the workspace. We propose a control strategy which enhances the thermal

comfort of the occupants by exploiting the spatial differentiation of the thermal environment to

satisfy the temperature preferences of multiple attendees (within known bounds). The objective

of Phase II is also pictorially represented in Fig. 1.

This work uses a data-driven learning model to characterize the thermal dynamics in the test-

bed. We will now present a description of this model and show how it can be made robust to

seasonal changes in outdoor air temperatures.

A. Data-Driven Learning Model

Taking the R-C model in [32] as a motivation, we use the grey-box model employed in [8]

which uses past temperature readings and input signals to the HVAC system to predict future

temperature readings at individual sensors in the test-bed. We discretize the time horizon into

K time instances. Each time instance k has duration µ minutes. Furthermore, the formulation

assumes that the heating or cooling input remains constant for µ minutes. In this work, we
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consider the following model to characterize the temperature dynamics in the shared workspace:

T[k + 1] = AT[k] + BU[k] + Ŵ, (1)

where T[k] ∈ RI×1 is the vector of temperature measurements at I sensors at time k, U[k] ∈

RJ×1, with element Uj[k] ∈ [0, Ū ], is a vector of input signals (representing % valve opening in

our test-bed) to the J heating and cooling elements of the HVAC system, and column vectors A

and Ŵ, and matrix B, need to be estimated through learning. The bias, Ŵ, captures the effect of

the ambient temperature and unmodeled dynamics such as heat from human bodies, the server

and workstations, solar gains etc. Details of the derivation of this data-driven model may be

found in [8].

It is noteworthy that matrix A and column vector Ŵ in (1) are greatly dependent on ambient

conditions and have to be re-estimated periodically. Needless to say, repeating the 24-hour

training periodically to re-estimate these parameters is both computationally burdensome and

operationally infeasible. Therefore, for building HVAC control strategies to be truly robust to

changes in the ambient conditions, these parameters need to be re-estimated on-the-fly. In this

work, we use RLSE [33], [34] that uses successive temperature readings obtained µ minutes

apart, for the online estimation of A and Ŵ for all experimental studies performed in this paper.

Matrix B maps the effect of individual HVAC elements on to the changes in temperature readings.

Therefore, it can be taken to be independent of the ambient conditions. Hence, in all the control

approaches described subsequently in this paper, we use the estimate of B as obtained from a

single, 24-hour training run.

We will now provide a brief overview of the RLSE approach used in this work for estimating

the thermal parameters of an indoor space.

B. RLSE

RLSE is a variant of linear regression which estimates system model parameters by using a

forgetting factor which allocate greater weight to the more recently collected data values. This

approach aims to minimize the following cost function [35]:

V (θ̂, m′) =
1

2

m′∑
m=1

λm′−m(y(m)− ϕT (m)θ̂(m′))2, (2)

where m′ is the total number of collected samples, λ is the forgetting factor, θ̂(m′) is the estimate

of the ground truth at m′, ϕ(·) is the matrix of coefficients for the linear model, and y(m) is
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the ground truth. In our work, ϕ(·) is taken to be a concatenation of vectors A and Ŵ, and y(·)

represents the instantaneous temperature readings collected from the sensors in the test-bed. In

the context of online estimation of thermal parameters of an indoor space, RLSE can be helpful in

estimating, with low time complexity, the relationship between successive temperature readings

as well as the dependency of instantaneous temperature on unmodeled heat gains for applications

such as indoor space pre-conditioning, where there is limited HVAC operation expected in the

near-term. As will be seen subsequently in this paper, the experiments conducted in this work

showed that estimates obtained from RLSE using only a limited number of samples resulted in the

objectives of the pre-conditioning control strategies being met. This low complexity re-estimation

approach has helped make our proposed approach impervious to changes in ambient conditions

on a diurnal and seasonal basis. However, the estimation of matrix B (which by its nature is

minimally dependent on ambient conditions) requires the perturbation of multiple HVAC inputs.

Such perturbation is energy inefficient during routine building operations, especially for space

pre-conditioning applications. Therefore, the RLSE may not be the most adequate approach for

estimating B. Instead, this work obtained a sufficiently rich data-set after perturbing the test-bed

with different combinations of HVAC inputs over the course of 24 hours to estimated matrix B

using standard linear regression techniques.

Given the thermal model of the test-bed in (1), we now proceed to formulating the HVAC

control strategies for the TEPP approach.

C. TEPP

This subsection presents the control strategies for each of the two phases of the proposed

TEPP approach. We begin by laying out the control strategies for Phase I.

1) Phase I – Time-Bound Pre-Conditioning of the Test-Bed: A previously unoccupied indoor

space might need to be pre-cooled or pre-heated to a nominal temperature, T , in preparation

for some scheduled activity, e.g. a work-related meeting. In this case, prematurely heating or

cooling the space to T would be inefficient. On the other hand, waiting to ramp up the heating or

cooling operations until the start of the activity would cause significant thermal discomfort to the

occupants. Therefore, in order to save energy, it is vital that HVAC operations are controlled such

that the average temperature in the space reaches close to T immediately before the scheduled
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activity. This condition may be expressed as,∑I
i=1 Ti[K]

I
= T , (3)

where K represents the time at which the scheduled activity begins and Ti[K] is the temperature

measurement at sensor i at that time.

The purpose of the time-bound pre-conditioning of the test-bed is to achieve a nominal tem-

perature in the test-bed by the time a scheduled activity starts with minimum power consumption.

Developing control strategies for such operations requires knowledge of the instantaneous power

consumption of the HVAC inputs, which we denote by f(U[k]). Therefore, in the absence of

plug-in meters measuring the exact power consumption of each HVAC input in the test-bed,

f(U[k]) would need to be estimated as described next.

From (1), we notice that the knowledge of the power consumption of the HVAC elements

relative to each other is embedded as scalar multipliers in B which we hope to extract and use

to determine Ûj , the maximum allowable valve opening for HVAC element j, normalized to lie

between 0% and 100%. The greater the value for Ûj , the greater the power rating of element j

and, hence, the greater the change in zone temperature per unit change in valve positions.

In order to capture the relative power consumption of each HVAC element, we consider the

product,

BU[k] =
I∑

i=1

J∑
j=1

Bi,j · Uj[k], (4)

where B = {Bi,j},∀i ∈ Z ∩ {1, · · · , I}, j ∈ Z ∩ {1, · · · , J},B ∈ RI×J . We can further express

this product as,

BU[k] = B̃Ũ[k], B̃ =

{
Bi,j

dj

}
= {B̃i,j}, Ũ[k] = {Uj[k] · dj} = {Ũj}, (5)

where dj is a constant. Note that element Bi,j denotes the change in temperature observed at

sensor i brought about by a unit change of the valve opening of HVAC input j. We take d to be

a vector such that d ∈ RJ×1, with element dj such that Bi,j

dj
∈ [0, 1]. Here, dj1 > dj2 implies that

for the same % valve opening, j1 can effect a greater change in temperature in the workspace

than j2. Therefore, in the absence of plug-in meters measuring the exact power consumption of

each HVAC input, Uj[k] · dj = Ũj[k] can provide a representative value for power consumption.
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Furthermore, to ensure that Ũj[k] lies within the prescribed operational range, we will consider,

Û[k] =

{
Ũj[k]

max(d)

}
, Ûj[k] ∈

[
0, Ū · dj

max(d)

]
,∀j, (6)

where Û[k] is taken to be the vector of controllable inputs for our proposed control strategies

which will be presented later in this section. Therefore, the temperature dynamics in the test-bed

can now be given by,

T[k + 1] = AT[k] + B̃Û[k] + Ŵ. (7)

Finally, the efficient, time-bound, pre-conditioning operation in Phase I can be expressed in

the form of the following optimization problem:

min .
Û[.]

K−1∑
k=1

J∑
j=1

Ûj[k], s.t. (3), (7). (P1)

In this work, we propose two approaches for achieving energy efficient pre-conditioning of

a shared workspace: the ASC and FOC. We will now provide an exposition of these two pre-

conditioning control strategies considered in this work.

a) TEPP-ASC: We aim to develop an approach for time-bound pre-conditioning of the

test-bed which is not only adaptive but also computationally less burdensome. We refer to our

first approach as ASC. It utilizes the underlying properties of the linear framework in (P1) for

this pre-conditioning operation to determine the time instance at which the cooling/heating inputs

need to be engaged to achieve a nominal temperature by the end of a given deadline.

The framework (P1) is a linear programming problem. Hence, its solution, Û
∗
[k] ∀k, with

elements, Û∗
j [k] ∀j, k, lies at the vertices of the feasible region [36]. This implies that in the

optimal solution, the valves for each HVAC element can either be completely closed or fully

open (or to the extent permissible). For a sufficiently small value of µ, Û∗
j [k] ∈ {0, Ū · dj

max(d)}.

This observation reduces the pre-conditioning problem to one that determines

• whether the test-bed needs to be cooled or heated by the end of time period K, and

• the instance when the valve openings for the HVAC element are set to the maximum value.

Estimates for A and Ŵ along with (7) may be used to determine the trajectory of the

temperature readings up till time K when none of the HVAC inputs are switched on. Depending

on whether the final value in this trajectory is greater/less than T , the ASC determines if

cooling/heating operations will be required to pre-condition the test-bed. The trajectory of the
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mean temperature in the test-bed when the heating/cooling inputs are at their maximum values

for all k may be obtained by back-solving (7) for a desired T . The point of intersection of

the two trajectories, k, is an estimate of the time instance when the appropriate heating/cooling

inputs need to be engaged to approximately achieve (3). These trajectories are re-calculated

when A and Ŵ are re-estimated every µ minutes. Once the instance in time represented by the

intersection of the two trajectories is reached, the relevant HVAC elements are switched on. If

the mean temperature over-shoots (in the case of pre-heating) or under-shoots (in the case of

pre-cooling) from T , the trajectories of the mean temperature with and without the intervention

of an HVAC element are obtained again using the most recent estimates of A and Ŵ to allow

the system to correct course and bring
∑I

i=1 Ti[K]

I
closer to T . This approach is summarized in

Algorithm 1.

Algorithm 1 TEPP-ASC
Data: Temperature readings from I temperature sensors and estimate for matrix B

Result: Implementing TEPP-ASC for time-bound pre-conditioning

while k < K do
Determine mean instantaneous temperature, T̄ [k]

if k < k and T̄ [k] ̸= T then
Estimate A and Ŵ using past temperature readings through RLSE

Taking Û = 0, use (7) to predict mean temperature trajectory under no HVAC input

Set T̃ to be the no-input terminal temperature

if T̃ < T then
Set heating inputs to Ū · dj

max(d)

else
Set cooling input to Ū · dj

max(d)

end

Back-solve (7) to predict mean temperature trajectory when HVAC is engaged

Determine the intersection between the temperature trajectories to update k

else
Engage HVAC inputs in the test-bed to begin pre-conditioning operation

end

end
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b) TEPP-FOC: This approach achieves time-bound pre-conditioning by solving the linear,

fixed end-point problem (P1) using a mathematical solver. Given a deadline K, an FOC-based

approach [37] is used to determine the signals to the HVAC inputs. After every µ minutes,

this control strategy uses the sensor readings and the instantaneous HVAC inputs to solve (P1).

However, at each instance k, the problem is solved over a shrinking horizon of (K − k). This

approach is summarized in Algorithm 2.

Algorithm 2 TEPP-FOC

Data: Temperature readings from I temperature sensors, estimates for A, B and Ŵ

Result: Implementing TEPP-FOC for time-bound pre-conditioning

while k < K do
Solve (P1) over K − k time instances

Using the solution to (P1) and (7), obtain predicted temperature readings at each sensor

Update control horizon
end

2) Phase II – Satisfying Individual Temperature Requirements: Next, we develop a protocol

for the indoor environment’s HVAC operations for the case when it is already occupied and the

workers are seated at known locations. Individuals at each of these positions may have different

temperature preferences. We present a control mechanism that aims to enhance wellness for all

occupants by minimizing their thermal discomfort.

We can minimize the individuals’ thermal discomfort by optimizing the following objective:

min.
U[.]

K′∑
k=1

I∑
i=1

(Ti[k]−∆i)
2, ∀i ∈ {1 . . . I}, s.t. (1), (P2)

where K ′ represents the size of the optimization window. ∆i is the desired temperature at

sensor i’s location, which is determined based on the occupants’ preferences and their locations

relative to the sensor. Observing (7), it may be noted that (P2) is a low complexity quadratic

program which can be solved explicitly in closed form. Owing to the limited number of sensors

in the test-bed, (P2) assumes that the sensor which is located closest to an occupant accurately

gives the temperature experienced by that occupant. Unlike the policy for pre-conditioning, we

aim to minimize the occupants’ thermal discomfort as quickly as possible. Ideally, our control

policy for meeting individual thermal requirements should also prevent significant overshoots or
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(a) Test-bed layout. (b) Photograph of the on-campus test-bed.

Fig. 2: The physical test-bed used for experimental evaluation.

undershoots about ∆i. Therefore, at each time instance k, (P2) is solved by updating the starting

temperature and heating/cooling input values every µ̄ minutes where µ̄ < µ.

IV. PERFORMANCE EVALUATION

A. Test-Bed Layout

Fig. 2a shows the layout of the test-bed used for our experiments. The room is equipped with

three controllable heating sources and one cooling source. The heating sources include two radi-

ators, that are attached to the test-bed’s walls, and an AHU in the ceiling. The cooling operation

takes place through a separate AHU in the ceiling. Furthermore, the test-bed is instrumented with

five wall-mounted temperature sensors located at various locations. The test-bed was equipped

with Raspberry Pi-based panels where occupants could declare their temperature preferences,

with the test-bed tracking the location of the occupants through the use of time-of-flight sensors.

B. Test Scenarios

The experimental evaluation of the dynamical model in (7) and our proposed HVAC control

strategies considers two contiguous time intervals. The first interval, Phase I (pre-conditioning

phase), takes the shared workspace to be unoccupied and requires time-bound pre-conditioning

of the shared space in anticipation of a scheduled work activity. The second interval, Phase II

(environment personalization phase), considers the situation when the workspace is occupied and

where occupants at two locations in the shared space have two different temperature preferences.

In view of the test-bed having a significant thermal inertia, µ was chosen to be five minutes for

training the model in (7). The duration of Phase I was taken to be 60 minutes, i.e., K = 12.



18

C. Performance Benchmarks

This work considers three baseline approaches. The first two use a standard MPC framework

with some slight differences. We term the first of these baselines as vanilla MPC with constant

weights (c-MPC), and the second as vanilla MPC with variable weights (v-MPC). Unlike the

proposed TEPP approach, these vanilla MPC strategies can be used for both pre-conditioning as

well as for HVAC operations during a scheduled activity with some minor modifications. The

third baseline considered herein is the rule-based baseline (RBB). We will now provide brief

descriptions of these baseline approaches.

1) c-MPC: This approach minimizes the weighted sum of the total energy consumed for

pre-conditioning the test-bed and the deviation of the temperature from the desired value at

individual sensors, expressed as,

min
Û[.]

.
2K−1∑
k=1

(
α

I∑
i=1

(Ti[k]− T )2 + (1− α)
I∑

i=1

J∑
j=1

Ûj[k]
)

s.t. (7), (P3)

where 0 ≤ α ≤ 1. Unlike FOC, the vanilla MPC approach incorporates the thermal discom-

fort term in the objective, causing the α parameter to be re-tuned for different values of T .

Furthermore, vanilla MPC has a prediction window of a fixed length, K, unlike FOC.

2) v-MPC: This approach uses the same objective as in (P3). However, it considers α to be

a function of time for pre-conditioning operations. Specifically, we take α[k+1] = min
(
α[k] +

r
(

1−α0

K

)
, 1
)

, where α0 is the value of α at the beginning of the pre-conditioning operation and

the constant r determines how quickly α approaches 1. Taking α to be linearly varying (unlike

the case for c-MPC) can help ensure that the heating/cooling inputs in the test-bed are engaged

closer to the pre-conditioning deadline, thereby saving energy.

3) RBB: This approach presents a naı̈ve pre-conditioning strategy where the valve openings

of the required heating/cooling inputs are set to the maximum possible value x minutes before

the scheduled activity commences, i.e., at (Kµ−x) minutes. Prior to this instance, these valves

are completely shut. Upon achieving T , this baseline approach maintains the mean temperature

close to this level using hysteretic control. The RBB approach can result in non-trivial deviations

from T and is highly dependent on the starting temperatures in the indoor space.

D. Evaluation Results - Phase I

This subsection presents the results for pre-conditioning the test-bed using the ASC, FOC and

the vanilla MPC approaches. Each approach uses the same matrix B that was estimated offline



19

by performing linear regression on a data-set obtained by randomly perturbing each of the four

HVAC inputs over the course of a 24-hour period. The matrix A and the column vector Ŵ were

continually re-estimated by RLSE using the temperature readings up till that particular instance.

The re-estimations were aimed at determining the thermal characteristics of the test-bed on a

particular day without any influence from the heating/cooling elements in the room. As given by

the expression for Ûj[k] in Section III, the maximum values of the control signals to the AHU

heat, AHU cool, North radiator and East radiator are given by the vector, [100, 73.5, 17.9, 40.8].

We will now present the dynamics of the mean temperature readings in the test-bed for different

values of T for our proposed control strategies implemented over a 60-minute horizon for Phase

I. For each value of T , we include plots for (i) the simulated trajectory of the mean temperature

in the test-bed, and (ii) the change in the control signals to the heating/cooling elements over the

60-minute period. Additionally, we also include the experimental results for the trajectory of the

temperature and the change in the control signals for the ASC approach. The simulations results

presented herein have been obtained from MATLAB routines that implement ASC, FOC, c-

MPC and v-MPC using the linear state space model in (7). The matrix B used in the simulations

is the same as the one used for obtaining the experimental results. We also include tabulated

comparisons of the energy consumption for the pre-conditioning strategies studied here as well

as the time taken to execute each of them for a single time step.

1) Using TEPP-ASC: Fig. 3a shows the evolution of the mean temperature in the test-bed

obtained from simulation and experimental results for ASC when T = 23◦C. Fig. 3b shows the

control signals to the HVAC elements to achieve this T during experimental runs on the test-bed.

Finally, Fig. 3c shows the status of the HVAC elements as recorded in simulations.

It may be seen that for the value of T considered here under experimental settings, ASC

successfully achieved the desired mean temperature in the test-bed by the end of the 60-minute

deadline to within 0.2◦C. Furthermore, Fig. 3 show that the proposed ASC strategy achieved

the desired temperature for T = 23◦C by the deadline without any course correction, i.e., the

relevant HVAC inputs, once engaged, did not need to be switched off before the completion of

the hour. This result demonstrates that the discrete, linear model in (7) is able to satisfactorily

capture the relationship between the HVAC operations and the change in temperature.

2) Using TEPP-FOC: Here we use the FOC approach to achieve a desired average tem-

perature while minimizing power consumption. Fig. 4a shows the simulated results for pre-

conditioning the test-bed for all values of T . These results have been obtained using the matrix
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Fig. 3: Trajectory of mean temperature and heating/cooling input dynamics for ASC when T =

23◦C.

A and column vector Ŵ estimated during the experimental runs of the ASC strategy for the

corresponding values of T . We will now compare the simulated HVAC operation for ASC (Fig.

3c) with that of FOC. As evident from the trajectories of the mean temperatures in Fig. 4a (e.g.

beyond the 55th minute for T = 23◦C, see Fig. 4d), it may be seen that the heating/cooling

elements are engaged at approximately similar instances in time for both ASC and FOC. As the

FOC solves a convex optimization problem, therefore, the ASC strategy can be conservatively

stated to be a near-optimal power minimization strategy for Phase I.

3) Using c-MPC: This approach solves the optimization framework for vanilla MPC as

presented in Section III. Specifically, it uses a fixed value of α = 0.99999. Consequently, as seen

in Fig. 4b, for each value of T , this approach achieves the desired temperature much before the

60-minute deadline and subsequently maintains the average temperature close to this value. Fig.

4e shows the heating/cooling inputs for this strategy when T = 23◦C. Unlike the plots in Figs.

3c and 4d, it may be seen here that c-MPC engages multiple HVAC inputs much earlier than

is necessary to achieve T . Consequently, c-MPC can be significantly inefficient as compared to

ASC and FOC unless the weights in the optimization framework are suitably tuned for each

value of T . The ASC and FOC approaches do not require such tuning for their use in Phase I.

4) Using v-MPC: Here, we take α0 = 0.99, r = 2. The simulated trajectories of mean

temperatures in the test-bed for v-MPC are presented in Fig. 4c. The heating/cooling inputs

employed by this strategy when T = 23◦C are given in Fig. 4f. It may be seen from Figs.

4c and 4f that this approach restricts the use of heating/cooling inputs till the instance when
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(b) Simulation results for trajectories of

mean temperature in the test-bed for

T ∈ {20, 21, 22, 23}◦C using c-MPC.
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(c) Simulation results for trajectories

of mean temperature in the test-bed

for T ∈ {20, 21, 22, 23}◦C using

v-MPC.
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(f) Simulation results for

heating/cooling inputs for T = 23◦C

using v-MPC.

Fig. 4: Simulation results for FOC, c-MPC and v-MPC.

α ≈ 1, which, in this series of simulations, occurs just after the 30-minute mark. Beyond this

point in time, Ûj[·] takes greater values than before to reduce the squared difference between

the instantaneous average temperature in the test-bed and T .

Table I records the values of Φ1 =
∑J

j=1

∑K
k=1 Ûj[k] for all control strategies studied in this

paper. In the absence of explicit power measurements for each HVAC input in the test-bed, we

take Φ1 to be an alternate metric for capturing the energy consumption of each of the control

strategies for Phase I. All values in Table I have been obtained from simulations using identical

A, B and Ŵ for each control strategy to ensure a fair comparison. The table shows that c-MPC

and v-MPC consumed significantly greater energy than ASC and FOC did. This observation can

be attributed to the framework used for vanilla MPC. Here, α needs to be re-tuned for each T ,

to achieve a mean temperature close to T only at the end of the 60-minute deadline. No such
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TABLE I: Values of Φ1 for

Phase I.

Control

Strategy
20◦C 21◦C 22◦C 23◦C

ASC 1323 367.4 158.8 635.0

FOC 2078 736.8 287.6 976.1

c-MPC 5849 5018 3262 3173

v-MPC 3155 3092 3117 3563

TABLE II: Execution time of

a single iteration.

Control

Strategy

Execution

Time (s)

ASC 0.023

FOC 1.67

c-MPC 8.59

v-MPC 8.61

RBB 0.030

TABLE III: Values of Φt with

T = 23◦C.

Control

Strategy

for Phase I

Φt

ASC 2040

FOC 2598

c-MPC 4467

v-MPC 4882

re-tuning is required for ASC and FOC, thereby simplifying the pre-conditioning operations for

the building operator.

It may be observed from Table I that although ASC and FOC solve the same optimization

problem, the Φ1 values for ASC are consistently lower than those for FOC. This is because the

solution to the optimization problem for FOC is determined at intervals of length µ minutes.

This means that the control signals to each heating/cooling input remain constant for µ minutes.

In contrast, ASC determines the switching instance (which may not be a multiple of µ) for the

HVAC inputs by determining the point of intersection of the trajectories of the mean temperature

in the test-bed when all HVAC inputs are switched off and when all relevant HVAC inputs are

engaged, to solve the pre-conditioning problem in Phase I.

Table II shows the time taken to run the four control strategies in a single iteration. It

may be seen that ASC offers superior run-time performance as compared to FOC and the

vanilla MPC approaches. This is because ASC uses an analytical approach for solving the pre-

conditioning problem for Phase I, unlike the other control strategies presented previously, which

use mathematical solvers (which are more computationally intensive) to obtain their respective

solutions. The execution times for the vanilla MPC strategies are significantly higher than those

for ASC and FOC. This is because the prediction horizon for the vanilla MPC strategies is K

instances long, whereas this duration is (K − k) instances long for FOC.

Table IV records the values of Φ1 and the deviation of the mean temperature in the indoor

space from T at the end of Phase I for the RBB approach when x = 5. Table V records these

values for the case when x = 10. It may be seen that the energy consumed by ASC and FOC (see

Table I) is significantly lower for most values of T as compared to those for RBB. Furthermore,
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TABLE IV: Values of Φ1 and deviation from T of the mean temperature at the end of the 60

minutes for the RBB when x = 5.

20◦C 21◦C 22◦C 23◦C

Φ1 735 735 1587 1587

Deviation from T 1.3549 0.2469 0.5139 -0.1171

while ASC and FOC were seen to achieve T at the end of Phase I, RBB exhibited significant

deviations from this nominal temperature as it necessarily engaged the heating/cooling inputs x

minutes before the pre-conditioning deadline, following which it implemented hysteretic control

to maintain the mean temperature in the indoor space within a specified range.

It may further be seen from Table IV, that the deviation of the mean temperature from T

for x = 5 under cooling operation (i.e., when T = 20◦C and T = 21◦C) was greater than the

corresponding values for RBB with x = 10. This is because the indoor space being studied

was equipped with a single cooling input. Therefore, 5 minutes were insufficient to pre-cool

the space to the desired temperatures. In contrast, RBB with x = 5 performed better than RBB

with x = 10, both in terms of energy consumption and temperature deviation, when the indoor

space needed to be heated up to T = 22◦C and T = 23◦C. This is due to the fact that RBB

engages all three heating inputs in the indoor space. Operating these inputs 10 minutes prior to

the scheduled activity is not only energy inefficient, but also a cause of significant overshoots

from T (see Table V). On the other hand, using RBB with x = 5 for heating operations resulted

in significantly lower deviations from T . Therefore, it is noteworthy that the parameter x in the

RBB approach needs to be continually tuned depending on the pre-conditioning requirements of

the indoor space. It follows that the RBB’s performance is greatly dependent on the temperatures

in the indoor space at time k = 1 as well as on the building thermal dynamics.

It may be observed that the achievable comfort metrics under heating/cooling operations using

the RBB approach, as seen in Tables IV and V exhibit a great deal of variability. This indicates

that strategies using data-driven learning and optimal control, such as those proposed in this study,

are better equipped than rule-based approaches to achieve robust, time-bound pre-conditioning

in indoor spaces. Therefore, it makes sense to incorporate data-driven learning to implement

pre-conditioning in shared workspaces.
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TABLE V: Values of Φ1 and deviation from T of the mean temperature at the end of the 60

minutes for the RBB when x = 10.

20◦C 21◦C 22◦C 23◦C

Φ1 1102.5 1102.5 1954.5 2380.5

Deviation from T 1.0008 -0.0945 1.3032 0.6537
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Fig. 5: Experimental results for Phase II.

E. Evaluation Results - Phase II

Next, we consider Phase II or the environment personalization phase. This phase considers

the situation where the test-bed’s HVAC has achieved the desired T by the beginning of this

meeting. Here, we consider that the individuals requesting different temperature set-points are

seated close to sensor 5 and either sensor 1 or sensor 2 in the test-bed (see Fig. 2a). We assume

that the temperatures recorded by each of these sensors are the temperatures experienced by the

nearest occupants. Figs. 5a, 5b and 5c depict how the HVAC operations determined using (P2)

can successfully achieve a spatial temperature differentiation of up to 1◦C for heating and cooling

operations at different locations within the test-bed, independent of the starting temperatures. It

may be observed in Fig. 5a that it takes longer to cool the test-bed to the desired temperatures, as

the test-bed is equipped with three heating elements and only one cooling element. Our results

indicate that our control policy can achieve, within reasonable bounds, disparate temperatures

in the same indoor space, thereby ‘personalizing’ the workspace.

In the absence of clear demarcations of workstations for individual occupants, such as cubicles,
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TABLE VI: Mean thermal discomfort experienced when nominal temperatures T ∈

{20, 20.5, 21, 21.5, 22}◦C are maintained during the scheduled activity compared to the situation

where temperature personalization is implemented.

20◦C 20.5◦C 21◦C 21.5◦C 22◦C

%age difference from the thermal discomfort

for Phase II
38.1 13.1 13.5 52.2 105.6

in the indoor space considered in this work, the temperatures recorded at different locations are

highly correlated with each other. Moreover, they are impacted, to varying degrees, by each of

the heating/cooling inputs in the indoor space. Therefore, our proposed personalization approach

was seen to perform at its best when two different temperature preferences were provided to the

building energy management system. However, for the sake of completion, we now study the

case where occupants request five different temperature preferences.

We define ∆ to be the vector of temperature preferences, with element ∆i, such that ∆

= [20, 20.5, 21, 21.5, 22]. We compare the performance of the temperature personalization control

framework presented in this work with a baseline approach which maintains the mean temperature

in the indoor space close to nominal temperature, T , achieved at the end of Phase I while a

scheduled activity is underway in the shared space. Table VI records the %age difference of

the thermal discomfort when the aforementioned baseline approach is used, with respect to the

thermal discomfort when our proposed personalization approach is implemented to satisfy the

temperature preferences in ∆. The table records results for T ∈ {20, 20.5, 21, 21.5, 22}◦C. It may

be observed that our personalization approach resulted in a significantly lower thermal discomfort

than was the case with the baseline approach. Specifically, our personalization approach resulted

in an average instantaneous thermal discomfort of 0.43◦C. In contrast, this value for the baseline

approach when T = 22◦C was 0.88◦C. Therefore, despite the limitations of our test-bed,

which resulted in the temperature readings at different locations in the space to be highly

correlated, using our temperature personalization framework in (P2) could still be beneficial

to the occupants’ well-being, even when five different temperature preferences are provided to

the building energy management system.

We now consolidate our control strategies for Phases I and II and present simulation results

for a real-life application. Here, we consider two hour-long intervals, each representing Phases
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I and II. For Phase I, we take T = 23◦C. In Phase II, the participants are assumed to be seated

close to sensors 4 and 5 having temperature preferences of 24◦C and 25◦C, respectively. Table

III presents the values of Φt =
∑J

j=1

∑2K
k=1 Ûj[k], which represent the total energy consumed

for both Phases I and II. It may be observed that the values generally follow a trend similar

to the one seen in Table I for T = 23◦C. Since the control strategy for Phase II is identical in

each case, the value of Φt for each of the pre-conditioning strategies increases by roughly the

same amount from the corresponding entries in Table I. Slight differences in this increase can

be attributed to the disparate valve positions as well as the temperatures at each sensor at the

end of Phase I for each the four pre-conditioning strategies.

Fig. 6 presents the trajectories of the temperature readings for Phases I and II when ASC is

used for pre-conditioning the space to T = 23◦C under simulated conditions. The occupants are

assumed to be seated close to sensors 4 and 5 having temperature preferences of 24◦C and 25◦C.

It may be seen that our proposed quadratic programming-based approach for Phase II successfully

achieves temperature differentiation in the indoor space. Furthermore, the temperatures at each

of the locations in the indoor space reached close to the respective values of ∆4 and ∆5 early

on in Phase II, thereby reducing the occupants’ thermal discomfort.
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V. CONCLUSION

In this paper, we used a linear, discrete formulation to model the temperature evolution in

an indoor space as a function of the heating and cooling inputs, exogenous heat gains and past

zone temperatures. Aided by this data-driven learning model, we developed control policies for

heterogeneous HVAC elements that operate in tandem to: (i) achieve time-bound pre-conditioning

of workspaces and (ii) create spatial differentiation in the thermal environment based on the

occupants’ individual preferences. The proposed energy efficient pre-conditioning techniques

may be applied to classrooms, meeting spaces or any indoor space whose occupancy schedule can

be well-estimated in advance. Specifically, we developed an alternate pre-conditioning approach

(ASC) which was tailored for indoor spaces with limited computational resources. Our results

showed that data-driven modeling, coupled with our proposed predictive control formulations,

can not only make building operations more efficient, but also result in increased personalization

in situations where an indoor space is shared by occupants with temperature preferences. The

personalization approach proposed in this work assumed that the occupants were located close

to the temperature sensors in the test-bed. An alternative to this assumption could involve

taking the temperature experienced by an occupant to be a function of their distance from

each sensor and estimating it to be the weighted average of the five sensor readings. However,

following preliminary tests, we noted minimal benefits of adopting such an approach. Therefore,

the temperature personalization framework considered in this work approximated an occupants’

position to that of its closest sensor. In order to further enhance occupant comfort, the temperature

personalization approach, as represented by (P2), could be extended by incorporating occupant

feedback to update the set-point requirements at different locations in the test-bed. This could

involve gathering qualitative feedback from occupants requesting more heating/cooling, such as

that proposed in [4], thereby providing finer adjustments to the solutions obtained from (P2).

This extension has been left as future work. The achievable personalization observed through the

experiments performed as part of this work was limited to about 1◦C owing to the test-bed being

an open space, which caused the temperature at different locations in the indoor space to be

highly correlated. The introduction of cubicles to the test-bed would not only better replicate the

setup of a shared workspace but also allow increase the achievable temperature differentiation

in the space.
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