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Abstract—In this paper, we explore the question of efficient
allocation of energy, while buying the same from generation
companies, to PEVs by aggregator (electricity utility or load
serving entities) through auction mechanisms. Recognizing the
practical limitations of the Vickrey-Clarke-Groves (VCG) mech-
anism which would be natural to apply in this context, we
investigate two practical mechanisms that can be viewed as
extensions of second price auction mechanisms, and have limited
message (bid) complexity. In the first mechanism, the elastic-
supply Multi-level Second Price (es-MSP), each PEV agent submits
a number of price bids, one for each of a given set of energy
levels (energy quantities). In the second mechanism, the elastic-
supply Progressive Second Price (es-PSP), the PEV agents submit
a two-dimensional bid indicating the price as well as the desired
energy quantity. Taking into account differences across PEV-
owners in terms of their willingness-to-pay values and charging
time constraints, we analyze the social optimality and incentive
compatibility properties of the two auction mechanisms. We also
complement our theoretical findings with numerical simulations.

Index Terms—PEV charging, smart grid, auctions, incentive
compatibility, social optimality.

I. INTRODUCTION

EFFECTIVE management of the electricity demand from

Plug-in Electric Vehicles (PEVs) will be crucial for main-

taining the stability and operational efficiency of the power

grid in the near future [1]-[3]. Fortunately, PEVs provide

significant flexibility in terms of their energy consumption

rates and schedules, which can be utilized towards reducing the

variability of the aggregate demand over time. Additionally,

it can also help to partially absorb the variability associated

with the supply side, particularly when a significant fraction

of the energy is being supplied from intermittent renewable

energy sources. Coordinated charging of PEVs is necessary

for optimizing electricity dispatch over a temporal scale, hence

ensuring that undesirable demand peaks are not created in the

power grid [4]. Cordination of PEV charging under varying

levels of PEV penetration through controlling the price dynam-

ics has also recently been studied in [7]. A congestion pricing

based distributed framework for controlling PEV charging has

also been studied in [6]. A price driven charging mechanism

that results from non-linear pricing of PEV demand and results

in load variance minimization is reported in [14]. Several

other approaches to solve the problem of PEV charging has
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been taken including game theory [5], [8], [15], gradient

optimization [9], sequential quadratic optimization [10], [11],

dynamic programming [12] and other heuristic methods [13].

In this paper, we study the use of auction mechanisms for

solving the efficient charging control (scheduling) problem

for PEVs in the smart grid. Such auctions can be run in

an automated manner where information flow between the

aggregator and PEV owners are done through interactive

smart meters/chargers. The smart meters/chargers can collect

some simple information from the PEV owners (such as

amount of energy required, maximum per-unit energy cost

it is willing to pay, and time by which it needs the PEV

to be charged), and compute and place the bids accordingly.

The auction mechanisms studied in this paper are most suited

for residential charging of PEVs. However, they can also be

applied in commercial charging facilities (such as parking

lots offering charging service) by having secured, personalized

user profiles. Users can log-in to these profiles and set their

preferences, based on which the smart meters at the charging

facility can conduct the auctions discussed in the paper.

We realize that the cost of procuring energy from a gener-

ation company (by an electricity aggregator) can be modeled

as a convex function of the energy. We also realize that PEV

agents (PEV owners) can differ in terms of their charging con-

straints and their willing-to-pay values (for the energy given to

them). Since the valuation and charging constraints are private

information to the agents, the auction mechanism must induce

the agents to be truthful in declaring that information to the

aggregator, or in making its bids as required by the auction

process. A natural candidate for this auction is a Vickrey-Clark-

Groves (VCG) mechanism. In the VCG mechanism, users are

expected to submit their valuation functions (of the resource)

to the auctioneer. Users payments are based on the social

opportunity cost, which in turn ensures that the mechanism

is dominant strategy incentive compatible. This ensures that

users do not have any incentive to bid their valuation functions

untruthfully. Based on these valuation functions, the auctioneer

(aggregator in our case) can compute and assign a resource

allocation (charging solution in our case) that is socially

optimal, i.e., maximizes the economic surplus in the grid.

The economic surplus (or social value) of a charging solution

(schedule) corresponds to the aggregate valuation of the PEV

agents for the energy supplied to them, minus the total cost

of supplying the energy, given their charging constraints as

well as the energy availability constraints of the distribution

network.

The VCG mechanism is associated with some practical
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limitations however, posing difficulties in implementing it

directly in our problem context. Firstly, direct implementation

of the VCG mechanism requires the agents to declare their

entire valuation function, which is often not exactly known to

(or may be hard to estimate by) the agents (PEV owners)

themselves. Secondly, even if the valuation functions are

known explicitly, declaring them to the aggregator (exactly, or

to a close degree of approximation) requires very high message

complexity, as the function is defined over a continuous

space of real numbers. The discretized or low-complexity

approximate VCG frameworks that we consider in this paper

are motivated by these limitations of the VCG mechanism. In

this paper we apply and study two extensions of this auction

mechanism to the PEV charging context, that require the agent

to declare only a small number of price and/or quantity values

to the auctioneer (aggregator). Despite this, we show that the

proposed auction mechanisms retain the desirable incentive

compatibility and social optimality properties, at least to a

reasonable/desired degree of accuracy, or when equilibrium is

attained. Since the two auction mechanisms can be viewed

as extensions of VCG, or more generally extensions of the

second price auctions of a resource having an elastic supply,

we will refer them to as elastic supply-Extended Second Price

(es-ESP) auction mechanisms. Note that the implementation

of the auction mechanisms studied in this paper relies on

information provided by the user such as willingness to pay

values at certain energy levels (quantities). Truthfulness of

the auction mechanisms is important, as it ensures that the

users will declare such information truthfully, without which

the implemented auction may not result in socially optimal

resource sharing.

In the first mechanism, which we call the elastic supply-

Multi-level Second Price (es-MSP) auction, each agent is

required to declare a set of prices that it is willing to pay for

certain (given) levels of energy (quantities of charge). This

mechanism can rightly be seen as a discretized approximation

of the VCG mechanism. In the second mechanism, which

we call the elastic supply-Progressive Second Price (es-PSP)

auction, each agent is required to declare a two-dimensional

bid comprising of a price per unit energy (willingness to pay)

and a requested quantity (of energy).

Analogues of the mechanisms that we study in this paper

have been considered in prior work, mostly in the context

of bandwidth allocation in the Internet [16]-[23]. The es-

MSP mechanism is related to the notion of multi-bid auctions

investigated in [16], [17]. The application context, and the net-

work model is significantly different however; in particular our

system reduces to a bipartite network graph with elastic supply

limits whereas [16], [17] studies a single node (single block

of divisible resource of fixed quantity) or inelastic resources

connected in a tree network topology. While the broad nature

of our approximation results (for incentive compatibility and

social optimality) are similar to those in these prior work,

we consider convex supply costs and also provide a pricing

mechanism that is not only simple to express and compute,

but also allows much simpler proofs of the results. The PSP

mechanism was proposed in [18], and further analyzed in [19],

all in the context of bandwidth auctions. We not only provide

parallels of the full suite of results in [18] and a key result

in [19] in the PEV charging context (i.e., bipartite network

model and convex supply costs), but also obtain stronger

results by taking into account the elastic nature of the supply.

In particular, we show that the energy allocation at all Nash

equilibria of the auction mechanism is efficient (Proposition

3), a result that does not hold for the fixed resource model, as

shown in [19]. Recently, Zou et al., in [24]-[25] have studied

the PSP auction mechanism for a model and application that

is closely related to ours. However, our model is more general

in that it considers heterogeneous charging (time) constraints

across PEVs, and we prove two additional, important results

(Propositions 3 and 5), which have not been shown in [25].

Furthermore, we also provide a different and general analysis

method that combines modeling via ramp functions and using

subgradient optimality conditions, and is likely to be useful

in analyzing the PSP auction in broader classes of network

models and convex environments.

The rest of the paper is structured as follows. Section II

describes the system model. Sections III and IV describe and

analyze the es-MSP and es-PSP auction mechanisms, respec-

tively. We evaluate these mechanisms through simulations in

Section V and conclude in Section VI.

II. SYSTEM MODEL
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Fig. 1. Schematic diagram of the elastic supply-Extended Second Price (es-
ESP) auction mechanisms.

Consider an auction window comprising of T time slots,

denoted by T = {1, 2, ..., T }. Let K = {1, 2, ...,K} be the

set of all PEVs in the distribution network under consideration.

The set of charging constraints (preferences) can differ across

PEVs; for PEV k it is given by a set Tk ⊆ T at which it can

charge (i.e., it is connected to the grid). Also, let each PEV

k ∈ K have a remaining battery capacity of αk at the start

of the auction window i.e. the amount of energy which can

still be injected into the battery. We assume that the non-PEV

based inelastic demand is given by Dt for t = 1, . . . T . The

cost of supplying electricity in any time slot t, denoted by Ct,

is assumed to be an increasing, strictly convex function of the

total load (sum of PEV load and non-PEV load) in that time

slot. The supply cost at time t is thus given by Ct(Dt+

K∑

k=1

qtk),
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where qtk represents the energy allotted to PEV agent k in

time slot t. Let the vector qk = (q1k, q
2
k, ..., q

T
k ) represent the

charging schedule for PEV k. We call q = (q1,q2, ...,qK)
the schedule vector for all PEVs in a feasible solution. Let

Qk represent the total energy received by the PEV k over

all accessible time slots. We call Q = (Q1, Q2, ..., QK) the

allocation vector for all PEVs. Note that Qk =
∑

t∈Tk

qtk, and

therefore Q can be expressed as Q = Mq, where M is an

appropriately defined matrix of dimension K×KT containing

either 0 or 1 as elements. The total energy allocated for

PEV charging at time t, denoted by Qt, is then expressed

as Qt = Dt+
∑

k∈K

qtk. Every PEV (agent) k is associated with

a (privately known) valuation function vk(·) for the energy

obtained. We assume vk(0) = 0, and vk(Qk) is increasing,

twice differentiable and strictly concave in Qk in the range

[0, αk]. Figure 1 provides a schematic diagram of the system

model and the studied auction mechanisms.

A. VCG mechanism for PEV charging with elastic supply

The socially optimal goal of PEV charging is that of maxi-

mizing the “economic surplus”, defined as the total valuation

of the energy allocated minus the total cost of supply, subject

to the the charging constraints. This is expressed as,

max S(q) =
∑

k∈K

vk(
∑

t∈Tk

qtk)−
∑

t∈T

Ct(Dt +
∑

k∈K

qtk), (1)

s.t.
∑

t∈Tk

qtk ≤ αk, k ∈ K, (2)

qtk = 0, t /∈ Tk; qtk ≥ 0, t ∈ Tk; k ∈ K. (3)

Let Dk = {qtk, t = 1, . . . , T, subject to (2) and (3)} be the

feasibility constraint set for the charging of PEV k. Then

all feasible schedule vectors (for all PEVs) that satisfy (2)

and (3) must be contained in D = D1 × D2 × . . . × DK .

Therefore, (2) and (3) can be replaced by a single constraint

q ∈ D. Specifically, the VCG mechanism requires the PEV

agent (user) k to make a payment expressed as,

πk =
∑

j∈K\{k}

vj(Q
∗
j,−k)− vj(Q

∗
j )

︸ ︷︷ ︸

πo
k

+
∑

t∈T

(

Ct(Q
∗,t)− Ct(Q

∗,t
−k)

)

︸ ︷︷ ︸

π
g
k

(4)
Here Q∗

j (Q∗,t) represents the energy allocation to agent

j (total load at time t, resp.) under socially optimal energy

allocation (one that solves (1)-(3)) when all agents (including

agent k) are present. Also Q∗
j,−k (Q∗,t

−k) represents the energy

allocation to agent j (total load at time t, resp.) under socially

optimal energy allocation when agent k is absent from the

auction. The part πo
k denotes the opportunity cost of the

resource incurred by agent k (the amount of loss it causes to

others through its inclusion in the auction process) and the part

πg
k denotes the additional generation cost that the aggregator

has to incur due to the inclusion of agent k in the auction

process. This VCG payment policy ensures that rational agents

(acting in self-interest) do not have any incentive to declare

their valuation functions untruthfully.

There are practical difficulties however in implementing a

VCG mechanism as has been mentioned in Section I. These

factors motivate the need to look at VCG-like mechanisms

that require PEV agents to submit their bids in some simple

form that is both convenient to them and requires low mes-

sage complexity. When the bid space is restricted, however,

the challenges are: (i) How can the auction mechanism be

designed so that rational agents do not have any incentive to

declare the bids untruthfully? ii) How can the socially optimal

allocation be attained based on the submitted bids?

III. THE ELASTIC SUPPLY MULTI-LEVEL SECOND PRICE

(es-MSP) AUCTION MECHANISM

In this mechanism, the aggregator specifies a finite num-

ber of energy levels (assume that is n) at the start of

the auction window. PEV agents are expected to submit

their charging preferences bk which is of the form bk =
{P1,k, P2,k, ..., Pn,k}. Here Pj,k represents the valuation of

jth energy level by PEV agent k. Based on the vector bk and

the timing constraints Tk (also communicated through smart

metering equipment), the aggregator constructs a piecewise

linear approximate valuation function. Let this be denoted as

v̄k(·) for any k ∈ K. Based on this piecewise linear valua-

tion function, the aggregator attempts to solve the following

optimization problem for optimally buying the electricity and

scheduling it for dispatch to the individual PEVs:

maxS(q) =
∑

k∈K

v̄k(
∑

t∈Tk

qtk)−
∑

t∈T

Ct(Dt +
∑

k∈K

qtk), (5)

s.t. q ∈ D (6)

Assuming that q = q̃ optimizes the above problem (resulting

in allocation vector of Q̃), the price of the electricity which

is to be paid by any PEV agent k is computed as πk =
∑

j∈K\{k}

v̄j(Q̃j,−k)− v̄j(Q̃j)+
∑

t∈T

(

Ct(Q̃
t)−Ct(Q̃

t
−k)

)

. Note

that the payment structure is similar to the VCG mechanism

with the vk(·) in the VCG mechanism being replaced by the

v̄k(·), ∀k ∈ K in the es-MSP mechanism. Also note that the

es-MSP mechanism is a single-shot mechanism meaning that

the allocations and prices as computed above are the final

values.
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Fig. 2. Piecewise linear approximation of valuation function vk(Qk).

A. Analysis of the es-MSP auction mechanism

Assume that the actual valuation function vk(·) is non-

decreasing, strictly concave with vk(0) = 0, and v̄k(0) = 0.
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Clearly, v̄k(x) ≤ vk(x), ∀x, as seen from Figure 2. Let

B = maxk maxx≤αk
(vk(x)− v̄k(x)) represent the maximum

deviation of the approximate valuation function v̄k from the

actual valuation vk over the energy range of interest. (Note

that αk is upper bounded by battery capacity.) Then we have

the following results.

Proposition 1. Assuming truthful bidding, the social valuation

of the energy being auctioned off differs from the maximum

possible social valuation by KB.

Proof. Consider V (Q) ,
∑

k∈K

vk(Qk) and V̄ (Q) ,

∑

k∈K

v̄k(Qk) where Q = (Q1, Q2, ..., QK) is the complete

allocation vector of energy to all PEVs. Q∗ and Q̃ are taken

to be the optimal allocations to the VCG mechanism and

the es-MSP mechanism respectively. We need to show that,

V (Q∗)−V (Q̃) ≤ KB where B is constant as defined earlier.

From optimality of VCG mechanism, V (Q∗) ≥ V (Q) ∀Q.

Similarly, from optimality of the es-MSP mechanism, V̄ (Q̃) ≥
V̄ (Q) ∀Q. We know that vk(Qk) − v̄k(Qk) ≤ B, ∀Qk and

for all k ∈ K. Therefore, we can write that,
∑

k∈K

(

vk(Qk)− v̄k(Qk)
)

≤ KB, (7)

⇒ V (Q)− V̄ (Q) ≤ KB. (8)

Identifying the fact that V (Q) ≥ V̄ (Q) ∀Q, and noting that

Q̃ is the optimal value for the es-MSP mechanism (auction

with discretized functions v̄k(·)), it can be written that,

V (Q̃) ≥ V̄ (Q̃) ≥ V̄ (Q∗) ≥ V (Q∗)−KB. (9)

The first inequality in equation (9) comes from the fact

that V (Q) ≥ V̄ (Q) ∀Q (refer to Figure 2 for a clearer

understanding); the second inequality follows from the fact

that Q̃ is optimal for the es-MSP mechanism (using V̄ (·))
and the third inequality follows from equation (8). Therefore,

we have V (Q∗)− V (Q̃) ≤ KB.

Define uk(x) = vk(x)−πk(x) to be the utility obtained by

agent k after allocation of x kWh of energy.

Proposition 2. The maximum utility gained by any agent

k through untruthful declaration of its valuation function is

upper bounded by B.

Proof. Let Q∗ = (Q∗
1, Q

∗
2, ..., Q

∗
K) be the vector of post

es-MSP mechanism allocation to all PEV agents under as-

sumption that agent i is bidding its discretized valuation

function v̄i(·) truthfully. Assume that the other agents j ∈
K \ {i} bid w̄j(·) as their discretized valuation function; w̄j

may or may not be truthful. Considering the w̄j(·), j ∈
K \ {i} remaining the same, let Q̂ = (Q̂1, Q̂2, ..., Q̂K) be

the vector of post es-MSP allocation under a setting when

agent i does not bid truthfully; ȳi(·) being the untruth-

ful discretized valuation function of agent i. Let Q−i =
(Q1,−i, Q2,−i, ..., Qi−1,−i, Qi+1,−i, ..., QK,−i) be the alloca-

tion vector under a setting when agent i is not present

in the auction. For notational simplicity, we will consider

ui(Qi) = ui(Q) for the rest of the proof. The utility obtained

by the agent i when it bids truthfully is given as,

ui(Q
∗) = vi(Q

∗)− πi(Q
∗),

= vi(Q
∗) +

∑

j∈K\{i}

w̄j(Q
∗
j )−

∑

t∈T

Ct(Q
t,∗)

−

( ∑

j∈K\{i}

w̄j(Qj,−i)−
∑

t∈T

Ct(Q
t
−i)

)

︸ ︷︷ ︸

♠

. (10)

Similarly, the utility obtained by agent i when it bids
untruthfully can be written in the same way as (10):

ui(Q̂) = vi(Q̂)− πi(Q̂),

= vi(Q̂) +
∑

j∈K\{i}

w̄j(Q̂j)−
∑

t∈T

Ct(Q̂
t)−♠. (11)

The amount of unilateral gain through an untruthful bid by

i can thus be represented as ∆ui = ui(Q̂) − ui(Q
∗), which

can be simplified as,

∆ui =
(

vi(Q̂)− v̄i(Q̂)
)

−

(

vi(Q
∗)− v̄i(Q

∗)
)

+
(

v̄i(Q̂) +
∑

j∈K\{i}

w̄j(Q̂j)−
∑

t∈T

Ct(Q̂
t)
)

︸ ︷︷ ︸

Ψ(Q̂)

−

(

v̄i(Q
∗) +

∑

j∈K\{i}

w̄j(Q
∗
j )−

∑

t∈T

Ct(Q
t,∗)

)

︸ ︷︷ ︸

Ψ(Q∗)

. (12)

Note that Q∗ optimizes Ψ(Q) over all Q so Ψ(Q̂) −
Ψ(Q∗) ≤ 0. Also note that 0 ≤ vi(Qi) − v̄i(Qi) ≤
B ∀Qi, ∀i ∈ K, as seen from Figure 2. Combining these with

(12), we can write ∆ui ≤ B.

Note that B can be bounded in terms of the “granularity”

at which the agents are required to submit their bids, as

follows. Let δ̂ = maxk maxNk

n=1 (Qk,n −Qk,n−1), where Qk,0

is assumed to be zero for all k. Also, assume that the

valuation function vk(·) is differentiable and strictly concave,

and 0 < −v′′k (x) ≤ ν for all x ≤ αk. Then, it can be shown

through the following lemma that the degree of approximation

in Proposition 1 (social optimality) and Proposition 2 can be

made as small as desired by reducing δ̂.

Lemma 1. Assume that the valuation function vk is differ-

entiable and strictly concave, and 0 < −v′′k (x) ≤ ν for all

x ≤ αk. Then B ≤ νδ̂2

2
.

Proof. Refer to Figure 3 for this proof. Assume that ∆(x) ,
(vk(x) − v̄k(x)). From the definition of ν and noting that

v̄
′′

k (x) = 0, we can write that max |∆′′(x)| = max |v
′′

k (x) −
v̄

′′

k (x)| = ν. Assume x1 ≤ x0 ≤ x2. Using Mean Value

Theorem, we can write,

∆′(x2) = ∆′(x1) + (x2 − x1)∆
′′(x0), (13)

≥ ∆′(x1)− ν(x2 − x1). (14)
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Fig. 3. Variation of the difference between resource valuation under VCG
mechanism and MSP mechanism.

Therefore, it can be written that,

∆′(x1)−∆′(x2) ≤ ν(x2 − x1), (15)

⇒ ∆′(x1)−∆′(x2) ≤ νδ̂. (16)

Observing that ∆′(x1) ≥ 0, ∆′(x2) ≤ 0 (in Figure 3) and

using equation (16), the following inequalities can be written,

∆′(x1) ≤ νδ̂, (17)

−∆′(x2) ≤ νδ̂. (18)

Assume x∗ to be the point where ∆(x) is maximized.

Assume x1 ≤ x10 ≤ x∗ and x∗ ≤ x20 ≤ x2. Using Mean

Value Theorem, we can write,

∆(x∗) = ∆(x1) + ∆′(x10)(x
∗ − x1), (19)

≤ ∆′(x1)(x
∗ − x1), (20)

≤ νδ̂(x∗ − x1). (21)

The above set of inequalities are written combining (17), (19)

and the fact that ∆(x1) = ∆(x2) = 0. Again, expanding ∆(x)
about x2 and using a similar argument as in (19)-(21), we can

write that,

∆(x∗) ≤ νδ̂(x2 − x∗). (22)

Adding inequalities (21) and (22), we get,

2∆(x∗) ≤ νδ̂(x2 − x1), (23)

⇒ 2∆(x∗) ≤ νδ̂2, (24)

⇒ ∆(x∗) ≤
νδ̂2

2
. (25)

This clearly shows that B ≤ νδ̂2

2
.

IV. THE ELASTIC-SUPPLY PROGRESSIVE SECOND PRICE

(es-PSP) AUCTION MECHANISM

In this mechanism, the bid of any PEV agent k ∈ K is

given by bk = (ak, pk) where ak is the amount of energy

demanded by agent k, and pk is the price per unit of electricity

it is willing to pay. Let Bk ⊆ R
2
+ be the set of all possible

bids by agent k. Let BT
k ⊂ Bk denote the set of all truthful

bids where the bid price reflects the marginal valuation of the

bid quantity, i.e. the 2-d bid is of the form (ak, v
′
k(ak)). A

general bid vector (truthful or untruthful) b is then defined as

b = (b1, b2, . . . , bK). Also let b−k denote the set of bids of all

agents other than k, i.e. b−k = (b1, b2, . . . bk−1, bk+1, . . . bK).

In our es-PSP mechanism, once the bid bk and time constraints

Tk are reported to the auctioneer, it solves the following

optimization problem for optimal allocation of the energy for

charging the PEVs,

max S̄(q) =
∑

k∈K

( ∑

t∈Tk

qtk

)

pk

︸ ︷︷ ︸

lk

−
∑

t∈T

Ct(Dt +
∑

k∈K

qtk),(26)

s.t.
∑

t∈Tk

qtk ≤ ak, k ∈ K, (27)

q ∈ D. (28)

Note that the constraint (28) just captures the feasibility

constraints (2)-(3)1. Similar in principle to the VCG and the

es-MSP mechanisms, the payment that needs to be made by

any agent k is expressed as, πk =
∑

j∈K\{k}

(

Q̃j,−k− Q̃j

)

pj +

∑

t∈T

(

Ct(Q̃
t)−Ct(Q̃

t
−k)

)

where Q̃j (Q̃t) represents the energy

allocation to agent j (total load at time t, resp.) in the es-

PSP mechanism. For a given schedule (and corresponding

payments) as computed by the es-PSP auctioneer, the utility of

any agent k is a function of its own bid as well as the bids of

others, and is expressed as (similar to the es-MSP mechanism),

uk(bk,b−k) = vk(bk,b−k)− πk(bk,b−k) (29)

=

Uk(bk,b−k)
︷ ︸︸ ︷

vk(Q̃k) +
∑

j∈K\{k}

Q̃jpj −
∑

t∈T

Ct(Q̃
t)−hk(b−k). (30)

Note that in (30), the term hk(b−k) =
∑

j∈K\{k}

Q̃j,−kpj +

∑

t∈T

Ct(Q̃
t
−k) depends only on the bids of the other agents.

Therefore, given the bids of others b−k, a rational agent k
would look towards choosing its bid bk so as to maximize

the term Uk(bk,b−k) subject to (27) and (28), and the given

tie-breaking rule (as discussed later). Since this term depends

on the allocation of the es-PSP mechanism (when all agents

including k is present), with slight abuse of notation we refer

to this term later in this paper simply as a function of the

corresponding schedule (q̃) or allocation vector (Q̃), as Uk(q̃)
or Uk(Q̃). In this paper, we look at the properties of the

game in which each agent k, who is assumed to be aware

of the es-PSP payment and allocation policy, and the bids

and constraints of the other agents, attempts to choose its 2-

d bid bk so as to maximize Uk(bk,b−k). Note that we have

analyzed the es-PSP mechanism as a complete information

game, as optimizing the users individual objective in (30)

requires knowledge of bids of the other users. Analysis of an

incomplete information equivalent of the game would require

assumptions on probabilistic beliefs of each PEV agent about

others bids, and remains open for future work

1Note that (2) is subsumed by (27): it is easy to argue that an agent would
not have any incentive to demand an energy quantity ak larger than αk .
Similarly, it can be argued that an agent does not have any incentive to declare
its constraint set Tk untruthfully to the auctioneer.
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A. Preliminaries

Definition 1. For a two-dimensional bid bk = (ak, pk) ∈ Bk,

an equivalent ramp function ŵk,bk : R+ → R+ is defined as

ŵk,bk(x) = pk min(x, ak).

Note: For any “truthful” bid bk ∈ BT
k with bid quantity

ak, the ramp function can be represented as v̂k,ak
which

is same as earlier, but with pk = v′k(ak), i.e. v̂k,ak
(x) =

v′k(ak)min(x, ak). This is illustrated in Figure 4.
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Fig. 4. Ramp function representation of 2-d bid bk: here ŵk,bk
(Qk)

represents a (possibly untruthful) bid and v̂k,ak
(Qk) represents a truthful

bid corresponding to bid quantity ak .

Note that replacing the terms lk in the es-PSP allocation

objective S̄(q) in (26) by their corresponding ramp functions,

allows us to ignore (27) and optimize only with respect to

(28), i.e. the feasibility constraints (2)-(3). It is easy to see

that any schedule vector that optimizes S̄ (with lk’s replaced

by their ramp functions) under q ∈ D, will not realize an

allocation vector Q̃ such that Q̃k > ak for any k. Since the

supply cost functions are (strictly) increasing in the load, if

Q̃k > ak for any k, then the objective S̄(q) could be increased

by adjusting the corresponding schedule vector q̃ so as to

reduce Q̃k to ak. Due to the nature of the ramp functions,

such adjustment would not change
∑

k∈K

lk but reduces
∑

t∈T

gt in

(26), thus improving S̄. Hence q̃ cannot be optimal. Therefore,

the energy allocation problem in the es-PSP mechanism can

be equivalently expressed as

max S̄(q) =
∑

k∈K

ŵk,bk(
∑

t∈Tk

qtk)−
∑

t∈T

Ct(Dt +
∑

k∈K

qtk)(31)

s.t. q ∈ D. (32)

Note that constraints (27) are implied by the definition of the

ramp functions, and therefore only constraint (28), i.e. q ∈ D
need to be accounted for in the optimization. Recall from the

analysis in (29)-(30) that each rational agent seeks to maximize

Uk(bk,b−k) subject to (27) and (28) and the tie-breaking

rule (which we will describe shortly). Expressed in terms

of ramp functions, this becomes equivalent to maximizing

Uk(q̃) (where q̃ is a schedule vector resulting from the es-

PSP auction for the bid vector bk), given by

Uk(q̃) = vk(Q̃k) +
∑

j∈K\{k}

ŵj,bj (Q̃j)−
∑

t∈T

Ct(Q̃
t), (33)

where q̃ satisfies q ∈ D.

Finally, note that the allocation resulting from the es-PSP

mechanism may not be unique, when two agents bid the same

price. To resolve this, we assume that the auctioneer utilizes a

tie-breaking rule which is known to every agent participating

in the auction. This tie-breaking rule allows the auctioneer to

determine a unique allocation for the agents even if some of

the price bids are equal. Any fixed tie-breaking rule works

for our purpose; for definiteness, we assume that the agents

submitting the same price bids are prioritized in increasing

order of their indices: a higher PEV index gets that PEV agent

a higher priority in allocation.

Lemma 2. Assuming a fixed tie-breaking rule, the allocation

vector Q in any solution of the es-PSP mechanism is unique.

Slots

pm

pr

d

d

Fig. 5. Flow redirection that i) either increases the objective value S̄, or ii)
directs flow from a low priority user to a higher priority user as defined by
the tie-breaking rule.

Proof. Consider a given bid vector b, for which q̂ is an

optimal schedule vector (possibly non-unique) resulting from

(26)-(28) (or equivalently, (31)-(32)) and the fixed tie-breaking

rule. We want to show that the allocation vector Q̂ = Mq̂ is

unique, even though the optimal schedule vector q̂ may be

non-unique.

It is easy to see from the strict convexity of Ct(Q
t) in Qt,

that Q̂t ∀t ∈ T is unique for all optimal schedule vectors q̂.

Therefore, it follows that the total flow (of energy) given by

f(q̂) =
∑

t∈T

Q̂t is a constant under any optimal schedule.

Now, for the sake of contradiction let us assume that Q̂ is

not unique i.e. there exists some Q̆ which is realized by a

scheduling vector q̆, such that Q̂ 6= Q̆. Let us order the users

(from top to bottom in the bipartite graph representation) in

increasing order of their price bids; users with the same price

bids are ordered in the increasing order of their indices. Let

us renumber the indices of the users (PEVs) now according

to this new order. Let m be the smallest index user (in this

new order just defined) in which the two allocations differ.

Without loss of generality, let us assume Q̂m > Q̆m. Since

f(q̂) = f(q̆) (as argued before, the total energy allocation is

the same in any optimal schedule), there must exist an index

r > m, with Q̆r > Q̂r, such that we can direct some positive

flow δ > 0 flow from m to r in the solution q̂ (see Figure

5). (Note that the flow q̆ − q̂ can be resolved into a set of

path flows, each of which start and end at a PEV node, such

as the one shown in Figure 5.) Note that r is such that either

(i) pr > pm, or (ii) pr = pm and user r has a higher priority

than m according to the tie-breaking rule. In case (i) the flow
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redirection from m to r improves the objective S̄(q̂); in case

(ii) the solution q̂ could not have satisfied the tie-breaking rule.

In either case, we arrive at a contradiction to our assumption

that q̂ optimizes S̄ subject to the tie-breaking rule, thereby

proving the result.

B. Relation between Nash equilibrium and Social optimality

In this section we provide the main results stating the rela-

tionship between the Nash equilibrium and social optimality

of the es-PSP mechanism. Note that if a bid vector results

in an allocation such that no PEV agent has any incentive of

improving their utility by unilaterally changing their bid, then

this is a point of Nash equilibrium. Let q∗ = (q∗
1,q

∗
2, ...,q

∗
K)

be any socially optimal schedule vector that realizes the

socially optimal allocation vector Q∗ = (Q∗
1, Q

∗
2, . . . , Q

∗
K).

Note that the optimal schedule q∗ can be non-unique, but due

to the strict concavity of vk(Qk) in Qk, it follows that the

optimal allocation vector Q∗ is unique.

Proposition 3. The allocation at any Nash equilibrium of the

es-PSP mechanism is socially efficient.

Proof. Consider a bid vector b̌ that is at Nash equilibrium,

and let ŵk,b̌k
(·), ∀k ∈ K be the corresponding ramp functions.

(We will see from Proposition 4 that a Nash equilibrium to the

es-PSP mechanism exists.) Let q̌ be a schedule vector resulting

from the es-PSP mechanism for this bidding strategy, and the

corresponding allocation vector be Q̌.

Now from (33), given the bids of other agents b̌−k, agent

k seeks to maximize Ǔk(q), given by

Ǔk(q) = vk(Qk) +
∑

j∈K\{k}

ŵj,b̌j
(Qj)−

∑

t∈T

Ct(Q
t). (34)

We first argue that Ǔk(q) is maximized by q̌, ∀k ∈ K
subject to q ∈ D and the tie-breaking rule. To see this, for

sake of contradiction, suppose that for any k ∈ K, Ǔk(q) is

not maximized at q̌. In other words, there exists some schedule

vector q̄ 6= q̌ that maximizes Ǔk subject to q ∈ D and the

tie-breaking rule; let Q̄ (6= Q̌) be the corresponding allocation

vector. Let ∂Ǔk(q) be the set of sub-gradients of the function

Ǔk(q) at q, and Γ+(q) be the conjugate to the cone of feasible

directions in D at q. Then since q = q̄ optimizes Ǔk(q),
from [26] we can write (sub-gradient constrained optimality

condition):

∂Ǔk(q̄) ∩ Γ+(q̄) 6= φ. (35)

Now let agent k unilaterally change its bid from b̌k to

b̄k = (Q̄k, v
′
k(Q̄k)), and let v̂k,Q̄k

(·) be the corresponding

(truthful) ramp function. We will show that agent k gains for

this deviation. Since the bids of the other agents are kept fixed

at b̌−k, allocation will be determined by the auctioneer by

maximizing S̄(q) given by

S̄(q) = v̂k,Q̄k
(Qk) +

∑

j∈K\{k}

ŵj,b̌j
(Qj)−

∑

t∈T

Ct(Q
t), (36)

subject to (32) and the tie-breaking rule. Note that the only

difference in S̄(q) and Ǔk(q) is the replacement of vk(Qk)
in Ǔk(q) by v̂k,Q̄k

(Qk) in S̄(q). Also, note that v̂k,Q̄k
(Qk)

is non-differentiable with respect to Qk at Q̄k. Further, the

component corresponding to qtk (for any t ∈ Tk) in any sub-

gradient of S̄(q) at q = q̄ is given by λv′k(Q̄k) for 0 ≤ λ ≤ 1,

which contains v′k(Q̄k) (λ = 1) case. Thus, we can write

∂Ǔk(q̄) ⊂ ∂S̄(q̄). This fact and (35) gives

∂S̄(q̄) ∩ Γ+(q̄) 6= φ. (37)

This implies that q̄ also optimizes S̄(q). From Lemma 2,

we know that the corresponding allocation Q̄ is unique. This

implies that when the other agents’ bids are remain fixed at

b̌−k and agent k changes its bid to b̄k = (Q̄k, v
′
k(Q̄k)) 6= b̌k,

the allocation resulting from the es-PSP auction must be Q̄,

which improves Ǔk(q) beyond its value at Nash equilibrium

Ǔk(q̌). This provides incentive for agent k to change its

bid from b̌k, contradicting the fact that the bid vector b̌ is

at Nash equilibrium. Therefore, our supposition was wrong,

implying that Ǔk(q) is indeed maximized at q̌ for all k ∈ K.

Define C(q) =
∑

t∈T

Ct(Q
t). From the first order (necessary)

conditions for optimality of Ǔk(q) at q = q̌ along the direction

of qk, and identifying the fact that
∑

j∈K\{k}

ŵj,b̌j
(Qj) in (34)

is independent of qk , we can write

[∇qk
vk(Q̌k)−∇qk

C(q̌)]Dk
= 0. (38)

Note that (38) holds for all k ∈ K. Now consider S(q)
in (1) for computing the social optimum subject to (32). The

corresponding first order conditions for optimality (which are

both necessary and sufficient in this case, due to the convexity

of S(q) in q) of S(q) subject to (32) are given as,

[∇qk
vk(Qk)−∇qk

C(q)]Dk
= 0, ∀k ∈ K. (39)

Note that (38) when considered for all k ∈ K, is the same as

the conditions in (39). Therefore the schedule vector q̌ (which

realizes an allocation vector of Q̌) also maximizes S(q), and is

therefore socially optimal. This also implies that the allocation

vector Q̌ at any Nash equilibrium of the es-PSP mechanism

equals the unique socially optimal allocation Q∗.

Proposition 3 should not be interpreted as the uniqueness

of the Nash equilibrium bids. Proposition 3 only implies that

the allocation vector at all Nash equilibria is the same, and

is socially optimal. Note however that this (socially optimal)

allocation vector is in general realizable by multiple schedule

vectors.

Proposition 4. Truthful bidding at the socially optimal allo-

cations is a Nash equilibrium of the es-PSP mechanism, i.e.,

the bids b∗k = (Q∗
k, v

′
k(Q

∗
k)) for k ∈ K, constitute a Nash

equilibrium of the es-PSP mechanism.

Proof. Consider the bid vector b∗ = (b∗1, b
∗
2, . . . , b

∗
K) where

b∗k = (Q∗
k, v

′
k(Q

∗
k)) ∀k ∈ K. The allocation problem solved

by the auctioneer in this case is:

max Ŝ(q) =
∑

k∈K

v̂k,Q∗

k
(Qk)−

∑

t∈T

Ct(Q
t), (40)

subject to q ∈ D (and the tie-breaking rule), where

v̂k,Q∗

k
(Qk) = v′k(Q

∗
k)min(Qk, Q

∗
k) is the truthful ramp func-

tion corresponding to the socially optimal allocation for user
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k. Since q∗ optimizes S(q) in (1) subject to q ∈ D, from [26]

we can say,

∂S(q∗) ∩ Γ+(q∗) 6= φ. (41)

Here, ∂S(q∗) is the set of sub-gradients of the function S(q)
at q = q∗; in our case, since S(q) is differentiable for

all q, ∂S(q∗) will just consist of the gradient of S(q) at

q = q∗. Also, Γ+(q∗) represents the conjugate to the cone

of feasible directions in D, at the point q = q∗. We can

see that the only difference in (1) and (40) is that vk(Qk) has

been replaced by v̂k,Q∗

k
(Qk). Also, note that v̂k,Q∗

k
(Qk) is non-

differentiable with respect to Qk at Q∗
k. Further, the component

corresponding to qtk (for any t ∈ Tk) in any sub-gradient of

Ŝ(q) at q = q∗ is given by λv′k(Q
∗
k) for 0 ≤ λ ≤ 1, which

contains v′k(Q
∗
k) (λ = 1) case. Thus, we can argue that,

∂S(q∗) ⊂ ∂Ŝ(q∗). (42)

From (41) and (42), we can write,

∂Ŝ(q∗) ∩ Γ+(q∗) 6= φ, (43)

which implies that q∗ also optimizes Ŝ(q) subject to q ∈ D.

Now for any q = q̄ that optimizes Ŝ(q) subject to q ∈ D
and the tie-breaking rule, the corresponding allocation vector

Q̄ is unique (from Lemma 2). We claim that Q̄ = Q∗. To

see this, let us assume for the sake of contradiction, Q̄ 6=
Q∗. Note that any optimal allocation Q̄ must satisfy Q̄k ≤
Q∗

k, ∀k ∈ K. Also note that v̂k,Q∗

k
(Q̄k) = v′k(Q

∗
k)Q̄k for all

such allocations. Since Ŝ(q∗) = Ŝ(q̄), we have
∑

k∈K

v̂k,Q∗

k
(Q∗

k)−
∑

t∈T

Ct(Q
∗,t) =

∑

k∈K

v̂k,Q∗

k
(Q̄k)−

∑

t∈T

Ct(Q̄
t).

(44)

From the strict convexity of Ct(·), it follows that Qt, ∀t ∈ T
must be unique in any optimal solution. Therefore, Q∗,t =

Q̄t, ∀t ∈ T . Thus,
∑

t∈T

Ct(Q
∗,t) =

∑

t∈T

Ct(Q̄
t). Thus,

∑

k∈K

v̂k,Q∗

k
(Q∗

k) =
∑

k∈K

v̂k,Q∗

k
(Q̄k).

⇒
∑

k∈K

v′k(Q
∗
k)(Q

∗
k − Q̄k) = 0. (45)

Since v′k(·) > 0 at all points (we have assumed the valuation

functions to be (strictly) increasing), it follows that Q∗
k =

Q̄k, ∀k ∈ K. Thus, Q∗ = Q̄. This shows that given the bid

vector b∗
−k, i.e. when every other agent j ∈ K \ {k} bids the

ramp function v̂j,Q∗

j
(·), the allocation is Q∗ provided agent k

bids v̂k,Q∗

k
(Qk). Now from (33), given b∗

−k, a rational (selfish)

user k’s objective is to maximize U∗
k (q), given by

U∗
k (q) = vk(Qk) +

∑

j∈K\{k}

v̂j,Q∗

j
(Qj)−

∑

t∈T

Ct(Q
t). (46)

Comparing U∗
k (q) and S(q) (defined in (1)), we see that

the only differences are the replacement of vj(Qj) by

v̂j,Q∗

j
(Qj), ∀j ∈ K\{k}. Using similar arguments as provided

earlier in this proof (when comparing the sub-gradients of

S(q) and Ŝ(q) at q = q∗), it follows that

∂S(q∗) ⊂ ∂U∗
k (q

∗). (47)

From (41) and (47), we can write,

∂U∗
k (q

∗) ∩ Γ+(q∗) 6= φ. (48)

This shows that U∗
k (q) is maximized at q = q∗ subject to (32)

and the tie-breaking rule, provided b−k = b∗
−k. Now suppose

that given the bids of other users remains fixed at b∗
−k, user k

deviates by bidding b′k, which realizes in a schedule vector q′

(and corresponding allocation vector Q′), as a result of the es-

PSP auction. Since q∗ optimizes U∗
k (q) subject to (32) and the

tie-breaking rule, U∗
k (q

′) ≤ U∗
k (q

∗). Thus we see that given

b−k = b∗
−k, agent k has no incentive to change its bid from

v̂k,Q∗

k
or equivalently b∗k = (Q∗

k, v
′
k(Q

∗
k)). Therefore the bid

vector b∗ = (b∗k,b
∗
−k) is a Nash equilibrium of the es-PSP

mechanism.

Loosely speaking, Proposition 4 can be viewed as a converse

of Proposition 3. The result is an extension of Proposition 1 in

[19] which considers a generalized network model but fixed

resource supply. From the proof of Proposition 4, it can also

be seen that for this bidding strategy, each agent k gets the

quantity Q∗
k that it asks for, i.e., the optimal energy allocation

resulting from the auction when the bid vector is b∗ is Q∗.

C. Truthful price-bid declaration

Recall that Proposition 4 shows the existence of a truthful

bid that is a Nash equilibrium. In the proof of Proposition 3,

we have also used truthful bidding in constructing potentially

better bids for a user, given the bids of others. These are not

accidental, as can be seen from Proposition 5 as stated below.

This result shows that given the bids of other agents (which

need not be at Nash equilibrium or result in socially optimal

allocation), any agent cannot gain by lying about its price bid

for the quantity bid it declares (the quantity bid that optimizes

its individual utility, given other agents’ bids).

Proposition 5. Given the bids of other agents, b−k, there

exists a truthful best bid for agent k, b̃k(b−k) ∈ BT
k .

Proof. From (33), given the bids of other agents b−k, agent

k seeks to maximize

Uk(q) = vk(Qk) +
∑

j∈K\{k}

ŵj,bj (Qj)−
∑

t∈T

Ct(Q
t), (49)

subject to q ∈ D and the tie-breaking rule. Let an optimal

schedule vector (that maximizes Uk(q)) be q = q̃ which

realizes an allocation vector Q̃ = (Q̃1, Q̃2, . . . , Q̃K). While q̃

can be non-unique, owing to strict concavity of vk(Qk) with

respect to Qk, it follows that Q̃k is unique. From an argument

similar to that in the proof of Lemma 2, we can show that

Q̃j, ∀j ∈ K \ {k} are unique as well, when the tie-breaking

rule is taken into account. Thus, Q̃ is unique. Note that for

optimality of (49) at q̃, it follows from [26] that,

∂Uk(q̃) ∩ Γ+(q̃) 6= φ. (50)

Now let us define the following “truthful” bid for agent k:

b̃k(b−k) = (Q̃k, v
′
k(Q̃k)). Then b̃k can be represented as

the ramp function v̂k,Q̃k
(·). Now when agent k bids b̃k in

the es-PSP mechanism, while the bids of other agents remain
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fixed at b−k, the auctioneer computes the energy allocation

by maximizing S̃(q) given by

S̃(q) = v̂k,Q̃k
(Qk) +

∑

j∈K\{k}

ŵj,bj (Qj)−
∑

t∈T

Ct(Q
t), (51)

subject to (32) and the tie-breaking rule. Compare Uk(q)
and S̃(q). The only differences are replacement of vk(Qk)
in Uk(q) by v̂k,Q̃k

(Qk) in S̃(q). Hence, arguing as before

(see proofs of Propositions 4 and 3), ∂Uk(q̃) ⊂ ∂S̃(q̃).
Combining this with (50) we get ∂S̃(q̃) ∩ Γ+(q̃) 6= φ, which

implies that q̃ also optimizes S̃(q). Since the allocation vector

corresponding to any optimum solution of S̃(q) subject to

the tie-breaking rule is unique (Lemma 2), it follows that if

agent k submits a bid of b̃k when the other bids are kept at

b−k, the resulting allocation is Q̃. Since Q̃ maximizes Uk(q),
therefore the truthful bid b̃k = (Q̃k, v

′
k(Q̃k)), which depends

on b−k, represents the agent’s best bid given b−k. The result

follows.

The question of convergence to equilibrium for the PSP

mechanism has been addressed in [22], in context of a single

fixed resource and quantized user bids. The extension of such

results to our network model - which has elastic supply and

a bipartite graph structure - however remains open for future

investigation.

V. NUMERICAL STUDY

In order to validate our theoretical findings with numerical

evidence, we consider an urban residential power distribution

network with a baseline demand profile as given in [28]. We

consider 200 PEVs in the residential network: each having

a valuation function of the nature vk = κ(1 − e−ax) where

κ and a are concavity parameters of the valuation function.

Ideally all PEVs would have unique parametric values for κ
and a but for simplicity, we assume that PEVs are of two

types: each type represented by a unique set of κ values. For

our study, we chose κ1 = 15;κ2 = 12. For all PEVs, a = 0.1.

We assume that all PEVs are available to charge in all time

slots. Based on the nature of market clearing prices observed

in New York City [27], the aggregator’s cost of buying x kWh

of energy for PEV charging in any time slot t is assumed to

be determined by the function Ct(Dt + x) = 1

2
c(Dt + x)2

where c = 0.0006932. We see from Figure 6 that the VCG

mechanism results in valley filling of the load curve: it directs

the PEVs to charge from time slots that have lesser inelastic

demand in them (12am - 6am i.e. overnight charging).
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Fig. 6. Grid load profile before and after energy allocation to PEVs through
the VCG mechanism.

The socially optimal allocations of the VCG mechanism to

PEV agents of type 1 and 2 are found to be 8.2798 kWh

and 6.0483 kWh respectively. Note that this is sufficient for

driving 20 − 30 miles approximately (depending upon PEV

manufacturer type) which we belive, is suitable for daily

commuting requirements in a typical urban (or semi-urban)

setting. However, one must note that PEVs can avail greater

energy by raising their valuation of the resource. The following

table shows how PEV agent 1 can increase it’s allocation by

raising its valuation. Here, we increase the parameter κ1 and

hold κ2 constant and observe the change in the socially optimal

allocation. For our subsequent simulations, we use κ1 = 15

TABLE I
EFFECT OF INCREASING VALUATION ON SOCIAL OPTIMUM ALLOCATION

FOR TYPE 1 PEV AGENTS

κ1 15 20 25 30 35
Allocation (kWh) 8.2798 10.7993 12.7859 14.4287 15.8197

and κ2 = 12 and a = 0.1. We now consider the effect of

increasing the number of PEVs in the network on the social

optimum allocation. In Figure 7, we report the net allocation

to PEV agents of type 1 and type 2 under different levels of

PEV penetration in the network. We use an equal proportion

of type 1 and type 2 agents for this study. We observe that

Number of PEVs
50 100 150 200 250 300 350 400 450 500

E
ne

rg
y 

al
lo

ca
tio

n 
at

 s
oc

ia
l o

pt
im

um
 (

kW
h)

5

10

N
et

 s
oc

ia
l w

el
fa

re
 (

U
SD

)

0

500

1000

1500
Type 1 PEV agent allocation
Type 2 PEV agent allocation
Net social welfare

Fig. 7. Effect of increasing the number of PEVs in the distribution network
on the social optimum values. Note that κ1 = 15, κ2 = 12 for this study.

with the same valuation functions, the individual allocations to

each PEV agent decreases as the total number of PEV agents

increase in the network. This indicates that a higher penetration

of PEVs in the network increases competition among rational

PEV agents to avail the energy. We also note that the overall

social valuation of the resource monotonically increases as we

increase the PEV penetration in the network. This proves that

a higher PEV penetration allows the aggregator to increase the

overall social valuation of the energy resource being auctioned.

Having studied the variation of the social optimum with

respect to PEV user preferences and overall levels of PEV

penetration, we concentrate on studying the proposed ap-

proximations to the pure VCG mechanism. We first consider

the es-MSP mechanism. Define γ = EV CG−Ees−MSP

EV CG
, where

E is the economic surplus (aggregate valuation of the PEV

agents for the energy supplied to them, minus the total cost

of supplying that energy, given their charging constraints) as

defined in Section I. The parameter γ is the measure of the
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relative degree of inefficiency resulting from the discretization

of the valuation functions. We observe from Figure 8 that the

relative inefficiency approximately decreases with increase in

the number of bids.
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Fig. 8. Effect of discretization in es-MSP mechanism on social welfare.

Next we consider the es-PSP auction, and demonstrate that

a social optimum solution is a Nash equilibrium. The socially

optimal allocations resulting from the VCG mechanisms are

8.2798 kWh for Type 1 PEVs, and 6.0483 kWh for Type 2

PEVs. Now, we study the effect of increasing the quantity of

bid for each agent k in an entire range of interest of charging,

while the bids of all other 199 agents (of both type 1 and type

2) are held constant at their socially optimal values. We assume

truthful bidding, so determining the quantity also determines

the per-unit price pk. We observe from Figure 9 that, agents
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Fig. 9. Utility received by agents of type 1 by varying their bids unilaterally,
while the other agent’s are kept at their socially optimal values.

of type 1 gain maximum utility by bidding at the socially

optimal value of 8.2798 kWh, at which point there is no

incentive to unilaterally deviate and gain a greater utility. This

validates that bidding socially optimal quantities is indeed a

Nash equilibrium, under truthful bidding.

We also observe that given all the other 199 agents bid

at their socially optimal values (and truthfully), any agent of

type 1 drastically loses utility if it overbids (truthfully) its

energy quantity even marginally above its social optimum.

This can be explained as follows. At its socially optimum bid

of 8.2798 kWh, the corresponding truthful price bid of the

singular type 1 PEV agent is 0.6554 $/kWh, at which point it

obtains its desired energy quantity (and maximum utility). A

marginal unilateral increase of bid quantity by the agent from

the socially optimal value to 8.29 kWh (say) causes its price

bid to be 0.6547 $/kWh and results in the agent receiving a

non-zero but smaller allocation (also lesser than its requested

bid). A further increase of bid to 8.3 kWh corresponds to a

price bid of 0.6541 $/kWh, at which point its allocation (and

corresponding utility) is zero (owing to the price bid becoming

lesser than marginal cost of energy i.e. 0.6544 $/kWh).

We also study the effect of charging time constraints on

the social optimal allocation and payments. For this case, we

assume that type 1 PEV agents are unavailable to charge from

12am - 3am and type 2 PEV agents are unavailable to charge

from 2am - 3am. Under such setting, we observe that the

social optimum allocation becomes 7.8438 kWh and 5.6124
kWh for type 1 and 2 agents respectively. This is clearly lesser

than the allocations when no charging time constraints are

present. We observe that when agents of type 1 increase their

valuation from κ1 = 15 to κ1 = 20 (κ2 = 12 and a = 0.1
are unchanged), with similar time constraints as assumed, the

social optimum allocation changes to 10.2677 kWh and 5.5251
kWh for type 1 and 2 agents respectively. Thus agents who are

(severely) time constrained can get greater energy allocated

through raising their true valuations. The corresponding es-

PSP mechanism payments (assuming that it has converged to

the point of social optimum) for type 1 agents are observed

to be 5.3664$ and 7.3473$ respectively for the cases where

κ1 = 15 and κ2 = 20. This shows that a higher payment

needs to be made by the time constrained type 1 PEV agents

to obtain greater resource.

We now compare the payments to be made to the aggregator

by the PEV agents under the VCG mechanism, the 8-bid es-

MSP mechanism and the es-PSP mechanism (assuming it has

converged to social optimum) under the setting where there

are no charging time restrictions for any agents. We compare

these payments with a specific rule based payment strategy in

which the socially optimum allocations in any time slot are

charged at a flat per unit price equal to the marginal price of

energy in that time slot (after PEV load inclusion). Refer to

Figure 10 for this study.
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Fig. 10. Comparison of total payments to be made by a PEV agent of type
1 or type 2 under different mechanisms.

The VCG payments for an agent of type 1 and type 2 are

seen to be 5.4236$ and 4.3414$ respectively. The payments

under the es-PSP mechanism are observed to be 5.4226$ and

3.9619$ for an agent of type 1 and 2 respectively. In the

8-bid es-MSP mechanism, the net payments to be made by

PEV agents of type 1 and type 2 are observed to be 5.9638$
and 3.9731$ respectively. Assuming that the PEVs have been

allocated their socially optimal energy quantities, the rule

based marginal pricing policy results in payments of 5.4266$
and 3.9641$ for type 1 and type 2 PEV agents respectively.

Thus we infer that the studied auction mechanisms yields

prices for energy use (PEV charging in our case) that are

comparable to the rule based marginal pricing policy often

employed for customer billing by load serving entities in retail

electricity markets.

Remarks: We conclude this section with a complexity

analysis of the studied mechanisms. Assume there are K
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agents participating in the auction and the auction window

of T time slots. Firstly, note that for the VCG mechanism

and the es-MSP mechanism (both of which are “single-shot”

mechanisms), the allocation to PEV agents is determined by

a convex program ((1)-(3) for the VCG and (5)-(6) for the

es-MSP mechanism) which has KT decision variables. The

determination of payment of an agent also requires the solving

of one convex program which has (K−1)T decision variables

(to determine the allocations to other agents in the absence

of the agent whose payment is being determined). So overall

we require K + 1 convex programs to entirely compute the

allocation and payments of all PEV agents for the VCG

mechanism and the es-MSP mechanism.

The es-PSP mechanism, could be implemented as an itera-

tive mechanism, where each round has the same computational

requirements of the overall VCG (or es-MSP mechanism).

Typically, the number of rounds and hence the computational

requirements will increase with the increase in the number

of agents. However, note that in practice, many PEVs will

have similar charging preferences in the network. This can

also be implicitly achieved by engineering the smart meters

in a manner that the PEV agent preferences are constrained

to lie within some select choices made available through an

interactive user interface. Through such schemes, the central

auctioneer (the utility or aggregator) can reduce computational

requirements by grouping similar PEV agents (and hence

reducing the number of optimization decision variables) while

determining the auction allocations and agent payments.
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